Steiner triple systems $S(2^m - 1, 3, 2)$ of 2-rank $r \leq 2^m - m + 1$: construction and properties ¹

D. V. ZINOVIEV V. A. ZINOVIEV dzinov@iitp.ru zinov@iitp.ru

A.A. Kharkevich Institute for Problems of Information Transmission, Moscow, Russia

Abstract. Steiner systems $S(2^m - 1, 3, 2)$ of rank $2^m - m + 1$ over the field \mathbb{F}_2 are considered. The number of all such different systems is obtained. It is shown that all Steiner triple systems of rank $r \leq 2^m - m + 1$ are derived and Hamming.

1 Introduction

A Steiner System S(v, k, t) is a pair (X, B) where X is a set of v elements and B is a collection of k-subsets (blocks) of X such that every t-subset of X is contained in exactly one block of B. A System S(v, 3, 2) is called a Steiner triple system (briefly STS(v)), and a system S(v, 4, 3) is called a Steiner quadruple system (briefly SQS(v)) (see [1-3] for more information).

Tonchev [4,5] enumerated all different Steiner triple systems STS(v) and quadruple systems SQS(v+1) or order $v = 2^m - 1$ and $v+1 = 2^m$, respectively, both with 2-rank (i.e. rank over the field \mathbb{F}_2), equal to $2^m - m$. In the previous paper [6] the authors enumerated all different Steiner quadruple systems SQS(v)of order $v = 2^m$ and 2-rank $r \leq v - m + 1$.

The goal of the present work is to enumerate all different Steiner triple systems STS(v) of order $v = 2^m - 1$ of the next rank $r = 2^m - m + 1$ over \mathbb{F}_2 . It turns out that all such systems are derived, i.e. can be embedded into Steiner quadruple systems SQS(v + 1). Moreover, all such systems are Hamming, i.e any such system can be embedded into a binary nonlinear perfect code of length $2^m - 1$.

Let E_q be an alphabet of size q: $E_q = \{0, 1, \ldots, q-1\}$, in particular, $E = \{0, 1\}$. Denote a q-ary code C of length n with the minimum (Hamming) distance d and cardinality N as an $(n, d, N)_q$ -code (or an (n, d, N)-code for q = 2). Denote by wt(\boldsymbol{x}) the Hamming weight of vector \boldsymbol{x} over E_q , and by $d(\boldsymbol{x}, \boldsymbol{y})$ the Hamming distance between the vectors $\boldsymbol{x}, \boldsymbol{y} \in E_q^n$. For a binary code C denote by $\langle C \rangle$ the linear envelope of words of C over the Galois Field \mathbb{F}_2 . The dimension of space $\langle C \rangle$ is the rank of code C over \mathbb{F}_2 denoted by rank (C). Denote by (n, w, d, N) a constant weight (n, d, N)-code, whose codewords have the same fixed weight w.

¹This work has been partially supported by the Russian fund of fundamental researches (under the project No. 12 - 01 - 00905).

Zinoviev, Zinoviev

Let $J = \{1, 2, ..., n\}$ be the set of coordinate positions E_q^n . Denote by $\operatorname{supp}(\boldsymbol{v}) \subseteq J$ the support of a vector $\boldsymbol{v} = (v_1, ..., v_n) \in E^n$, $\operatorname{supp}(\boldsymbol{v}) = \{i : v_i \neq 0\}$. For an arbitrary set $X \subseteq E^n$ define

$$\operatorname{supp}(X) = \bigcup_{\boldsymbol{x} \in X} \operatorname{supp}(\boldsymbol{x}).$$

A binary (n, d, N)-code C, which is a linear k-dimensional space over \mathbb{F}_2 , is denoted as [n, k, d]-code. Let $(\boldsymbol{x} \cdot \boldsymbol{y}) = x_1y_1 + \cdots + x_ny_n$ be the scalar product over \mathbb{F}_2 of the binary vectors $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots, y_n)$. For any (linear, non-linear or constant weight) code C of length n let C^{\perp} be its dual code: $C^{\perp} = \{\boldsymbol{v} \in \mathbb{F}_2^n : (\boldsymbol{v} \cdot \boldsymbol{c}) = 0, \forall \boldsymbol{c} \in C\}$. It is clear that C^{\perp} is a $[n, n - k, d^{\perp}]$ -code with a minimal distance d^{\perp} , and where $k = \operatorname{rank}(C)$.

