Steiner triple systems $S\left(2^{m}-1,3,2\right)$ of 2-rank $r \leq 2^{m}-m+1$: construction and properties ${ }^{1}$

D. V. Zinoviev
dzinov@iitp.ru
V. A. Zinoviev
zinov@iitp.ru

A.A. Kharkevich Institute for Problems of Information Transmission, Moscow, Russia

Abstract

Steiner systems $S\left(2^{m}-1,3,2\right)$ of rank $2^{m}-m+1$ over the field \mathbb{F}_{2} are considered. The number of all such different systems is obtained. It is shown that all Steiner triple systems of rank $r \leq 2^{m}-m+1$ are derived and Hamming.

1 Introduction

A Steiner System $S(v, k, t)$ is a pair (X, B) where X is a set of v elements and B is a collection of k-subsets (blocks) of X such that every t-subset of X is contained in exactly one block of B. A System $S(v, 3,2)$ is called a Steiner triple system (briefly $\operatorname{STS}(v)$), and a system $S(v, 4,3)$ is called a Steiner quadruple system (briefly SQS (v)) (see [1-3] for more information).

Tonchev [4,5] enumerated all different Steiner triple systems $\operatorname{STS}(v)$ and quadruple systems $\operatorname{SQS}(v+1)$ or order $v=2^{m}-1$ and $v+1=2^{m}$, respectively, both with 2 -rank (i.e. rank over the field \mathbb{F}_{2}), equal to $2^{m}-m$. In the previous paper [6] the authors enumerated all different Steiner quadruple systems $\operatorname{SQS}(v)$ of order $v=2^{m}$ and 2-rank $r \leq v-m+1$.

The goal of the present work is to enumerate all different Steiner triple systems $\operatorname{STS}(v)$ of order $v=2^{m}-1$ of the next rank $r=2^{m}-m+1$ over \mathbb{F}_{2}. It turns out that all such systems are derived, i.e. can be embedded into Steiner quadruple systems $\operatorname{SQS}(v+1)$. Moreover, all such systems are Hamming, i.e any such system can be embedded into a binary nonlinear perfect code of length $2^{m}-1$.

Let E_{q} be an alphabet of size q : $E_{q}=\{0,1, \ldots, q-1\}$, in particular, $E=\{0,1\}$. Denote a q-ary code C of length n with the minimum (Hamming) distance d and cardinality N as an $(n, d, N)_{q}$-code (or an (n, d, N)-code for $q=2$). Denote by $\mathrm{wt}(\boldsymbol{x})$ the Hamming weight of vector \boldsymbol{x} over E_{q}, and by $d(\boldsymbol{x}, \boldsymbol{y})$ the Hamming distance between the vectors $\boldsymbol{x}, \boldsymbol{y} \in E_{q}^{n}$. For a binary code C denote by $\langle C\rangle$ the linear envelope of words of C over the Galois Field \mathbb{F}_{2}. The dimension of space $\langle C\rangle$ is the rank of code C over \mathbb{F}_{2} denoted by rank (C). Denote by (n, w, d, N) a constant weight (n, d, N)-code, whose codewords have the same fixed weight w.

[^0]Let $J=\{1,2, \ldots, n\}$ be the set of coordinate positions E_{q}^{n}. Denote by $\operatorname{supp}(\boldsymbol{v}) \subseteq J$ the support of a vector $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right) \in E^{n}, \quad \operatorname{supp}(\boldsymbol{v})=$ $\left\{i: v_{i} \neq 0\right\}$. For an arbitrary set $X \subseteq E^{n}$ define

$$
\operatorname{supp}(X)=\bigcup_{\boldsymbol{x} \in X} \operatorname{supp}(\boldsymbol{x}) .
$$

