Multiple coverings of the farthest-off points and multiple saturating sets in projective spaces

DANIELE BARTOLI daniele.bartoli@dmi.unipg.it Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, Perugia, 06123, Italy

ALEXANDER A. DAVYDOV Institute for Information Transmission Problems, Russian Academy of Sciences, Bol'shoi Karetnyi per. 19, GSP-4, Moscow, 127994, Russian Federation MASSIMO GIULIETTI, STEFANO MARCUGINI, FERNANDA PAMBIANCO

giuliet,gino,fernanda}@dmi.unipg.it

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, Perugia, 06123, Italy

Abstract. For the kind of coverings codes called multiple coverings of the farthestoff points (MCF) we define μ -density as a characteristic of quality. A concept of multiple saturating sets $((\rho, \mu)$ -saturating sets) in projective spaces PG(N, q) is introduced. A fundamental relationship of these sets with MCF codes is showed. Lower and upper bounds for the smallest possible cardinality of $(1, \mu)$ -saturating sets are obtained. In PG(2, q), constructions of small $(1, \mu)$ -saturating sets improving the probabilistic bound are proposed. A number of results on the spectrum of sizes of minimal $(1, \mu)$ -saturating sets are obtained.

1 Introduction

Let $(n, M, d)_q R$ be a code of length n, cardinality M, minimum distance d, and covering radius R, over the Galois field \mathbb{F}_q . Let $[n, k, d]_q R$ be a linear code of length n, dimension k, minimum distance d, and covering radius R, over \mathbb{F}_q . One may omit "d" if it is not relevant. Let \mathbb{F}_q^n be the space of n-dimensional vectors over \mathbb{F}_q .

Definition 1. [4,7,8] An $(n, M)_q R$ code C is said to be an (R, μ) multiple covering of the farthest-off points $((R, \mu)-MCF \text{ for short})$ if for all $x \in \mathbb{F}_q^n$ such that d(x, C) = R the number of codewords c such that d(x, c) = R is at least μ .

In the literature, MCF codes are called also multiple coverings of deep holes [4]. Let $V_q(n, R)$ be the size of a sphere or radius R in \mathbb{F}_q^n . Recall that

$$V_q(n,R) = \sum_{i=0}^{R} \binom{n}{i} (q-1)^i.$$

For an $(n, M, d(C))_q R$ code C we denote by $N_R(C)$ the number of words of \mathbb{F}_q^n with distance R from C and by $\gamma(C, R)$ the *average number* of spheres of radius R centered in words of C containing a fixed element in \mathbb{F}_q^n with distance R from C. We have

$$N_R(C) = q^n - M \cdot V_q(n, R-1) \text{ if } d(C) \ge 2R - 1,$$

$$N_R(C) > q^n - M \cdot V_q(n, R-1) \text{ if } d(C) < 2R - 1,$$

$$\gamma(C, R) = \frac{M \cdot \binom{n}{R} \cdot (q-1)^R}{N_R(C)}.$$

Definition 2. Let an $(n, M)_q R$ code C be an (R, μ) -MCF. We define the μ density $\delta_{\mu}(C, R)$ as follows:

$$\delta_{\mu}(C,R) := \frac{\gamma(C,R)}{\mu} = \frac{M \cdot \binom{n}{R} \cdot (q-1)^R}{\mu N_R(C)} \ge 1.$$

$$\tag{1}$$

If C is a linear $[n, k, d(C)]_q R$ code with $d(C) \ge 2R - 1$, then

$$\delta_{\mu}(C,R) = \frac{\binom{n}{R} \cdot (q-1)^{R}}{\mu \cdot (q^{n-k} - V_{q}(n,R-1))}.$$
(2)

From now, throughout the paper we consider only linear $[n, k, d]_q R$ codes with $d \geq 3$.

Let PG(N,q) be a projective space of dimension N over the field \mathbb{F}_q . For an introduction to ρ -saturating sets in PG(N,q) and their connections with linear covering codes, see e.g. [5] and references therein.

We introduce a concept of *multiple saturating sets*.

