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Abstract. Steiner systems S(2m − 1, 3, 2) of rank 2m −m + 1 over the field F2 are
considered. The number of all such different systems is obtained. It is shown that
all Steiner triple systems of rank r ≤ 2m −m + 1 are derived and Hamming.

1 Introduction

A Steiner System S(v, k, t) is a pair (X,B) where X is a set of v elements
and B is a collection of k-subsets (blocks) of X such that every t-subset of X is
contained in exactly one block of B. A System S(v, 3, 2) is called a Steiner triple
system (briefly STS(v)), and a system S(v, 4, 3) is called a Steiner quadruple
system (briefly SQS(v)) (see [1-3] for more information).

Tonchev [4,5] enumerated all different Steiner triple systems STS(v) and
quadruple systems SQS(v+1) or order v = 2m−1 and v+1 = 2m, respectively,
both with 2-rank (i.e. rank over the field F2), equal to 2m−m. In the previous
paper [6] the authors enumerated all different Steiner quadruple systems SQS(v)
of order v = 2m and 2-rank r ≤ v −m + 1.

The goal of the present work is to enumerate all different Steiner triple
systems STS(v) of order v = 2m−1 of the next rank r = 2m−m+1 over F2. It
turns out that all such systems are derived, i.e. can be embedded into Steiner
quadruple systems SQS(v + 1). Moreover, all such systems are Hamming, i.e
any such system can be embedded into a binary nonlinear perfect code of length
2m − 1.

Let Eq be an alphabet of size q: Eq = {0, 1, . . . , q − 1}, in particular,
E = {0, 1}. Denote a q-ary code C of length n with the minimum (Hamming)
distance d and cardinality N as an (n, d, N)q-code (or an (n, d, N)-code for
q = 2). Denote by wt(x) the Hamming weight of vector x over Eq, and by
d(x,y) the Hamming distance between the vectors x,y ∈ En

q . For a binary
code C denote by 〈C〉 the linear envelope of words of C over the Galois Field F2.
The dimension of space 〈C〉 is the rank of code C over F2 denoted by rank (C).
Denote by (n,w, d,N) a constant weight (n, d, N)-code, whose codewords have
the same fixed weight w.

1This work has been partially supported by the Russian fund of fundamental researches
(under the project No. 12 - 01 - 00905).
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Let J = {1, 2, . . . , n} be the set of coordinate positions En
q . Denote by

supp(v) ⊆ J the support of a vector v = (v1, . . . , vn) ∈ En, supp(v) =
{i : vi 6= 0}. For an arbitrary set X ⊆ En define

supp(X) =
⋃

x∈X

supp(x).

A binary (n, d, N)-code C, which is a linear k-dimensional space over F2, is
denoted as [n, k, d]-code. Let (x · y) = x1y1 + · · ·+ xnyn be the scalar product
over F2 of the binary vectors x = (x1, . . . , xn) and y = (y1, . . . , yn). For any
(linear, non-linear or constant weight) code C of length n let C⊥ be its dual
code: C⊥ = {v ∈ Fn

2 : (v · c) = 0, ∀ c ∈ C}. It is clear that C⊥ is a
[n, n− k, d⊥]-code with a minimal distance d⊥, and where k = rank (C).

We need the following two classes of the quaternary MDS codes: a (3, 2, 42)4-
code, denoted by L, and a (4, 2, 43)4-code, denoted by K. The number ΓL

(respectively, ΓK) of different codes L (respectively K) is ΓL = (24)2 (respec-
tively, ΓK = 55296 [4]).

Define the mapping ϕ of En
4 into E4n setting for c = (c1, . . . , cn): ϕ(c) =

(ϕ(c1), . . . , ϕ(cn)), where ϕ(0) = (1 0 0 0), ϕ(1) = (0 1 0 0), ϕ(2) = (0 0 1 0),
ϕ(3) = (0 0 0 1).

For a given code (3, 2, 16)4-code L, define the constant weight (12, 3, 4, 16)-
code C(L):

C(L) = {ϕ(c) : c ∈ L}.
Every codeword c of the code C(L), is split into blocks of length four c =
(c1, c2, c3), so that wt(ci) = 1 for i = 1, 2, 3. We say that C(L) has the block
structure. For a code C(L) and a vector x = (x1, . . . , xu) of weight 3 with
support supp(x) = {i1, i2, i3} define the following code C(L;x) = C(L; i1, i2, i3)
of length 4u with block structure:

C(L; x) = {(c1, . . . , cu) : (ci1 , ci2 , ci3) ∈ C(L), and cj = (0000), if j 6= i1, i2, i3}.

For a given set X of vectors of length u weight 3, define

C(L;X) = {C(L; x) : x ∈ X}.

Define the mapping ψ(·) from Eu into E4 u, so that for every vector x =
(x1, x2, . . . , xu) we have:

ψ(x) = (x1x1x1x1, x2x2x2x2, . . . , xuxuxuxu).

