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Abstract. For the kind of coverings codes called multiple coverings of the farthest-
off points (MCF) we define u-density as a characteristic of quality. A concept of
multiple saturating sets ((p, u)-saturating sets) in projective spaces PG(N,q) is
introduced. A fundamental relationship of these sets with MCF codes is showed.
Lower and upper bounds for the smallest possible cardinality of (1, u)-saturating sets
are obtained. In PG(2,q), constructions of small (1, u)-saturating sets improving
the probabilistic bound are proposed. A number of results on the spectrum of sizes
of minimal (1, u)-saturating sets are obtained.

1 Introduction

Let (n, M, d),R be a code of length n, cardinality M, minimum distance d, and
covering radius R, over the Galois field F,. Let [n,k,d]qR be a linear code of
length n, dimension k, minimum distance d, and covering radius R, over [F,.
One may omit “d” if it is not relevant. Let Fy be the space of n-dimensional
vectors over [Fy.

Definition 1. [4,7,8] An (n,M),R code C is said to be an (R, p) multiple
covering of the farthest-off points ((R, u)-MCF for short) if for all x € Fy such
that d(x,C) = R the number of codewords ¢ such that d(z,c) = R is at least p.

In the literature, MCF codes are called also multiple coverings of deep holes [4].
Let V4(n, R) be the size of a sphere or radius R in Fy;. Recall that

k) = 3 ()=

1=0
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For an (n,M,d(C)),R code C we denote by Nr(C) the number of words of
Fy with distance R from C and by ~v(C, R) the average number of spheres of
radius R centered in words of C' containing a fixed element in Fy with distance
R from C. We have

Np(C) = ¢"—M Vy(n,R—1)ifd(C)>2R -1,
Ng(C) > ¢" =M -Vy(n,R—1)if d(C) < 2R — 1,
M- (3) - (¢—DF

Nr(C) '

v(C, R)

Definition 2. Let an (n,M),R code C be an (R, pu)-MCF. We define the p-
density 6,(C, R) as follows:

_ 2GR M-(R) (D"
du(C,R) == P N1 () > 1. (1)
If C is a linear [n, k, d(C)]4R code with d(C) > 2R — 1, then
5.0, ) = — )@= D 2)

po(qnk = Vy(n, R = 1))

From now, throughout the paper we consider only linear [n,k,d],R codes
with d > 3.

Let PG(N, q) be a projective space of dimension N over the field F,. For an
introduction to p-saturating sets in PG(N, q) and their connections with linear
covering codes, see e.g. [5] and references therein.

We introduce a concept of multiple saturating sets.

Definition 3. Let I = {Py,...,P,} be a subset of points of PG(N,q). Let
N>p>1,u>1. Then I is said to be (p, u)-saturating if:

(M1) I generates PG(N,q);

(M2) there exists a point Q in PG(N,q) which does not belong to any subspace
of dimension p — 1 generated by the points of I;

(M3) every point @ in PG(N,q) not belonging to any subspace of dimension
p — 1 generated by the points of I, is such that the number of subspace of
dimension p generated by the points of I and containing @ is at least p,
counted with multiplicity. The multiplicity mr of a subspace T is com-
puted as the number of distinct sets of p+ 1 independent points contained
mTNI.

¢

A (p,1)-saturating set is a “usual” p-saturating set [5].
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Definition 4. An [n,k];R code with R = p + 1 corresponds to a (p,p)-
saturating n-set I in PG(n —k —1,q) if every column of a parity check matrix
of the code can be represented as a point of I.

Note that if any p + 1 points of the set I of Definition 3 are linearly inde-
pendent (i.e. the corresponding code has minimum distance d > p + 2) then

#(TOD)).

the multiplicity mr of a subspace 1" is mp = ( e

Lemma 1. A linear [n,k]gR code corresponding to a (p, p)-saturating n-set in
PGn—k—1,q) is a (p+ 1, u)-MCF code.

The basic Lemma 1 allows us to consider (p, u)-saturating sets as a linear
(p+ 1, 1)-MCF codes and vice versa.

2 (1, u)-saturating sets and (2, 1)-MCF codes

For p = 1, the conditions (M2),(M3) can be read as follows:
(M2) I is not the whole PG(N, q);

(M3) every point @ in PG(N,q) \ I is such that the number of secants of I
through @ is at least u, counted with multiplicity. The multiplicity my of
a secant £ is computed as my = (#(ézm)).
Let a linear [n,n — N — 1,d(C)]42 code C with d(C) > 3 be (2, u)-MCF.
Then relation (2) for pu-density can be written as
(5)(a = 1)* 3(n—1)(g 1)

5“(0’2>:u-(qN“—l—n(q—l)):u‘(w—l). Y

By (3), if ¢, N, u are fixed, then the best density is achieved for small n.