A binary (n, d, N)-code C, which is a linear k-dimensional space over \mathbb{F}_{2}, is denoted as $[n, k, d]$-code. Let $(\boldsymbol{x} \cdot \boldsymbol{y})=x_{1} y_{1}+\cdots+x_{n} y_{n}$ be the scalar product over \mathbb{F}_{2} of the binary vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$. For any (linear, non-linear or constant weight) code C of length n let C^{\perp} be its dual code: $C^{\perp}=\left\{\boldsymbol{v} \in \mathbb{F}_{2}^{n}:(\boldsymbol{v} \cdot \boldsymbol{c})=0, \forall \boldsymbol{c} \in C\right\}$. It is clear that C^{\perp} is a $\left[n, n-k, d^{\perp}\right]$-code with a minimal distance d^{\perp}, and where $k=\operatorname{rank}(C)$.

We need the following two classes of the quaternary MDS codes: a $\left(3,2,4^{2}\right)_{4}{ }^{-}$ code, denoted by L, and a $\left(4,2,4^{3}\right)_{4}$-code, denoted by K. The number Γ_{L} (respectively, Γ_{K}) of different codes L (respectively K) is $\Gamma_{L}=(24)^{2}$ (respectively, $\Gamma_{K}=55296[4]$).

Define the mapping φ of E_{4}^{n} into $E^{4 n}$ setting for $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right): \varphi(\boldsymbol{c})=$ $\left(\varphi\left(c_{1}\right), \ldots, \varphi\left(c_{n}\right)\right)$, where $\varphi(0)=(1000), \varphi(1)=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right), \varphi(2)=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$, $\varphi(3)=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$.

For a given code $(3,2,16)_{4}$-code L, define the constant weight ($12,3,4,16$)code $C(L)$:

$$
C(L)=\{\varphi(\boldsymbol{c}): \boldsymbol{c} \in L\} .
$$

Every codeword \boldsymbol{c} of the code $C(L)$, is split into blocks of length four $\boldsymbol{c}=$ $\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3}\right)$, so that $\mathrm{wt}\left(\boldsymbol{c}_{i}\right)=1$ for $i=1,2,3$. We say that $C(L)$ has the block structure. For a code $C(L)$ and a vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{u}\right)$ of weight 3 with $\operatorname{support} \operatorname{supp}(\boldsymbol{x})=\left\{i_{1}, i_{2}, i_{3}\right\}$ define the following code $C(L ; \boldsymbol{x})=C\left(L ; i_{1}, i_{2}, i_{3}\right)$ of length $4 u$ with block structure:
$C(L ; \boldsymbol{x})=\left\{\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{u}\right):\left(\boldsymbol{c}_{i_{1}}, \boldsymbol{c}_{i_{2}}, \boldsymbol{c}_{i_{3}}\right) \in C(L)\right.$, and $\boldsymbol{c}_{j}=(0000)$, if $\left.j \neq i_{1}, i_{2}, i_{3}\right\}$.
For a given set X of vectors of length u weight 3 , define

$$
C(L ; X)=\{C(L ; \boldsymbol{x}): \boldsymbol{x} \in X\} .
$$

Define the mapping $\psi(\cdot)$ from E^{u} into $E^{4 u}$, so that for every vector $\boldsymbol{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{u}\right)$ we have:

$$
\psi(\boldsymbol{x})=\left(x_{1} x_{1} x_{1} x_{1}, x_{2} x_{2} x_{2} x_{2}, \ldots, x_{u} x_{u} x_{u} x_{u}\right) .
$$