Define the following three trivial constant weight (4, 2, 4, 2)-codes V (i):

V (1) = {(1100), (0011)}, V (2) = {(1010), (0101)}, V (3) = {(1001), (0110)}.
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2 Main results

Suppose Sv = S(v, 3, 2) is a Steiner triple system of order v = 2m − 1 and of
2-rank r ≤ 2m−m + 1. That means that the dual code S⊥v contains a subcode
[v, m− 2, d⊥], denoted by Am with minimum distance d⊥ = (v + 1)/2 = 2m−1

[6]. More precisely, Am contains the non-zero words of the same weight 2m−1,
i.e. the code is a subcode of a well known linear equidistant Hadamard code
and can be generated by the following matrix:

G(Am) =




1111 1111 1111 1111 . . . 0000 0000 0000 000
. . . . . . . . . . . . . . . . . . . . . . . . . . .

1111 1111 0000 0000 . . . 1111 1111 0000 000
1111 0000 1111 0000 . . . 1111 0000 1111 000


 . (1)

Let J(v) = {1, . . . , v} be the coordinate set of a system Sv and assume that
the non-zero coordinate positions of the code Am are the first v − 3 positions
of Sv. Define the following subsets Ji of J(v), which correspond to the block
structures of the defined constant weight codes C(L; x) and C(K; y):

Ji = {4i−3, 4i−2, 4i−1, 4i}, i = 1, 2, . . . (v−3)/4, J(v+1)/4 = {v−2, v−1, v}.
Since the codewords of Am are orthogonal to our system Sv, its words can be
divided naturally into three subsets S(1,1,1), S(2,1) and S(3):

• S(1,1,1) = {c ∈ S : supp(c) = {j1, j2, j3}, js ∈ Jis , where i1 6= i2 6= i3 6=
i1}.

• S(2,1) = {c ∈ S : supp(c) = {j1, j2, j3}, j1, j2 ∈ Ji, and j3 ∈ J(v+1)/4}.

• S(3) = {c : supp(c) = J(v+1)/4}.

It is convenient to split the set S(2,1) into three subsets S
(2,1)
j , where the index

j, j ∈ J(v+1)/4, is fixed:

S
(2,1)
j = {c ∈ S(2,1) : j ∈ supp(c)}.

Lemma 1. Let Sv = S(v, 3, 2) be a Steiner system of order v = 2m − 1 with
2-rank rv ≤ v−m+2. Let S⊥v be a dual to Sv code which contains a subcode Am

with parameters [v,m− 2, (v + 1)/2]. Suppose the system Sv splits into subsets
S(1,1,1), S(2,1), S(3). Then we have

• The set S(1,1,1) is a set of (v − 3, 3, 4, 16)-codes C = C(j1, j2, j3) of type
(1, 1, 1), where the set of triples of indices {(j1, j2, j3)}, j1, j2, j3 ∈ J(u) =
{1, 2, . . . , u}, is a Steiner triple system Su = S(u, 3, 2) on coordinate set
J(u) of order u = (v − 3)/4 = 2m−2 − 1.
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• The 2-rank of a Steiner triple system Su is ru = u−m + 2.

• Every code C = C(j1, j2, j3) induce a (4-ary) (3, 2, 16)4-code L = L(C) =
ϕ−1(C).

• For a fixed j ∈ J(v+1)/4, the set obtained from S
(2,1)
j removing j, is the set

of codes V (k1), V (k2), . . . , V (ku), where supp(V (ki)) = Ji and the indices
k1, k2, . . . , ku take their values in the set {1, 2, 3}.

• For the three sets S
(2,1)
v−2 , S

(2,1)
v−1 and S

(2,1)
v the corresponding three sets

of indices k1, k2, . . . , ku, k′1, k
′
2, . . . , k

′
u and k′′1 , k′′2 , . . . , k′′u are such that

{kj , k
′
j , k

′′
j } = {1, 2, 3} for every j = 1, . . . , u.

• The set S(3) is made of one codeword c, with support supp(c) = J(v+1)/4.

The structure of the Steiner triple systems STS(v) of order v = 4u + 3
and 2-rank v −m + 2 that we described above, induce the following recursive
construction of STS(v) of order v = 4u + 3 for a given STS(u) of an arbitrary
order u (i.e. u ≡ 1 or 3 (mod 6)).