We need the following two classes of the quaternary MDS codes: a $(3, 2, 4^2)_4$ code, denoted by L, and a $(4, 2, 4^3)_4$ -code, denoted by K. The number Γ_L (respectively, Γ_K) of different codes L (respectively K) is $\Gamma_L = (24)^2$ (respectively, $\Gamma_K = 55296$ [4]).

Define the mapping φ of E_4^n into E^{4n} setting for $\mathbf{c} = (c_1, \ldots, c_n)$: $\varphi(\mathbf{c}) = (\varphi(c_1), \ldots, \varphi(c_n))$, where $\varphi(0) = (1 \ 0 \ 0 \ 0), \ \varphi(1) = (0 \ 1 \ 0 \ 0), \ \varphi(2) = (0 \ 0 \ 1 \ 0), \ \varphi(3) = (0 \ 0 \ 0 \ 1).$

For a given code $(3, 2, 16)_4$ -code L, define the constant weight (12, 3, 4, 16)-code C(L):

$$C(L) = \{\varphi(\boldsymbol{c}): \boldsymbol{c} \in L\}.$$

Every codeword c of the code C(L), is split into blocks of length four $c = (c_1, c_2, c_3)$, so that wt $(c_i) = 1$ for i = 1, 2, 3. We say that C(L) has the block structure. For a code C(L) and a vector $\boldsymbol{x} = (x_1, \ldots, x_u)$ of weight 3 with support supp $(\boldsymbol{x}) = \{i_1, i_2, i_3\}$ define the following code $C(L; \boldsymbol{x}) = C(L; i_1, i_2, i_3)$ of length 4u with block structure:

$$C(L; \boldsymbol{x}) = \{ (\boldsymbol{c}_1, \dots, \boldsymbol{c}_u) : (\boldsymbol{c}_{i_1}, \boldsymbol{c}_{i_2}, \boldsymbol{c}_{i_3}) \in C(L), \text{ and } \boldsymbol{c}_j = (0000), \text{ if } j \neq i_1, i_2, i_3 \}.$$

For a given set X of vectors of length u weight 3, define

$$C(L;X) = \{C(L;\boldsymbol{x}): \boldsymbol{x} \in X\}.$$

Define the mapping $\psi(\cdot)$ from E^u into E^{4u} , so that for every vector $\boldsymbol{x} = (x_1, x_2, \ldots, x_u)$ we have:

$$\psi(\mathbf{x}) = (x_1 x_1 x_1 x_1, x_2 x_2 x_2 x_2, \dots, x_u x_u x_u x_u).$$

Define the following three trivial constant weight (4, 2, 4, 2)-codes V(i):

$$V(1) = \{(1100), (0011)\}, V(2) = \{(1010), (0101)\}, V(3) = \{(1001), (0110)\}.$$

2 Main results

Suppose $S_v = S(v, 3, 2)$ is a Steiner triple system of order $v = 2^m - 1$ and of 2-rank $r \leq 2^m - m + 1$. That means that the dual code S_v^{\perp} contains a subcode $[v, m-2, d^{\perp}]$, denoted by \mathcal{A}_m with minimum distance $d^{\perp} = (v+1)/2 = 2^{m-1}$ [6]. More precisely, \mathcal{A}_m contains the non-zero words of the same weight 2^{m-1} , i.e. the code is a subcode of a well known linear equidistant Hadamard code and can be generated by the following matrix:

$$G(\mathcal{A}_m) = \begin{bmatrix} 1111 & 1111 & 1111 & 1111 & \dots & 0000 & 0000 & 0000 & 000 \\ \dots & \dots \\ 1111 & 1111 & 0000 & 0000 & \dots & 1111 & 1111 & 0000 & 000 \\ 1111 & 0000 & 1111 & 0000 & \dots & 1111 & 0000 & 1111 & 000 \end{bmatrix}.$$
 (1)