Definition 3. Let $I = \{P_1, \ldots, P_n\}$ be a subset of points of PG(N,q). Let $N \ge \rho \ge 1$, $\mu \ge 1$. Then I is said to be (ρ, μ) -saturating if:

- (M1) I generates PG(N,q);
- (M2) there exists a point Q in PG(N,q) which does not belong to any subspace of dimension $\rho - 1$ generated by the points of I;
- (M3) every point Q in PG(N,q) not belonging to any subspace of dimension $\rho 1$ generated by the points of I, is such that the number of subspace of dimension ρ generated by the points of I and containing Q is at least μ , counted with multiplicity. The multiplicity m_T of a subspace T is computed as the number of distinct sets of $\rho + 1$ independent points contained in $T \cap I$.

A $(\rho, 1)$ -saturating set is a "usual" ρ -saturating set [5].

Definition 4. An $[n,k]_q R$ code with $R = \rho + 1$ corresponds to a (ρ, μ) -saturating n-set I in PG(n-k-1,q) if every column of a parity check matrix of the code can be represented as a point of I.

Note that if any $\rho + 1$ points of the set I of Definition 3 are linearly independent (i.e. the corresponding code has minimum distance $d \ge \rho + 2$) then the multiplicity m_T of a subspace T is $m_T = \binom{\#(T \cap I)}{\rho+1}$.

Lemma 1. A linear $[n,k]_q R$ code corresponding to a (ρ,μ) -saturating n-set in PG(n-k-1,q) is a $(\rho+1,\mu)$ -MCF code.

The basic Lemma 1 allows us to consider (ρ, μ) -saturating sets as a linear $(\rho + 1, \mu)$ -MCF codes and vice versa.

2 $(1, \mu)$ -saturating sets and $(2, \mu)$ -MCF codes

For $\rho = 1$, the conditions (M2),(M3) can be read as follows:

- (M2) I is not the whole PG(N,q);
- (M3) every point Q in $PG(N,q) \setminus I$ is such that the number of secants of I through Q is at least μ , counted with multiplicity. The multiplicity m_{ℓ} of a secant ℓ is computed as $m_{\ell} = \binom{\#(\ell \cap I)}{2}$.

Let a linear $[n, n - N - 1, d(C)]_q 2$ code C with $d(C) \ge 3$ be $(2, \mu)$ -MCF. Then relation (2) for μ -density can be written as

$$\delta_{\mu}(C,2) = \frac{\binom{n}{2}(q-1)^2}{\mu \cdot (q^{N+1}-1-n(q-1))} = \frac{\frac{1}{2}(n-1)(q-1)}{\mu \cdot (\frac{\#PG(N,q)}{n}-1)}.$$
 (3)

By (3), if q, N, μ are fixed, then the best density is achieved for small n.

Definition 5. The μ -length function $\ell_{\mu}(2, r, q)$ is the smallest length n of a linear $(2, \mu)$ -MCF code with parameters $[n, n - r, d]_q 2, d \geq 3$, or equivalently the smallest cardinality of a $(1, \mu)$ -saturating set in PG(r - 1, q). For $\mu = 1$, we denote $\ell_{\mu}(2, r, q)$ as $\ell(2, r, q)$; it is the "usual" length function [4,5].

It is obvious that μ disjoint copies of an usual 1-saturating set in PG(r-1,q) give rise to a $(1,\mu)$ -saturating set in PG(r-1,q). Therefore,

$$\ell_{\mu}(2, r, q) \le \mu \ell(2, r, q).$$
 (4)

Denote by $\delta_{\mu}(2, r, q)$ the minimum μ -density of a linear $(2, \mu)$ -MCF code of codimension r over \mathbb{F}_q . Let $\delta(2, r, q)$ be the minimum density of a linear code with covering radius 2 and codimension r over \mathbb{F}_q . By (3),(4),

$$\delta_{\mu}(2, r, q) \leq \frac{\frac{1}{2}(\mu\ell(2, r, q) - 1)(q - 1)}{\mu \cdot (\frac{\#PG(r - 1, q)}{\mu\ell(2, r, q)} - 1)} \sim \mu\delta(2, r, q).$$
(5)