Define the following three trivial constant weight (4,2,4,2)-codes $V(i)$:

$$
V(1)=\{(1100),(0011)\}, V(2)=\{(1010),(0101)\}, V(3)=\{(1001),(0110)\} .
$$

2 Main results

Suppose $S_{v}=S(v, 3,2)$ is a Steiner triple system of order $v=2^{m}-1$ and of 2-rank $r \leq 2^{m}-m+1$. That means that the dual code S_{v}^{\perp} contains a subcode $\left[v, m-2, d^{\perp}\right]$, denoted by \mathcal{A}_{m} with minimum distance $d^{\perp}=(v+1) / 2=2^{m-1}$ [6]. More precisely, \mathcal{A}_{m} contains the non-zero words of the same weight 2^{m-1}, i.e. the code is a subcode of a well known linear equidistant Hadamard code and can be generated by the following matrix:

$$
G\left(\mathcal{A}_{m}\right)=\left[\begin{array}{ccccccccc}
1111 & 1111 & 1111 & 1111 & \ldots & 0000 & 0000 & 0000 & 000 \tag{1}\\
\ldots & \ldots \\
1111 & 1111 & 0000 & 0000 & \ldots & 1111 & 1111 & 0000 & 000 \\
1111 & 0000 & 1111 & 0000 & \ldots & 1111 & 0000 & 1111 & 000
\end{array}\right] .
$$

Let $J(v)=\{1, \ldots, v\}$ be the coordinate set of a system S_{v} and assume that the non-zero coordinate positions of the code \mathcal{A}_{m} are the first $v-3$ positions of S_{v}. Define the following subsets J_{i} of $J(v)$, which correspond to the block structures of the defined constant weight codes $C(L ; \boldsymbol{x})$ and $C(K ; \boldsymbol{y})$:
$J_{i}=\{4 i-3,4 i-2,4 i-1,4 i\}, \quad i=1,2, \ldots(v-3) / 4, \quad J_{(v+1) / 4}=\{v-2, v-1, v\}$.
Since the codewords of \mathcal{A}_{m} are orthogonal to our system S_{v}, its words can be divided naturally into three subsets $S^{(1,1,1)}, S^{(2,1)}$ and $S^{(3)}$:

- $S^{(1,1,1)}=\left\{\boldsymbol{c} \in S: \operatorname{supp}(\boldsymbol{c})=\left\{j_{1}, j_{2}, j_{3}\right\}, j_{s} \in J_{i_{s}}\right.$, where $i_{1} \neq i_{2} \neq i_{3} \neq$ $\left.i_{1}\right\}$.
- $S^{(2,1)}=\left\{\boldsymbol{c} \in S: \operatorname{supp}(\boldsymbol{c})=\left\{j_{1}, j_{2}, j_{3}\right\}, j_{1}, j_{2} \in J_{i}\right.$, and $\left.j_{3} \in J_{(v+1) / 4}\right\}$.
- $S^{(3)}=\left\{\boldsymbol{c}: \operatorname{supp}(\boldsymbol{c})=J_{(v+1) / 4}\right\}$.

It is convenient to split the set $S^{(2,1)}$ into three subsets $S_{j}^{(2,1)}$, where the index $j, j \in J_{(v+1) / 4}$, is fixed:

$$
S_{j}^{(2,1)}=\left\{\boldsymbol{c} \in S^{(2,1)}: j \in \operatorname{supp}(\boldsymbol{c})\right\}
$$

Lemma 1. Let $S_{v}=S(v, 3,2)$ be a Steiner system of order $v=2^{m}-1$ with 2 -rank $r_{v} \leq v-m+2$. Let S_{v}^{\perp} be a dual to S_{v} code which contains a subcode \mathcal{A}_{m} with parameters $[v, m-2,(v+1) / 2]$. Suppose the system S_{v} splits into subsets $S^{(1,1,1)}, S^{(2,1)}, S^{(3)}$. Then we have