Let $J(v) = \{1, \ldots, v\}$ be the coordinate set of a system S_v and assume that the non-zero coordinate positions of the code \mathcal{A}_m are the first v-3 positions of S_v . Define the following subsets J_i of J(v), which correspond to the block structures of the defined constant weight codes $C(L; \mathbf{x})$ and $C(K; \mathbf{y})$:

$$J_i = \{4i-3, 4i-2, 4i-1, 4i\}, \ i = 1, 2, \dots (v-3)/4, \ J_{(v+1)/4} = \{v-2, v-1, v\}.$$

Since the codewords of \mathcal{A}_m are orthogonal to our system S_v , its words can be divided naturally into three subsets $S^{(1,1,1)}$, $S^{(2,1)}$ and $S^{(3)}$:

- $S^{(1,1,1)} = \{ \boldsymbol{c} \in S : \text{ supp}(\boldsymbol{c}) = \{ j_1, j_2, j_3 \}, j_s \in J_{i_s}, \text{ where } i_1 \neq i_2 \neq i_3 \neq i_1 \}.$
- $S^{(2,1)} = \{ \boldsymbol{c} \in S : \operatorname{supp}(\boldsymbol{c}) = \{ j_1, j_2, j_3 \}, j_1, j_2 \in J_i, \text{ and } j_3 \in J_{(v+1)/4} \}.$
- $S^{(3)} = \{ \boldsymbol{c} : \operatorname{supp}(\boldsymbol{c}) = J_{(v+1)/4} \}.$

It is convenient to split the set $S^{(2,1)}$ into three subsets $S_j^{(2,1)}$, where the index $j, j \in J_{(v+1)/4}$, is fixed:

$$S_j^{(2,1)} = \{ \boldsymbol{c} \in S^{(2,1)} : j \in \operatorname{supp}(\boldsymbol{c}) \}.$$

Lemma 1. Let $S_v = S(v, 3, 2)$ be a Steiner system of order $v = 2^m - 1$ with 2-rank $r_v \leq v - m + 2$. Let S_v^{\perp} be a dual to S_v code which contains a subcode \mathcal{A}_m with parameters [v, m - 2, (v + 1)/2]. Suppose the system S_v splits into subsets $S^{(1,1,1)}, S^{(2,1)}, S^{(3)}$. Then we have

• The set $S^{(1,1,1)}$ is a set of (v-3,3,4,16)-codes $C = C(j_1, j_2, j_3)$ of type (1,1,1), where the set of triples of indices $\{(j_1, j_2, j_3)\}$, $j_1, j_2, j_3 \in J(u) = \{1,2,\ldots,u\}$, is a Steiner triple system $S_u = S(u,3,2)$ on coordinate set J(u) of order $u = (v-3)/4 = 2^{m-2} - 1$.

Zinoviev, Zinoviev

- The 2-rank of a Steiner triple system S_u is $r_u = u m + 2$.
- Every code $C = C(j_1, j_2, j_3)$ induce a (4-ary) $(3, 2, 16)_4$ -code $L = L(C) = \varphi^{-1}(C)$.
- For a fixed $j \in J_{(v+1)/4}$, the set obtained from $S_j^{(2,1)}$ removing j, is the set of codes $V(k_1), V(k_2), \ldots, V(k_u)$, where $\operatorname{supp}(V(k_i)) = J_i$ and the indices k_1, k_2, \ldots, k_u take their values in the set $\{1, 2, 3\}$.
- For the three sets $S_{v-2}^{(2,1)}$, $S_{v-1}^{(2,1)}$ and $S_v^{(2,1)}$ the corresponding three sets of indices k_1, k_2, \ldots, k_u , k'_1, k'_2, \ldots, k'_u and $k''_1, k''_2, \ldots, k''_u$ are such that $\{k_j, k'_j, k''_j\} = \{1, 2, 3\}$ for every $j = 1, \ldots, u$.
- The set $S^{(3)}$ is made of one codeword c, with support supp $(c) = J_{(v+1)/4}$.

The structure of the Steiner triple systems STS(v) of order v = 4u + 3and 2-rank v - m + 2 that we described above, induce the following recursive construction of STS(v) of order v = 4u + 3 for a given STS(u) of an arbitrary order u (i.e. $u \equiv 1$ or $3 \pmod{6}$).