By (4),(5), estimates for $\ell_{\mu}(2,r,q)$ and $\delta_{\mu}(2,r,q)$ can be immediately obtained from the vast body of literature on 1-saturating sets in finite projective spaces. The best result in this direction is the existence of 1-saturating $\lfloor 5\sqrt{q\log q} \rfloor$ -sets in PG(2,q) which was shown by means of probabilistic methods, see [3] and references therein. Therefore,

$$\ell_{\mu}(2,3,q) \le \mu \lfloor 5\sqrt{q \log q} \rfloor. \tag{6}$$

The aim of the present paper is to construct $(1, \mu)$ -saturating sets in PG(N, q) giving rise to $(2, \mu)$ -MCF codes with μ -density smaller with respect to that derived from (5). Equivalently, it can be said that our goal is to obtain $(1, \mu)$ -saturating sets in PG(r - 1, q) with cardinality smaller than $\mu\ell(2, r, q)$.

The exact values of $\ell(2, r, q)$ (and hence exact values of $\delta(2, r, q)$) are known only for small q, see [2], [5, Tables 1,3]. Therefore the smallest known length $\overline{\ell}(2, r, q)$ of a linear q-ary code with covering radius 2 and codimension r (or equivalently the smallest cardinality of a 1-saturating set in PG(r-1,q)) is interesting for comparison. Slightly reformulating the foregoing, we can say that the *aim of the present paper* is to construct $(1, \mu)$ -saturating sets in PG(r-1,q)with cardinality smaller than $\mu \overline{\ell}(2, r, q)$.

Theorem 1. The following lower bound on the μ -length function holds: $\ell_{\mu}(2,3,q) \geq \sqrt{2\mu q}.$

3 Constructions of small $(1, \mu)$ -saturating sets in PG(2, q)

Constructions of this section essentially use the ideas and results of [6].

Let $q = p^{\ell}$ with p prime, and let H be an additive subgroup of \mathbb{F}_q . Also, let

$$L_H(X) = \prod_{h \in H} (X - h) \in \mathbb{F}_q[X].$$
(7)

Assume that the size of H is p^s with $2s < \ell$. Let

$$\mathcal{M}_H := \left\{ \left(\frac{L_{H_1}(\beta_1)}{L_{H_2}(\beta_2)} \right)^p \mid H_1, H_2 \text{ subgroups of } H \text{ of size } p^{s-1}, \, \beta_i \in H \setminus H_i \right\}.$$
(8)

Theorem 2. Let $q = p^{\ell}$, and let H be any additive subgroup of \mathbb{F}_q of size p^s , with $2s < \ell$. Let μ be any integer with $1 \le \mu \le p^{2\ell-s}$, and let $\tau_1, \tau_2, \ldots, \tau_{\mu}$ be a set of distinct non-zero elements in \mathbb{F}_q . Let $L_H(X)$ be as in (7), and \mathcal{M}_H be as in (8). Then the set

$$D = \{ (L_H(a):1:1), (L_H(a):0:1) \mid a \in \mathbb{F}_q \} \cup \{ (\tau_i:m:1) \mid m \in \mathcal{M}_H, i = 1, \dots, \mu \} \cup \{ (1:\tau_i:0) \mid i = 1, \dots, \mu \} \cup \{ (1:0:0) \}$$

is a $(1, \mu)$ -saturating set of size at most

$$\frac{2q}{p^s} + \mu \frac{(p^s - 1)^2}{p - 1} + \mu.$$

The order of magnitude of the size of D of Theorem 2 is p^a where $a = \max\{\ell - s, \log_p \mu \cdot (2s - 1)\}$. If s is chosen as $\lceil \ell/3 \rceil$, then the size of D satisfies

$$\#D \leq \begin{cases} 2q^{\frac{2}{3}} + \mu + \mu \frac{q^{\frac{2}{3}} - 2q^{\frac{1}{3}} + 1}{p-1}, & \text{if } \ell \equiv 0 \pmod{3} \\ 2\left(\frac{q}{p}\right)^{\frac{2}{3}} + \mu + \mu \frac{p^{2}\left(\frac{q}{p}\right)^{\frac{2}{3}} - 2p\left(\frac{q}{p}\right)^{\frac{1}{3}} + 1}{p-1}, & \text{if } \ell \equiv 1 \pmod{3} \\ 2\frac{1}{p}\left(qp\right)^{\frac{2}{3}} + \mu + \mu \frac{(qp)^{\frac{2}{3}} - 2(qp)^{\frac{1}{3}} + 1}{p-1}, & \text{if } \ell \equiv 2 \pmod{3} \end{cases}$$

