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Steiner triple systems S(2" — 1,3,2) of 2-rank
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Abstract. Steiner systems S(2™ — 1, 3,2) of rank 2™ — m + 1 over the field F, are
considered. The number of all such different systems is obtained. It is shown that
all Steiner triple systems of rank r < 2™ — m + 1 are derived and Hamming.

1 Introduction

A Steiner System S(v,k,t) is a pair (X, B) where X is a set of v elements
and B is a collection of k-subsets (blocks) of X such that every t-subset of X is
contained in exactly one block of B. A System S(v, 3,2) is called a Steiner triple
system (briefly STS(v)), and a system S(v,4,3) is called a Steiner quadruple
system (briefly SQS(v)) (see [1-3] for more information).

Tonchev [4,5] enumerated all different Steiner triple systems STS(v) and
quadruple systems SQS(v+1) or order v = 2™ —1 and v+ 1 = 2™, respectively,
both with 2-rank (i.e. rank over the field Fq), equal to 2™ —m. In the previous
paper [6] the authors enumerated all different Steiner quadruple systems SQS(v)
of order v = 2™ and 2-rank r < v —m + 1.

The goal of the present work is to enumerate all different Steiner triple
systems STS(v) of order v = 2™ — 1 of the next rank r = 2™ —m+1 over Fa. It
turns out that all such systems are derived, i.e. can be embedded into Steiner
quadruple systems SQS(v + 1). Moreover, all such systems are Hamming, i.e
any such system can be embedded into a binary nonlinear perfect code of length
2m — 1.

Let E; be an alphabet of size ¢: E, = {0,1,...,¢ — 1}, in particular,
E ={0,1}. Denote a g-ary code C of length n with the minimum (Hamming)
distance d and cardinality N as an (n,d, N)g-code (or an (n,d, N)-code for
q = 2). Denote by wt(x) the Hamming weight of vector « over E,, and by
d(x,y) the Hamming distance between the vectors x,y € Eg. For a binary
code C' denote by (C) the linear envelope of words of C' over the Galois Field Fs.
The dimension of space (C) is the rank of code C over Fy denoted by rank (C').
Denote by (n,w,d, N) a constant weight (n,d, N)-code, whose codewords have
the same fixed weight w.
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Let J = {1,2,...,n} be the set of coordinate positions E;'. Denote by

supp(v) C J the support of a vector v = (vy,...,v,) € E™,  supp(v) =
{i: v; # 0}. For an arbitrary set X C E™ define

supp(X) = | J supp(z).
xeX

A binary (n,d, N)-code C, which is a linear k-dimensional space over Fa, is
denoted as [n, k,d]-code. Let (z-y) = x1y1 + - - - + xpyyn be the scalar product

over Fy of the binary vectors @ = (z1,...,2,) and y = (y1,...,y,). For any
(linear, non-linear or constant weight) code C of length n let C+ be its dual
code: C+ = {veF}: (v-¢) =0, Vece C} Itisclear that C+ is a

[n,n — k,d*]-code with a minimal distance d*, and where k = rank (C).

We need the following two classes of the quaternary MDS codes: a (3,2, 4%),-
code, denoted by L, and a (4,2,43)4-code, denoted by K. The number I'y,
(respectively, I'ic) of different codes L (respectively K) is ', = (24)? (respec-
tively, ', = 55296 [4]).

Define the mapping ¢ of E} into E4" setting for ¢ = (c1,...,c,): p(c) =
((c1)- .. p(en))s where o(0) = (100 0), (1) = (0100), @(2)=(0010),
©(3)=(0001).

For a given code (3,2, 16)4-code L, define the constant weight (12, 3,4, 16)-
code C(L):

C(L) = {¢(c): ce L}.

Every codeword ¢ of the code C(L), is split into blocks of length four ¢ =
(c1,¢2,¢3), so that wt(¢;) = 1 for i = 1,2,3. We say that C(L) has the block
structure. For a code C(L) and a vector € = (x1,...,x,) of weight 3 with
support supp(x) = {i1, 42, i3} define the following code C(L;x) = C(Lj;11,i2,13)
of length 4u with block structure:

C(Lyxz) ={(c1,...,¢cy) : (€iy,Ciy,€i5) € C(L),and ¢; = (0000),if j # i1, 12,13}
For a given set X of vectors of length u weight 3, define
C(L;X) = {C(Lyx): xe€ X}.