Construction *I*. Let $S_u = S(u, 3, 2)$ be a Steiner system of rank r_u , whose words $\mathbf{c}^{(s)}$ are ordered by a fixed enumeration $s = 1, 2, \ldots, k$, where k = u(u - 1)/6. Suppose, we have an arbitrary family of 4-ary codes L_1, L_2, \ldots, L_k with parameters $(3, 2, 16)_4$ and with the possible repetitions. Let V(1), V(2) and V(3) be three binary constant weight (4, 2, 4, 2)-codes. Choose three arbitrary vectors $\mathbf{z}_i = (z_{i,1}, \ldots, z_{i,u}), i = 1, 2, 3$, of length u over the alphabet $\{1, 2, 3\}$ so that, for any $j, j = 1, \ldots, u$, the condition $\{z_{1,j}, z_{2,j}, z_{3,j}\} = \{1, 2, 3\}$ is satisfied. Let J(u) be the coordinate set of the system S_u and define the new coordinate set J(v) of size v = 4u + 3, obtained from J(u) as follows: every index $j \in J(u)$ is associated with the set J_j , of four elements, namely $J_j =$ $\{4j - 3, 4j - 2, 4j - 1, 4j\}$. Also define the set J_{u+1} of size three: $J_{u+1} =$ $\{4u + 1, 4u + 2, 4u + 3\} = \{v - 2, v - 1, v\}$. Define the coordinate set J(v) as the union:

$$J(v) = J_1 \cup \cdots \cup J_u \cup J_{u+1}.$$

Every word $\mathbf{c}^{(s)}$ of S_u with support $\operatorname{supp}(\mathbf{c}^{(s)}) = \{j_1, j_2, j_3\}$ and a code L_s is associated the constant weight code $C(L_s; \mathbf{c}^{(s)}) = C(L_s; j_1, j_2, j_3)$, based on this word $\mathbf{c}^{(s)}$ and the code L_s , whose support belongs to the set J(v):

$$supp(C(L_s; j_1, j_2, j_3)) = J_{j_1} \cup J_{j_2} \cup J_{j_3}.$$

Define the following three sets:

$$S^{(1,1,1)} = \bigcup_{s=1}^{k} C(L_s; j_1, j_2, j_3), \quad \operatorname{supp}(\boldsymbol{c}^{(s)}) = \{j_1, j_2, j_3\},$$

i.e. the supports of all words of $C(L_s; j_1, j_2, j_3)$ belong to the set $J_{j_1} \cup J_{j_2} \cup J_{j_3}$;

$$S^{(2,1)} = S_{v-2}^{(2,1)} \cup S_{v-1}^{(2,1)} \cup S_{v}^{(2,1)}$$

where

$$S_{v+1-i}^{(2,1)} = \bigcup_{t=1}^{u} \bigcup_{\boldsymbol{w} \in V(z_{i,t})} \{ \boldsymbol{a} : \text{ supp}(\boldsymbol{a}) = \text{supp}(\boldsymbol{w}) \cup \{ v+1-i \}, \quad i = 1, 2, 3 \},$$

i.e. the supports of all vectors \boldsymbol{a} contain a (v + 1 - i)-th coordinate position, and, for a given t, another two non-zero positions belong to J_t ;

$$S^{(3)} = \{ \boldsymbol{c} : \operatorname{supp}(\boldsymbol{c}) = \{ v - 2, v - 1, v \}.$$

Theorem 1. Let $S_u = S(u,3,2)$ be a Steiner system of rank r_u and $c^{(s)}$, $s = 1, 2, \ldots, k$ be the words of this system, where k = u(u-1)/6. Let $S^{(1,1,1)}$, $S^{(2,1)}$ and $S^{(3)}$ be the sets, obtained by construction I, based on the families of $(3, 2, 16)_4$ -codes L_1, L_2, \ldots, L_k and the constant weight (4, 2, 4, 2)-codes V(1), V(2) and V(3). Set

$$S = S^{(1,1,1)} \cup S^{(2,1)} \cup S^{(3)}.$$

Then, for any choice of the codes L_1, L_2, \ldots, L_k and any triple of vectors $\mathbf{z}_i = (z_{i,1}, \ldots, z_{i,u}), i = 1, 2, 3$, of length u over the alphabet $\{1, 2, 3\}$ so that, $\{z_{1,j}, z_{2,j}, z_{3,j}\} = \{1, 2, 3\}$ for $j = 1, \ldots, u$, the set S is the Steiner triple system $S_v = S(v, 3, 2)$ of order v = 4u + 3 with 2-rank r_v , such that

$$v - (u - r_u) - 2 \leq r_v \leq v - (u - r_u).$$

From this bound it follows, in particular, that if the original system S(u, 3, 2) has the full rank $r_u = u$, then according to Theorem 1, the resulting system S(v, 3, 2) of order v = 4u + 3, in general, can also be of the full rank $r_v = v$.