Theorem 3. Let $q = p^{\ell}$, with ℓ odd. Let $1 \leq \mu \leq p$, and let H be any additive subgroup of \mathbb{F}_q of size p^s , with $2s + 1 = \ell$. Let $L_H(X)$ be as in (7), and \mathcal{M}_H be as in (8). Then for any integer $v \geq 1$ there exists a $(1, \mu)$ -saturating set T in PG(2, q) such that

$$\#T \le (v+1)p^{s+1} + \mu \frac{\#\mathcal{M}_H^v}{(q-1)^{v-1}} + 1 + \mu.$$
(9)

Corollary 1. Let $q = p^{2s+1}$, and let $1 \le \mu \le p$. Then there exists a $(1, \mu)$ -saturating set in PG(2, q) of size less than or equal to

$$n_{\mu}(s, p, v) = \min_{v=1,\dots,2s+1} \left\{ (v+1)p^{s+1} + \mu \frac{(p^s-1)^{2v}}{(p-1)^v (p^{(2s+1)}-1)^{(v-1)}} + 1 + \mu \right\}.$$
(10)

Several triples (s, p, v) such that $n_1(s, p, v) < 5\sqrt{q \log q}$ are given in [6, Table 1]. For the corresponding $q = p^{2s+1}$, these values of $n_1(s, p, v)$ are the smallest known cardinalities $\overline{\ell}(2, 3, q)$ of 1-saturating sets in PG(2, q), see [5, Section 4.4]. Moreover, for $\mu \geq 2$, by (10), it holds that $n_{\mu}(s, p, v) < \mu n_1(s, p, v)$. Thus, in the cases provided by the triples (s, p, v), the goal formulated in Section 2 is achieved.

4 Minimal $(1, \mu)$ -saturating sets

Definition 6. A (ρ, μ) -saturating n-set in PG(N, q) is minimal if it does not contain any (ρ, μ) -saturating (n-1)-set of PG(N, q).

Denote by $m_{\mu}(\rho+1, N+1, q)$ the maximal size of a minimal (ρ, μ) -saturating set in PG(N, q).

Theorem 4. Let q > 2, $q^2 > \mu$. Then $m_{\mu}(2, 3, q) \le (q + \mu + 1)$. In particular, $m_2(2, 3, q) = q + 3$.

Constructions.

• Let $q = p^h$, $h \ge 1$, p prime. In PG(2,q), let A be a point (q+3)-set containing a whole line ℓ and two points P_1, P_2 outside of ℓ , i.e. $A = \ell \cup \{P_1, P_2\}$.

• Let $q \ge 4$. In PG(2,q), let B be a point (q+2)-set containing a line ℓ without two points P, Q and three non-collinear points R, S, T outside of ℓ such that P, R, S and Q, R, T are collinear. So, $B = (\ell \setminus \{P,Q\}) \cup \{R,S,T\}$.

• Let $q \ge 4$. In PG(2,q), let C be a point (q+2)-set constructed similar to the set B above except that the points P, R, S, T are collinear.

Theorem 5. In PG(2,q), the sets A, B, C of constructions above are minimal (1,2)-saturating. Also, the stabilizer of the set A in $P\Gamma L(3,q)$ has size hp(p-1).

By computer search and by constructions we obtained Table 1.

