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Abstract. A cyclic code is associated with another cyclic code to bound its mini-
mum distance. The algebraic relation between these two codes allows the formula-
tion of syndromes and a key equation. In this contribution, we outline the decoding
approach for the case of errors and erasures and show how the Extended Euclidean
Algorithm can be used for decoding.

1 Introduction

The BCH bound [1, 3] is based on the longest sequence of consecutive indexes in
the defining set of a cyclic code. Many other lower bounds (Hartmann–Tzeng,
Roos, AB bound) on the minimum distance of cyclic codes are generalizations
of the BCH bound and consider multiple sets of (non-)consecutive roots.

Our approach is based on the association of a second cyclic code with the
original one and we search the longest sequence where each element is the
product of at least one root of the two codes. This approach is a generalization
of our previous work [6, 7], which uses rational functions. Furthermore, it allows
to use familiar properties of cyclic codes rather than abstract properties of
rational functions. The obtained bound can be expressed in terms of parameters
of the associated code.

In the next section, we give some necessary preliminaries before we describe
in Section 3 our approach — called non-zero-locator code — and recall the lower
bound on the minimum distance of the original code. Section 4 describes the
decoding approach in case of errors and erasures by means of an explicit syn-
drome formula, a key equation and the necessary modification of the Extended
Euclidean Algorithm (EEA).

1This work has been supported by the German Research Council “Deutsche Forschungs-
gemeinschaft” (DFG) under grant BO 867/22-1.
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2 Preliminaries

Let q be a power of a prime and let Fq denote the finite field of order q and Fq[x]
the set of all univariate polynomials with coefficients in Fq and indeterminate
x. A q-ary cyclic code over Fq of length n, dimension k and minimum distance
d in Hamming metric is denoted by C(q; n, k, d). A codeword (c0 c1 . . . cn−1)
of C(q;n, k, d) is denoted by c(x) =

∑n−1
i=0 cix

i ∈ Fq[x] in polynomial form. The
generator polynomial of C has roots in an extension field Fqs , where n|(qs− 1).
Let α ∈ Fqs be a primitive nth root of unity.

3 Non-zero-locator code

We relate another cyclic code — the so-called non-zero-locator code L — to
a given cyclic code C. The obtained bound d∗ on the minimum distance d of
C can be expressed in terms of parameters of the associated non-zero-locator
code L.

Let us establish a connection between the codewords c(x) of a given cyclic
code C and a sum of power series expansions. Let c(x) be a codeword of a given
q-ary cyclic code C(q; n, k, d) and let Y denote the set of indexes of non-zero
coefficients of c(x) =

∑
i∈Y cix

i. Let α ∈ Fqs be an element of order n. Then
we have the following relation for all c(x) ∈ C(q;n, k, d):

∞∑

j=0

c(αj)xj =
∞∑

j=0

∑

i∈Y
ciα

jixj =
∞∑

j=0

∑

i∈Y
ci(αix)j =

∑

i∈Y

ci

1− xαi
. (1)

Now, we can define the non-zero-locator code.

Definition 1 (Non-Zero-Locator Code). Let a q-ary cyclic code C(q; n, k, d)
be given. Let Fqs contain the nth roots of unity. Let gcd(n, n`) = 1 and let
Fq`

= Fqt be an extension field of Fq. Let Fq
s`
`

contain the n`th roots of unity.
Let α ∈ Fqs be an element of order n and let β ∈ Fq

s`
`

be an element of order
n`.

Then L(q`; n`, k`, d`) is a non-zero-locator code of C if there exists a µ ≥ 2
and an integer e, such that ∀ a(x) ∈ L and ∀ c(x) ∈ C:

∞∑

j=0

c(αj+e)a(βj)xj ≡ 0 mod xµ−1, (2)

holds.

Let r denote the least common multiple of s and t·s` and let γ be a primitive
element in Fqr . Then γ(qr−1)/n and γ(qr−1)/n` are elements of order n and n`.
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Before we prove the main theorem on the minimum distance d of the given
cyclic code C, we describe Definition 1. We search the “longest” sequence

c(αe)a(β0), c(αe+1)a(β1), . . . , c(αe+µ−2)a(βµ−2),

that results in a zero-sequence of length µ−1, i.e., the product of the evaluated
codeword a(βj) of the non-zero-locator code L and the evaluated codeword
c(αj+e) of C gives zero for all j = 0, . . . , µ− 2.