Theorem 2. Suppose $S_v = S(v, 3, 2)$ is a Steiner system of order $v = 2^m - 1 = 4u + 3$. Suppose that its 2-rank satisfies $r_v \leq v - m + 2$. Then this system S_v is obtained from the Steiner triple system $S_u = S(u, 3, 2)$ of order $u = 2^{m-2} - 1$ on applying the construction I, described above.

Let \mathcal{B}_m be a $[2^{m-2} - 1, m - 2, 2^{m-2}]$ -code, obtained via the map ψ^{-1} from the code, which is, in turn, obtained from \mathcal{A}_m whose last three zero coordinate positions are removed.

Theorem 3. The following is true:

Zinoviev, Zinoviev

• The number M_v of all different Steiner triple systems S(v, 3, 2) of order $v = 2^m - 1 = 4 u + 3 \ge 15$, whose 2-rank $r_v \le v - m + 2$, and whose dual code \mathcal{A}_m is given by (1), is equal to

$$M_v = M_u \cdot (2^6 \cdot 3^2)^k \times (6)^u$$
, $k = u(u-1)/6$,

where M_u is the number of different Steiner triple systems S_u of order $u = 2^{m-2} - 1$, of 2-rank $r_u \leq u - m + 4$, whose dual code is \mathcal{B}_m

• For large $m \geq 7$, the number M_v of different Steiner triple systems S(v,3,2) of order $v = 2^m - 1$ and of 2-rank $r_v \leq v - m + 2$, whose dual code \mathcal{A}_m is given by (1), can be bounded from below as

$$M_v \ge 2^{\frac{v^2}{6} \cdot c}, \quad c > (3 + \log_2(3)) \frac{1}{8} \cdot 1.0207004 > 0.5849841.$$
 (2)

A Steiner triple system S(v, 3, 2) is called *derived* (respectively, *Hamming*), if it can be embedded into a quadruple system S(v + 1, 4, 3) (respectively, into a binary non-linear perfect code of length v).

Theorem 4. Every Steiner triple system S(v,3,2) of order $v = 2^m - 1$ and 2-rank $r_v \leq v - m + 2$ is derived and Hamming.

References.

[1]. Doyen J., Hubaut X., Vandensavel M. Ranks of Incidence Matrices of Steiner Triple Systems// Mathem. Zeitschr. 1978. V. 163. P. 251-259.

[2]. Teirlinck L. On Projective and Affine Hyperplanes// J. Combin. Theory Ser. A. 1980. V. 28. N° 1. P. 290–306. [3]. Hartman A., Phelps K.T. Steiner Quadruple Systems// In: Contemporary Design Theory: A Collection of Surveys. Dinitz J.H., Stinson D.R., Eds. John Wiley & Sons. 1992. Ch. 6. P. 205-240.

[4]. Assmus E.F., Jr., On 2-ranks of Steiner triple systems// The Electronic Journal of Combinatorics. 1995. V. 2. Paper R9.

[5]. Tonchev V.D. A mass formula for Steiner triple systems $STS(2^n - 1)$ of 2-rank $2^n - n$ // Journal of Combinatorial Theory, Series A. 2001. V. 95. P. 197-208.

[6]. Tonchev V.D. A formula for the number of Steiner quadruple system on 2^n points of 2-rank $2^n - n //$ Journal of Combinatorial Designs. 2003. V. 11. P. 260-274.

[7]. Zinoviev V.A., Zinoviev D.V. On resolvability of Steiner systems $S(v = 2^m, 4, 3)$ of rank $r \le v - m + 1$ over $F_2//$ Problems of Information Transmission. 2007. V. 43. N° 1, P. 39 - 55.