Definition 5. The p-length function £,(2,r,q) is the smallest length n of a
linear (2, p)-MCF code with parameters [n,n —r,d]42, d > 3, or equivalently
the smallest cardinality of a (1, u)-saturating set in PG(r — 1,q). For p =1,
we denote ,,(2,7,q) as €(2,7,q); it is the “usual” length function [4,5].

It is obvious that p disjoint copies of an usual 1-saturating set in PG(r—1, q)
give rise to a (1, pu)-saturating set in PG(r — 1, ¢). Therefore,

(2,7, q) < pl(2,7,q). (4)

Denote by 6,,(2,7,¢) the minimum p-density of a linear (2, 1)-MCF code of
codimension r over F,. Let 6(2,7,¢) be the minimum density of a linear code
with covering radius 2 and codimension r over F,. By (3),(4),

1

S(ul(2,m,q) —1)(g — 1)
0u(2,7,q) < C(EEGU=La )
H pl(2,r,9)

~ uo(2,r,q). (5)
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By (4),(5), estimates for £,(2,7,q) and 0,(2,r,q) can be immediately ob-
tained from the vast body of literature on 1-saturating sets in finite projec-
tive spaces. The best result in this direction is the existence of 1-saturating
|5v/qlogq |-sets in PG(2,q) which was shown by means of probabilistic meth-
ods, see [3] and references therein. Therefore,

04(2,3,9) < p[5v/qlogg]. (6)

The aim of the present paper is to construct (1,u)-saturating sets in
PG(N,q) giving rise to (2, u)-MCF codes with u-density smaller with respect
to that derived from (5). Equivalently, it can be said that our goal is to obtain
(1, p)-saturating sets in PG(r — 1, ¢q) with cardinality smaller than p6(2,7,q).

The exact values of £(2,,¢) (and hence exact values of §(2,r,q)) are known
only for small ¢, see [2], [5, Tables 1,3]. Therefore the smallest known length
0(2,7,q) of a linear g-ary code with covering radius 2 and codimension r (or
equivalently the smallest cardinality of a l-saturating set in PG(r — 1,q)) is
interesting for comparison. Slightly reformulating the foregoing, we can say that
the aim of the present paper is to construct (1, u)-saturating sets in PG(r—1, q)
with cardinality smaller than pf(2,7,q).

Theorem 1. The following lower bound on the u-length function holds:
€u(2,3,q9) =2 V2pg.

3 Constructions of small (1, u)-saturating sets
in PG(2,q)

Constructions of this section essentially use the ideas and results of [6].
Let ¢ = p* with p prime, and let H be an additive subgroup of F,. Also, let

Lu(X) = [[ (X —h) € F[X]. (7)
heH
Assume that the size of H is p® with 2s < £. Let

P
My = {(LHl(m)) | Hy, Hy subgroups of H of size p*~ !, 3; € H\HZ} )
LH2(52) ( )
8

Theorem 2. Let ¢ = p’, and let H be any additive subgroup of F, of size p®,
with 2s < £. Let pu be any integer with 1 < u < p*=5, and let 71,7, ... . Ty be
a set of distinct non-zero elements in Fy. Let Ly(X) be as in (7), and My be
as in (8). Then the set

D= {(Ly(a):1:1),(Lp(a):0:1)|acFtUu{(ri:m:1)|me Mpy,
i=1,..., 0 U{(1:7:0)|i=1,...,up U{(1:0:0)}
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is a (1, p)-saturating set of size at most
2q p* —1)2
2 M( )
p p—1
The order of magnitude of the size of D of Theorem 2 is p* where a =
max{l — s,log, y1- (25 — 1)}. If s is chosen as [£/3], then the size of D satisfies

+ 1

2 1
2q%+u+uq3—p2_7ql3+12, ~ i =0 (mod3)
2 2(2)2% _2p(2)3 41
#D=N 2(2)" +p+ it G) p_’i(P) i f=1 (mod3)

2 1
2L (gp)3 + 4 p@E2@IEL e g =2 (mod 3)

Theorem 3. Let g = p’, with £ odd. Let 1 <y < p, and let H be any additive
subgroup of Fy of size p°®, with 2s+1=1{. Let Ly (X) be as in (7), and Mg be
as in (8). Then for any integer v > 1 there exists a (1, u)-saturating set T in
PG(2,q) such that

#My
(¢—1)vt

Corollary 1. Let ¢ = p***1, and let 1 < y < p. Then there exists a (1, u)-
saturating set in PG(2,q) of size less than or equal to

(p° — 1)
(p _ 1)v(p(25+1) _ 1)(1171)

#T < (v+1D)p*™ +p + 1+ p. (9)