Theorem 1 (Minimum Distance). Let a q-ary cyclic code C(q; n, k, d) and its
associated non-zero-locator code L(q`; n`, k`, d`) with gcd(n, n`) = 1 and the in-
teger µ be given as in Definition 1. Then the minimum distance d of C(q; n, k, d)
satisfies the following inequality:

d ≥ d∗ def=
⌈

µ

d`

⌉
, (3)

Proof. See [7].

4 Error/erasure decoding approach

Let the set E = {i0, i1, . . . , iε−1} with cardinality |E| = ε be the set of erroneous
positions. The corresponding error polynomial is denoted by e(x) =

∑
i∈E eix

i.
Let ”?” mark an erasure and let the set D = {j0, j1, . . . , jδ−1} with cardinality
|D| = δ be the set of erased positions. Let the received polynomial r̃(x) =∑n−1

i=0 r̃ix
i with r̃i ∈ Fq ∪ {?}.

In the first step of the decoding process, the erasures in r̃(x) are substituted
by an arbitrary element from Fq. For simplicity, it is common to choose the
zero-element. Thus, the corresponding erasure polynomial in Fq[x] is denoted
by d(x) =

∑
i∈D dix

i, where r̃i + di = ci + di = 0, ∀i ∈ D. Let the modified
received polynomial r(x) ∈ Fq[x] be

r(x) =
n−1∑

i=0

rix
i = c(x) + d(x) + e(x). (4)

Definition 2 (Syndromes). Let a q-ary cyclic code C(q; n, k, d), its associated
non-zero-locator code L(q`; n`, k`, d`) with gcd(n, n`) = 1, the integers µ, e and
the modified received polynomial r(x) ∈ Fq[x] of (4) be given. Then we define a
syndrome polynomial S(x) ∈ Fqr [x] as follows:

S(x)
def≡

∞∑

j=0

r(αj+e)a(βj)xj mod xµ−1. (5)
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Since we know the positions of the erasures, we can compute an erasure-
locator polynomial.

Definition 3 (Erasure-Locator Polynomial). Let the set D with |D| = δ and
a codeword a(x) =

∑
i∈Z aix

i ∈ L(q`; n`, k`, d`) with weight d` be given. Here
Z denotes the support of a(x). Then we define an erasure-locator polynomial
Ψ(x) ∈ Fqr [x] as follows:

Ψ(x) def=
∏

i∈D

( ∏

j∈Z

(
1− xαiβj

))
. (6)

Note that Ψ(x) has degree δ · d`. As in Forney’s original approach [2] we
define a modified syndrome polynomial S̃(x) and point out (in the following
lemma), which coefficients of S̃(x) depend only on the error ei0 , ei1 , . . . , eiε−1 .

Lemma 1 (Modified Syndrome Polynomial). Let the erasure-locator polynomial
Ψ(x) of Definition 3 and the syndrome polynomial S(x) of Definition 2 be given.
Then the highest µ− 1− δ · d` coefficients of

S̃(x)
def≡ Ψ(x) · S(x) mod xµ−1 (7)

depend only on the error polynomial e(x).

Proof. From (5) we have:

∞∑

j=0

r(αj+e)a(βj)xj ≡
∞∑

j=0

(
e(αj+e) + d(αj+e)

)
a(βj)xj mod xµ−1

≡
∞∑

j=0

( ∑

i∈E
eiα

i(j+e) +
∑

i∈D
diα

i(j+e)
)
a(βj)xj mod xµ−1,

and with (1) for a(x) =
∑

i∈Z aix
i we can write:

S(x) ≡
∑

i∈E
eiα

ie
∑

j∈Z

aj

1− xαiβj
+

∑

i∈D
diα

ie
∑

j∈Z

aj

1− xαiβj
mod xµ−1

≡
∑

i∈E
eiα

ie

∑
j∈Z

(
aj

∏
`∈Z
6̀=j

(1− xαiβ`)
)