- The set $S^{(1,1,1)}$ is a set of $(v-3,3,4,16)$-codes $C=C\left(j_{1}, j_{2}, j_{3}\right)$ of type $(1,1,1)$, where the set of triples of indices $\left\{\left(j_{1}, j_{2}, j_{3}\right)\right\}, j_{1}, j_{2}, j_{3} \in J(u)=$ $\{1,2, \ldots, u\}$, is a Steiner triple system $S_{u}=S(u, 3,2)$ on coordinate set $J(u)$ of order $u=(v-3) / 4=2^{m-2}-1$.
- The 2-rank of a Steiner triple system S_{u} is $r_{u}=u-m+2$.
- Every code $C=C\left(j_{1}, j_{2}, j_{3}\right)$ induce a (4-ary) $(3,2,16)_{4}$-code $L=L(C)=$ $\varphi^{-1}(C)$.
- For a fixed $j \in J_{(v+1) / 4}$, the set obtained from $S_{j}^{(2,1)}$ removing j, is the set of codes $V\left(k_{1}\right), V\left(k_{2}\right), \ldots, V\left(k_{u}\right)$, where $\operatorname{supp}\left(V\left(k_{i}\right)\right)=J_{i}$ and the indices $k_{1}, k_{2}, \ldots, k_{u}$ take their values in the set $\{1,2,3\}$.
- For the three sets $S_{v-2}^{(2,1)}, S_{v-1}^{(2,1)}$ and $S_{v}^{(2,1)}$ the corresponding three sets of indices $k_{1}, k_{2}, \ldots, k_{u}, k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{u}^{\prime}$ and $k_{1}^{\prime \prime}, k_{2}^{\prime \prime}, \ldots, k_{u}^{\prime \prime}$ are such that $\left\{k_{j}, k_{j}^{\prime}, k_{j}^{\prime \prime}\right\}=\{1,2,3\}$ for every $j=1, \ldots, u$.
- The set $S^{(3)}$ is made of one codeword \boldsymbol{c}, with support $\operatorname{supp}(\boldsymbol{c})=J_{(v+1) / 4}$.

The structure of the Steiner triple systems $\operatorname{STS}(v)$ of order $v=4 u+3$ and 2-rank $v-m+2$ that we described above, induce the following recursive construction of $\operatorname{STS}(v)$ of order $v=4 u+3$ for a given $\operatorname{STS}(u)$ of an arbitrary order $u($ i.e. $u \equiv 1$ or $3(\bmod 6)$).

Construction I. Let $S_{u}=S(u, 3,2)$ be a Steiner system of rank r_{u}, whose words $\boldsymbol{c}^{(s)}$ are ordered by a fixed enumeration $s=1,2, \ldots, k$, where $k=u(u-$ $1) / 6$. Suppose, we have an arbitrary family of 4-ary codes $L_{1}, L_{2}, \ldots, L_{k}$ with parameters $(3,2,16)_{4}$ and with the possible repetitions. Let $V(1), V(2)$ and $V(3)$ be three binary constant weight $(4,2,4,2)$-codes. Choose three arbitrary vectors $\boldsymbol{z}_{i}=\left(z_{i, 1}, \ldots, z_{i, u}\right), i=1,2,3$, of length u over the alphabet $\{1,2,3\}$ so that, for any $j, j=1, \ldots, u$, the condition $\left\{z_{1, j}, z_{2, j}, z_{3, j}\right\}=\{1,2,3\}$ is satisfied. Let $J(u)$ be the coordinate set of the system S_{u} and define the new coordinate set $J(v)$ of size $v=4 u+3$, obtained from $J(u)$ as follows: every index $j \in J(u)$ is associated with the set J_{j}, of four elements, namely $J_{j}=$ $\{4 j-3,4 j-2,4 j-1,4 j\}$. Also define the set J_{u+1} of size three: $J_{u+1}=$ $\{4 u+1,4 u+2,4 u+3\}=\{v-2, v-1, v\}$. Define the coordinate set $J(v)$ as the union:

$$
J(v)=J_{1} \cup \cdots \cup J_{u} \cup J_{u+1}
$$

Every word $\boldsymbol{c}^{(s)}$ of S_{u} with support $\operatorname{supp}\left(\boldsymbol{c}^{(s)}\right)=\left\{j_{1}, j_{2}, j_{3}\right\}$ and a code L_{s} is associated the constant weight code $C\left(L_{s} ; \boldsymbol{c}^{(s)}\right)=C\left(L_{s} ; j_{1}, j_{2}, j_{3}\right)$, based on this word $\boldsymbol{c}^{(s)}$ and the code L_{s}, whose support belongs to the set $J(v)$:

$$
\operatorname{supp}\left(C\left(L_{s} ; j_{1}, j_{2}, j_{3}\right)\right)=J_{j_{1}} \cup J_{j_{2}} \cup J_{j_{3}} .
$$