Define the mapping ¢(:) from E% into E*“, so that for every vector & =
(x1,x2,...,2,) we have:

Y(x) = (r1212121, TaT2X2X, . . ., TyTyTyTy).
Define the following three trivial constant weight (4,2, 4, 2)-codes V' (i):

V(1) = {(1100), (0011)}, V/(2) = {(1010), (0101)}, V(3) = {(1001), (0110)}.
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2 Main results

Suppose S, = S(v,3,2) is a Steiner triple system of order v = 2™ — 1 and of
2-rank 7 < 2™ —m + 1. That means that the dual code S;- contains a subcode
[v,m — 2,d"], denoted by A, with minimum distance d*+ = (v + 1)/2 = 2m1
[6]. More precisely, A,, contains the non-zero words of the same weight 21,
i.e. the code is a subcode of a well known linear equidistant Hadamard code
and can be generated by the following matrix:

1111 1111 1111 1111 ... 00OO 0000 0000 000
GlAm) = 1111 1111 0000 0000 ... 1111 1111 0000 000 |- (1)
1111 0000 1111 0000 ... 1111 0000 1111 000

Let J(v) = {1,...,v} be the coordinate set of a system .S, and assume that
the non-zero coordinate positions of the code A,, are the first v — 3 positions
of S,. Define the following subsets J; of J(v), which correspond to the block
structures of the defined constant weight codes C(L;x) and C(K;y):

Ji = {4i-3,4i-2,4i-1,4i}, i=1,2,...(v=3)/4, Jpynu = {v-2,v-1,0}.

Since the codewords of A,, are orthogonal to our system S, its words can be
divided naturally into three subsets (1D S apnd §G).

o SULY = fe e S supp(e) = {j1,70,73}, js € Ji., where iy # iy # i3 #
i1}

o SN = {ceS: supp(c) = {j1, 2,3}, j1,J2 € Ji, and jjz € J(yi1)/a}-

o 5® = {c: supp(c) = Jpi1)/4}-

into three subsets S ](-2’1), where the index

It is convenient to split the set S(21)

7,7 € J(v+1)/4, is fixed:

(2,1) _ 2,1) .
S; = {ce S : j € supp(c)}.
Lemma 1. Let S, = S(v,3,2) be a Steiner system of order v = 2™ — 1 with
2-rank r, < v—m-+2. Let S’UL be a dual to S, code which contains a subcode A,
with parameters [v,m — 2, (v+1)/2]. Suppose the system S, splits into subsets

5(17171)) 5(271)) S(S) Then we hav@

e The set ST s a set of (v — 3,3,4,16)-codes C = C(j1, 2, 73) of type
(1,1,1), where the set of triples of indices {(j1,72,743)}, J1,J2,73 € J(u) =
{1,2,...,u}, is a Steiner triple system S, = S(u,3,2) on coordinate set
J(u) of order u = (v —3)/4=2m"2 1.
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o The 2-rank of a Steiner triple system S, is ry, = u —m + 2.

e Fvery code C = C(j1,j2,73) induce a (4-ary) (3,2,16)4-code L = L(C) =
-1
v (C).

o For a fized j € J(y11)/4, the set obtained from S](-Q’l) removing j, is the set
of codes V(k1),V(ka),...,V(ky), where supp(V (k;)) = J; and the indices
ki, ka, ..., ky take their values in the set {1,2,3}.

o For the three sets S 5(27’? and 51(12’1) the corresponding three sets

v—2 v
of indices ki,kay ... ky, Ky, kb, ... kI, and E{ K}, ... k! are such that
{kj Ko kY = {1,2,3} for every j =1,...,u.

o The set S®) is made of one codeword ¢, with support supp(c) = Jv41)/4-

The structure of the Steiner triple systems STS(v) of order v = 4u + 3
and 2-rank v — m + 2 that we described above, induce the following recursive
construction of STS(v) of order v = 4u + 3 for a given STS(u) of an arbitrary
order u (i.e. u=1or 3 (mod 6)).