Table 1. The number of nonequivalent minimal (1,2)-saturating *n*-sets in PG(2,q) and the spectrum of sizes *n*

q	$\overline{\ell}(2,3,q)$	$\left[2\sqrt{q}\right]$	$m_2(2,3,q)$	Spectrum of n
3	4 ¹ .	4	6	6^4 . *
4	5^{1} .	4	7	6^27^5 . st
5	6 ⁶ .	5	8	$6^17^48^{18}$. $*$
7	6 ³ .	6	10	$8^{13}9^{564}10^{424}$. $*$
8	6 ¹ .	6	11	$8^29^{154}10^{3372}11^{611}$. *
9	6 ¹ .	6	12	$8^{1}9^{57}10^{12145}11^{76749}12^{3049}$. *
11	7^{1} .	7	14	$10^{1348}[11-14]$.
13	8 ² .	8	16	$10^2 11^{50794} [12 - 16]$.
16	94.	8	19	$11^{52}[12 - 19]$.
17	10^{3640} .	9	20	[12 - 20].
19	10^{36} .	9	22	[13 - 22]
23	10^{1} .	10	26	[15 - 26]
25	12	10	28	[17 - 28]
27	12	11	30	[17 - 30]
29	13	11	32	[19 - 32]
31	14	12	34	[19, 21 - 34]
32	13	12	35	[20 - 35]
37	15	13	38	[23, 26 - 40]
41	16	13	44	[25, 29 - 44]
43	16	14	46	[25, 30 - 46]
47	18	14	50	[27, 34 - 50]
49	18	14	52	[29, 34 - 52]

In the 2-nd column of Table 1, the values $\overline{\ell}(2,3,q)$ of the smallest cardinality of a 1-saturating set in PG(2,q), taken from [2,5], are given. The cases when $\ell(2,3,q) = \overline{\ell}(2,3,q)$ are marked by the dot ".". In the 5-th column, we give some values of n for which minimal (1,2)-saturating n-sets in PG(2,q) exist. For $3 \le q \le 17$, we have found the *complete spectrum* of sizes n. This situation is marked by the dot ".". In the 2-nd and the 5-th columns, the superscript notes the numbers of nonequivalent sets of the corresponding size. For $3 \le q \le 9$, we obtain the *complete classification* of the spectrum of sizes n of minimal (1, 2)-saturating n-sets in PG(2, q). This situation is marked by the asterisk *.

By some constructions, considering several points on a conic, we obtained (1,2)-saturating *n*-sets in PG(2,q), with sizes described in Table 2.

Table 2. Sizes small (1,2)-saturating *n*-sets in PG(2,q)

										_				() =)						
q	53	59	61	67	71	73	79	81	83	89	97	101	103	107	109	113	125	127	131	139
n	31	33	35	37	39	41	39	45	45	49	53	55	55	57	59	61	67	67	69	73

The smallest cardinalities of (1, 2)-saturating sets for each q in Table 1 and sizes n in Table 2 are smaller than $2\overline{\ell}(2, 3, q)$. So, for $\mu = 2, r = 3, q$ from Tables 1 and 2, the goal formulated in Section 2 is achieved (as well as for $2 \le \mu \le p$, $r = 3, q = p^{2s+1}$ with the special values of s, p mentioned after Corollary 1).

References

- D. Bartoli, A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, Multiple coverings of the farthest-off points with small density from projective geometry, in preparation.
- [2] D. Bartoli, G. Faina, S. Marcugini, and F. Pambianco, Classification of minimal 1-saturating sets in PG(2,q), $q \leq 23$, in *Proc. XIII Int. Workshop on Algebraic and Combin. Coding Theory, ACCT2012, Pomorie, Bulgaria, 2012*, to appear.
- [3] E. Boros, T. Szőnyi, and K. Tichler, On defining sets for projective planes, Discrete Math. 303, 17–31, 2005.
- [4] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, *Covering Codes*, North-Holland, Amsterdam, 1997.
- [5] A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, Linear nonbinary covering codes and saturating sets in projective spaces, *Advances Math. Commun.* 5, 119–147, 2011.
- [6] M. Giulietti, On small dense sets in Galois planes, *Electron. J. Combin.* 14, R-75, 2007.
- [7] H. Hämäläinen, I. Honkala, S. Litsyn, and P. Östergård, Football pools a game for mathematicians, Amer. Math. Monthly, 102, 579–588, 1995.
- [8] H. O. Hämäläinen, I. S. Honkala, S. N. Litsyn, and P. R.J. Östergård, Bounds for binary codes that are multiple coverings of the farthest-off points, SIAM J. Discrete Math. 8, 196–207, 1995.