Define the following three sets:

$$
S^{(1,1,1)}=\bigcup_{s=1}^{k} C\left(L_{s} ; j_{1}, j_{2}, j_{3}\right), \quad \operatorname{supp}\left(\boldsymbol{c}^{(s)}\right)=\left\{j_{1}, j_{2}, j_{3}\right\}
$$

i.e. the supports of all words of $C\left(L_{s} ; j_{1}, j_{2}, j_{3}\right)$ belong to the set $J_{j_{1}} \cup J_{j_{2}} \cup J_{j_{3}}$;

$$
S^{(2,1)}=S_{v-2}^{(2,1)} \cup S_{v-1}^{(2,1)} \cup S_{v}^{(2,1)}
$$

where

$$
S_{v+1-i}^{(2,1)}=\bigcup_{t=1}^{u} \bigcup_{\boldsymbol{w} \in V\left(z_{i, t}\right)}\{\boldsymbol{a}: \operatorname{supp}(\boldsymbol{a})=\operatorname{supp}(\boldsymbol{w}) \cup\{v+1-i\}, \quad i=1,2,3\}
$$

i.e. the supports of all vectors \boldsymbol{a} contain a $(v+1-i)$-th coordinate position, and, for a given t, another two non-zero positions belong to J_{t};

$$
S^{(3)}=\{\boldsymbol{c}: \operatorname{supp}(\boldsymbol{c})=\{v-2, v-1, v\}
$$

Theorem 1. Let $S_{u}=S(u, 3,2)$ be a Steiner system of rank r_{u} and $\boldsymbol{c}^{(s)}$, $s=1,2, \ldots, k$ be the words of this system, where $k=u(u-1) / 6$. Let $S^{(1,1,1)}$, $S^{(2,1)}$ and $S^{(3)}$ be the sets, obtained by construction I, based on the families of $(3,2,16)_{4}$-codes $L_{1}, L_{2}, \ldots, L_{k}$ and the constant weight $(4,2,4,2)$-codes $V(1)$, $V(2)$ and $V(3)$. Set

$$
S=S^{(1,1,1)} \cup S^{(2,1)} \cup S^{(3)}
$$

Then, for any choice of the codes $L_{1}, L_{2}, \ldots, L_{k}$ and any triple of vectors $\boldsymbol{z}_{i}=\left(z_{i, 1}, \ldots, z_{i, u}\right), i=1,2,3$, of length u over the alphabet $\{1,2,3\}$ so that, $\left\{z_{1, j}, z_{2, j}, z_{3, j}\right\}=\{1,2,3\}$ for $j=1, \ldots, u$, the set S is the Steiner triple system $S_{v}=S(v, 3,2)$ of order $v=4 u+3$ with 2 -rank r_{v}, such that

$$
v-\left(u-r_{u}\right)-2 \leq r_{v} \leq v-\left(u-r_{u}\right)
$$

From this bound it follows, in particular, that if the original system $S(u, 3,2)$ has the full rank $r_{u}=u$, then according to Theorem 1, the resulting system $S(v, 3,2)$ of order $v=4 u+3$, in general, can also be of the full rank $r_{v}=v$.

Theorem 2. Suppose $S_{v}=S(v, 3,2)$ is a Steiner system of order $v=2^{m}-1=$ $4 u+3$. Suppose that its 2 -rank satisfies $r_{v} \leq v-m+2$. Then this system S_{v} is obtained from the Steiner triple system $S_{u}=S(u, 3,2)$ of order $u=2^{m-2}-1$ on applying the construction I, described above.