∏
j∈Z

(
1− xαiβj

) +

∑

i∈D
diα

ie

∑
j∈Z

(
aj

∏
`∈Z
` 6=j

(1− xαiβ`)
)

∏
j∈Z

(
1− xαiβj

) mod xµ−1,
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and finally, we can write for S(x):

S(x) ≡

def
= Ω(x)︷ ︸︸ ︷∑

i∈E

(
eiα

ie
∑

j∈Z

(
aj

∏

`∈Z
` 6=j

(1− xαiβ`)
) ∏

m∈E
m6=i

∏

s∈Z
(1− xαmβs)

)

∏
i∈E

( ∏
j∈Z

(
1− xαiβj

)) +

def
= A(x)︷ ︸︸ ︷∑

i∈D

(
diα

ie
∑

j∈Z

(
aj

∏

`∈Z
` 6=j

(1− xαiβ`)
) ∏

m∈D
m6=i

∏

s∈Z
(1− xαmβs)

)

∏
i∈D

( ∏
j∈Z

(
1− xαiβj

)) mod xµ−1,

where A(x) has degree at most d` · (δ − 1) + d` − 1 = d` · δ − 1.

Similar to the erasure-locator polynomial, we define an error-locator poly-
nomial as follows:

Λ(x) def=
∏

i∈E

( ∏

j∈Z

(
1− xαiβj

))
. (8)

Let Ω̃(x) def= Ω(x) · Ψ(x) + A(x) · Λ(x) and with (7) and (8), we obtain the
following Key Equation:

S̃(x) ≡ Ω̃(x)
Λ(x)

mod xµ−1, with
deg Λ(x) = ε · d`

deg Ω̃(x) ≤ (ε + δ) · d` − 1.
(9)

Note that in the erasure-free case Ω(x) is the error-evaluator polynomial with
deg Ω(x) ≤ ε · d` − 1. In the following, we shortly outline how to solve (9) by
the EEA described in [5] to decode cyclic codes.

Lemma 2 (Solving the Key Equation). Assume δ < d∗ − 1 erasures occurred.
Let S̃(x) with deg S̃(x) ≤ µ− 2 as in (7) be given. If

ε = |E| ≤
⌊

d∗ − 1− δ

2

⌋
, (10)

then there exists a unique solution of (9) and we can use the EEA [5] with the
input polynomials r−1(x) = xµ−1 and r0(x) = S̃(x) to find it. Furthermore,
we have the following stopping rule for the EEA: We stop, if the remainder
polynomial ri(x) in the ith step of the EEA fulfills:

deg ri−1(x) ≥ µ− 1 + δ · d`

2
and deg ri(x) ≤ µ− 1 + δ · d`

2
− 1. (11)
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Then the EEA returns the error-locator polynomial Λ(x) as in (8) and the
error/erasure-evaluation polynomial Ω̃(x) = Ω(x) ·Ψ(x)+A(x) ·Λ(x) as in (9).
Proof. We refer to the presentation of the EEA as in [4, Ch. 12 §9]. We denote
by ri(x) the remainder and by ui(x) the connection polynomial of the EEA in
the ith step. We proceed the EEA until reaching ri(x) such that (11) holds.

From the properties of the EEA, we know that deg ui(x) = deg r−1(x) −
deg ri−1(x) and we know that it corresponds to the error-locator polynomial as
in (8). Therefore, we obtain:

deg ui(x) = ε · d` ≤
⌊
µ− 1− µ− 1 + δ · d`

2

⌋
=

⌊
µ− 1− δ · d`

2

⌋
⇔

ε ≤
⌊

d∗ − δ

2
− 1

2d`

⌋
=

⌊
d∗ − 1− δ

2

⌋
,

where we used the fact that (d∗−δ)/2 is a multiple of 1/2 and therefore 1/(2d`)
influences the result in the same way as 1/2 in the last step.

Furthermore, we know from the EEA that for ε ≤ b(d∗− 1− δ)/2c a unique
solution Λ(x) exists.
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