Construction /. Let S, = S(u, 3,2) be a Steiner system of rank r,, whose
words ¢(®) are ordered by a fixed enumeration s = 1,2, ..., k, where k = u(u—
1)/6. Suppose, we have an arbitrary family of 4-ary codes L1, Lo, ..., Ly with
parameters (3,2,16)4 and with the possible repetitions. Let V (1), V(2) and
V(3) be three binary constant weight (4,2, 4,2)-codes. Choose three arbitrary
vectors z; = (2i1,...,%iu), ¢ = 1,2,3, of length u over the alphabet {1,2,3}
so that, for any j, j = 1,...,u, the condition {z1;,22,23;} = {1,2,3} is
satisfied. Let J(u) be the coordinate set of the system S, and define the new
coordinate set J(v) of size v = 4u + 3, obtained from J(u) as follows: every
index j € J(u) is associated with the set J;, of four elements, namely J; =
{47 — 3,45 — 2,45 — 1,45}. Also define the set J, 41 of size three: J,y1 =
{4u + 1,4u + 2,4u + 3} = {v — 2,v — 1,v}. Define the coordinate set J(v) as
the union:

J(’L)):J1U"-UJHUJU+1.

Every word ¢® of S, with support supp(c®) = {j1, 2,73} and a code L is
associated the constant weight code C'(Ls; c(s)) = C(Ls; j1,j2,73), based on this
word ¢® and the code Ly, whose support belongs to the set J(v):

supp(C(Ls; j1, j2, J3)) = Jjy U Jjz U Jj,.
Define the following three sets:

k
S(I’LI) = U C(Ls;j17j27j3)v Supp(C(S)) = {jl,j27j3}a

s=1
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i.e. the supports of all words of C(Ls; ji1, ja2, j3) belong to the set J;, U Jj, U Jjy;
2,1 2,1 7
Se = s u sy usPy,

where

Sﬁ?,z = U U {a: supp(a) =supp(w)U{v+1—i}, i=1,2 3},
t=1weV (z,)

i.e. the supports of all vectors a contain a (v + 1 — i)-th coordinate position,
and, for a given ¢, another two non-zero positions belong to Jy;

S®) = {c: supp(e) = {v—2,v—1,v}.

Theorem 1. Let S, = S(u,3,2) be a Steiner system of rank r, and ¢,
s=1,2,...,k be the words of this system, where k = u(u —1)/6. Let 0L,
S and SO be the sets, obtained by construction I, based on the families of
(3,2,16)4-codes L1, Lo, ..., Ly and the constant weight (4,2,4,2)-codes V (1),
V(2) and V(3). Set

s = sty gl yg®)

Then, for any choice of the codes Ly, Lo, ..., L and any triple of wvectors
zi = (2ig,-- -y %), © = 1,2,3, of length u over the alphabet {1,2,3} so that,
{z15,22,5,23;} = {1,2,3} forj =1,...,u, the set S is the Steiner triple system
Sy = 8(v,3,2) of order v =4u+ 3 with 2-rank r,, such that

v—(u—1y) =2 < 1y < v—(u—"1y).

From this bound it follows, in particular, that if the original system S(u, 3, 2)
has the full rank r, = u, then according to Theorem 1, the resulting system
S(v,3,2) of order v = 4u + 3, in general, can also be of the full rank r, = v.

Theorem 2. Suppose S, = S(v,3,2) is a Steiner system of order v =2""—1 =
4u+ 3. Suppose that its 2-rank satisfies r, < v—m+2. Then this system Sy is
obtained from the Steiner triple system S, = S(u,3,2) of order u = 2m"2 —1
on applying the construction I, described above.

Let B,, be a [272 — 1,m — 2,2™ 2]-code, obtained via the map 1~! from
the code, which is, in turn, obtained from 4,, whose last three zero coordinate

positions are removed.

Theorem 3. The following is true:
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e The number M, of all different Steiner triple systems S(v,3,2) of order
v=2"—-1=4u+3 > 15, whose 2-rank r, < v—m+ 2, and whose dual
code Ay, is given by (1), is equal to

M, =M, (2°-3)" x 6)", k = u(u—1)/6,

where M, is the number of different Steiner triple systems S, of order
u=2""2_1, of 2-rank r, < u —m + 4, whose dual code is B,

e For large m > 7, the number M, of different Steiner triple systems
S(v,3,2) of order v = 2™ — 1 and of 2-rank r, < v — m + 2, whose
dual code A, is given by (1), can be bounded from below as

2 1
My >25° e > (3+1logy(3))g - 10207004 > 05849841 (2)

A Steiner triple system S(v,3,2) is called derived (respectively, Hamming),
if it can be embedded into a quadruple system S(v + 1,4, 3) (respectively, into
a binary non-linear perfect code of length v).

Theorem 4. FEvery Steiner triple system S(v,3,2) of order v = 2" — 1 and
2-rank r, < v —m+ 2 is derived and Hamming.
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