Construction I. Let Su = S(u, 3, 2) be a Steiner system of rank ru, whose
words c(s) are ordered by a fixed enumeration s = 1, 2, . . . , k, where k = u(u−
1)/6. Suppose, we have an arbitrary family of 4-ary codes L1, L2, . . . , Lk with
parameters (3, 2, 16)4 and with the possible repetitions. Let V (1), V (2) and
V (3) be three binary constant weight (4, 2, 4, 2)-codes. Choose three arbitrary
vectors zi = (zi,1, . . . , zi,u), i = 1, 2, 3, of length u over the alphabet {1, 2, 3}
so that, for any j, j = 1, . . . , u, the condition {z1,j , z2,j , z3,j} = {1, 2, 3} is
satisfied. Let J(u) be the coordinate set of the system Su and define the new
coordinate set J(v) of size v = 4u + 3, obtained from J(u) as follows: every
index j ∈ J(u) is associated with the set Jj , of four elements, namely Jj =
{4j − 3, 4j − 2, 4j − 1, 4j}. Also define the set Ju+1 of size three: Ju+1 =
{4u + 1, 4u + 2, 4u + 3} = {v − 2, v − 1, v}. Define the coordinate set J(v) as
the union:

J(v) = J1 ∪ · · · ∪ Ju ∪ Ju+1.

Every word c(s) of Su with support supp(c(s)) = {j1, j2, j3} and a code Ls is
associated the constant weight code C(Ls; c(s)) = C(Ls; j1, j2, j3), based on this
word c(s) and the code Ls, whose support belongs to the set J(v):

supp(C(Ls; j1, j2, j3)) = Jj1 ∪ Jj2 ∪ Jj3 .

Define the following three sets:

S(1,1,1) =
k⋃

s=1

C(Ls; j1, j2, j3), supp(c(s)) = {j1, j2, j3},
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i.e. the supports of all words of C(Ls; j1, j2, j3) belong to the set Jj1 ∪Jj2 ∪Jj3 ;

S(2,1) = S
(2,1)
v−2 ∪ S

(2,1)
v−1 ∪ S(2,1)

v ,

where

S
(2,1)
v+1−i =

u⋃

t=1

⋃

w∈V (zi,t)

{a : supp(a) = supp(w) ∪ {v + 1− i}, i = 1, 2, 3},

i.e. the supports of all vectors a contain a (v + 1 − i)-th coordinate position,
and, for a given t, another two non-zero positions belong to Jt;

S(3) = {c : supp(c) = {v − 2, v − 1, v}.

Theorem 1. Let Su = S(u, 3, 2) be a Steiner system of rank ru and c(s),
s = 1, 2, . . . , k be the words of this system, where k = u(u− 1)/6. Let S(1,1,1),
S(2,1) and S(3) be the sets, obtained by construction I, based on the families of
(3, 2, 16)4-codes L1, L2, . . . , Lk and the constant weight (4, 2, 4, 2)-codes V (1),
V (2) and V (3). Set

S = S(1,1,1) ∪ S(2,1) ∪ S(3).

Then, for any choice of the codes L1, L2, . . . , Lk and any triple of vectors
zi = (zi,1, . . . , zi,u), i = 1, 2, 3, of length u over the alphabet {1, 2, 3} so that,
{z1,j , z2,j , z3,j} = {1, 2, 3} for j = 1, . . . , u, the set S is the Steiner triple system
Sv = S(v, 3, 2) of order v = 4 u + 3 with 2-rank rv, such that

v − (u− ru)− 2 ≤ rv ≤ v − (u− ru).

From this bound it follows, in particular, that if the original system S(u, 3, 2)
has the full rank ru = u, then according to Theorem 1, the resulting system
S(v, 3, 2) of order v = 4 u + 3, in general, can also be of the full rank rv = v.

Theorem 2. Suppose Sv = S(v, 3, 2) is a Steiner system of order v = 2m−1 =
4u+3. Suppose that its 2-rank satisfies rv ≤ v−m+2. Then this system Sv is
obtained from the Steiner triple system Su = S(u, 3, 2) of order u = 2m−2 − 1
on applying the construction I, described above.

Let Bm be a [2m−2 − 1,m− 2, 2m−2]-code, obtained via the map ψ−1 from
the code, which is, in turn, obtained from Am whose last three zero coordinate
positions are removed.

Theorem 3. The following is true:
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• The number Mv of all different Steiner triple systems S(v, 3, 2) of order
v = 2m − 1 = 4u + 3 ≥ 15, whose 2-rank rv ≤ v −m + 2, and whose dual
code Am is given by (1), is equal to

Mv = Mu ·
(
26 · 32

)k × (6)u , k = u(u− 1)/6,

where Mu is the number of different Steiner triple systems Su of order
u = 2m−2 − 1, of 2-rank ru ≤ u−m + 4, whose dual code is Bm

• For large m ≥ 7, the number Mv of different Steiner triple systems
S(v, 3, 2) of order v = 2m − 1 and of 2-rank rv ≤ v − m + 2, whose
dual code Am is given by (1), can be bounded from below as

Mv ≥ 2
v2

6
·c, c > (3 + log2(3))

1
8
· 1.0207004 > 0.5849841. (2)

A Steiner triple system S(v, 3, 2) is called derived (respectively, Hamming),
if it can be embedded into a quadruple system S(v + 1, 4, 3) (respectively, into
a binary non-linear perfect code of length v).

Theorem 4. Every Steiner triple system S(v, 3, 2) of order v = 2m − 1 and
2-rank rv ≤ v −m + 2 is derived and Hamming.
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