Let \mathcal{B}_{m} be a $\left[2^{m-2}-1, m-2,2^{m-2}\right]$-code, obtained via the map ψ^{-1} from the code, which is, in turn, obtained from \mathcal{A}_{m} whose last three zero coordinate positions are removed.

Theorem 3. The following is true:

- The number M_{v} of all different Steiner triple systems $S(v, 3,2)$ of order $v=2^{m}-1=4 u+3 \geq 15$, whose 2 -rank $r_{v} \leq v-m+2$, and whose dual code \mathcal{A}_{m} is given by (1), is equal to

$$
M_{v}=M_{u} \cdot\left(2^{6} \cdot 3^{2}\right)^{k} \times(6)^{u}, \quad k=u(u-1) / 6
$$

where M_{u} is the number of different Steiner triple systems S_{u} of order $u=2^{m-2}-1$, of 2 -rank $r_{u} \leq u-m+4$, whose dual code is \mathcal{B}_{m}

- For large $m \geq 7$, the number M_{v} of different Steiner triple systems $S(v, 3,2)$ of order $v=2^{m}-1$ and of 2 -rank $r_{v} \leq v-m+2$, whose dual code \mathcal{A}_{m} is given by (1), can be bounded from below as

$$
\begin{equation*}
M_{v} \geq 2^{\frac{v^{2}}{6} \cdot c}, \quad c>\left(3+\log _{2}(3)\right) \frac{1}{8} \cdot 1.0207004>0.5849841 . \tag{2}
\end{equation*}
$$

A Steiner triple system $S(v, 3,2)$ is called derived (respectively, Hamming), if it can be embedded into a quadruple system $S(v+1,4,3)$ (respectively, into a binary non-linear perfect code of length v).

Theorem 4. Every Steiner triple system $S(v, 3,2)$ of order $v=2^{m}-1$ and 2 -rank $r_{v} \leq v-m+2$ is derived and Hamming.

References.

[1]. Doyen J., Hubaut X., Vandensavel M. Ranks of Incidence Matrices of Steiner Triple Systems// Mathem. Zeitschr. 1978. V. 163. P. 251-259.
[2]. Teirlinck L. On Projective and Affine Hyperplanes// J. Combin. Theory Ser. A. 1980. V. 28. N ${ }^{\circ}$ 1. P. 290-306. [3]. Hartman A., Phelps K.T. Steiner Quadruple Systems// In: Contemporary Design Theory: A Collection of Surveys. Dinitz J.H., Stinson D.R., Eds. John Wiley \& Sons. 1992. Ch. 6. P. 205-240.
[4]. Assmus E.F.,Jr., On 2-ranks of Steiner triple systems// The Electronic Journal of Combinatorics. 1995. V. 2. Paper R9.
[5]. Tonchev V.D. A mass formula for Steiner triple systems $\operatorname{STS}\left(2^{n}-1\right)$ of 2 -rank $2^{n}-n / /$ Journal of Combinatorial Theory, Series A. 2001. V. 95. P. 197-208.
[6]. Tonchev V.D. A formula for the number of Steiner quadruple system on 2^{n} points of 2-rank $2^{n}-n / /$ Journal of Combinatorial Designs. 2003. V. 11. P. 260-274.
[7]. Zinoviev V.A., Zinoviev D.V. On resolvability of Steiner systems $S(v=$ $\left.2^{m}, 4,3\right)$ of rank $r \leq v-m+1$ over $F_{2} / /$ Problems of Information Transmission. 2007. V. 43. N ${ }^{\circ}$ 1, P. $39-55$.

[^0]: ${ }^{1}$ This work has been partially supported by the Russian fund of fundamental researches (under the project No. 12-01-00905).