+1+u}.
(10)

Several triples (s, p,v) such that nq(s,p,v) < 5y/qlogq are given in [6, Ta-
ble 1]. For the corresponding ¢ = p**™!, these values of ny(s, p,v) are the small-
est known cardinalities £(2,3,q) of 1-saturating sets in PG(2,q), see [5, Sec-
tion 4.4]. Moreover, for p > 2, by (10), it holds that n,(s,p,v) < pni(s,p,v).
Thus, in the cases provided by the triples (s,p,v), the goal formulated in Sec-
tion 2 is achieved.

nu(s,p,v) = _min {(v +1p "+ p

4 Minimal (1, u)-saturating sets

Definition 6. A (p, u)-saturating n-set in PG(N,q) is minimal if it does not
contain any (p, p)-saturating (n — 1)-set of PG(N,q).

Denote by m,(p+1, N+1, ¢) the maximal size of a minimal (p, p1)-saturating
set in PG(N,q).

Theorem 4. Let ¢ > 2, ¢°> > . Then my(2,3,q) < (¢+ p+1). In particular,
ma(2,3,q) = q+ 3.
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Constructions.

e Let ¢ = p", h > 1, p prime. In PG(2,q), let A be a point (¢ + 3)-set
containing a whole line £ and two points P;, P, outside of £, i.e. A = (U{Py, P>}.

e Let ¢ > 4. In PG(2,q), let B be a point (g + 2)-set containing a line ¢
without two points P, Q and three non-collinear points R, S, T outside of £ such
that P, R, S and Q, R, T are collinear. So, B = ({\ {P,Q}) U{R,S,T}.

e Let ¢ > 4. In PG(2,q), let C be a point (g + 2)-set constructed similar to
the set B above except that the points P, R, S,T are collinear.

Theorem 5. In PG(2,q), the sets A, B,C of constructions above are minimal
(1,2)-saturating. Also, the stabilizer of the set A in PI'L(3,q) has size hp(p—1).

By computer search and by constructions we obtained Table 1.

Table 1. The number of nonequivalent minimal (1,2)-saturating n-sets
in PG(2,q) and the spectrum of sizes n

q | 0(2,3,9) [2\/ﬂ ma(2,3,q) Spectrum of n

3 41, 4 6 67 . x

4 5L, 4 7 627° . *

5 65. 5 8 6174818, x

7 63. 6 10 813956410424 | x

8 6. 6 11 82915410337211611 | 4
9 61- 6 12 8195710121451176749123049 %
11 7L, 7 14 10134811 — 14].

13] &2 8 16 10211°9794[12 — 16].
16| 9% 8 19 1152[12 — 19].

17 | 103540, 9 20 [12 — 20].

19 | 10%. 9 22 [13 — 22]

23| 10% 10 26 [15 — 26]

25 12 10 28 [17 — 28]

27 12 11 30 [17 — 30]

29 13 11 32 [19 — 32]

31 14 12 34 (19,21 — 34]

32 13 12 35 [20 — 35]

37 15 13 38 23,26 — 40]

41 16 13 44 25,29 — 44]

43 16 14 46 25,30 — 46]

47 18 14 50 27,34 — 50]

49 18 14 52 29,34 — 52]

In the 2-nd column of Table 1, the values (2,3, q) of the smallest cardinality
of a 1-saturating set in PG(2,q), taken from [2,5], are given. The cases when
0(2,3,q) = £(2,3,q) are marked by the dot “.”. In the 5-th column, we give
some values of n for which minimal (1, 2)-saturating n-sets in PG(2,q) exist.
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For 3 < ¢ < 17, we have found the complete spectrum of sizes n. This situation
is marked by the dot “.”. In the 2-nd and the 5-th columns, the superscript notes
the numbers of nonequivalent sets of the corresponding size. For 3 < ¢ < 9,
we obtain the complete classification of the spectrum of sizes n of minimal
(1,2)-saturating n-sets in PG(2,q). This situation is marked by the asterisk *.
By some constructions, considering several points on a conic, we obtained
(1,2)-saturating n-sets in PG(2, q), with sizes described in Table 2.

Table 2. Sizes small (1,2)-saturating n-sets in PG(2, q)
q| 53596167 717379 81838997 101 103 107 109 113 125 127 131 139
n| 31 33 3537 39 41 39 45454953 55 55 H7 59 61 67 67 69 73

The smallest cardinalities of (1,2)-saturating sets for each ¢ in Table 1 and sizes
n in Table 2 are smaller than 2/(2,3,q). So, for =2, r = 3, q from Tables 1
and 2, the goal formulated in Section 2 is achieved (as well as for 2 < p < p,
r =3, ¢ = p***! with the special values of s, p mentioned after Corollary 1).
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