On linear codes over a non-chain extension of \mathbb{Z}_{4}

Bahattin Yildiz
byildiz@fatih.edu.tr
Fatih University
Suat Karadeniz
skaradeniz@fatih.edu.tr
Fatih University

Abstract

In this paper we discuss linear codes over the ring $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$, which is a natural extension of the ring \mathbb{Z}_{4}. But unlike \mathbb{Z}_{4} and many other rings studied in coding theory, $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ is not a finite chain ring. It is however a Frobenius ring with a non-trivial generating character and it leads to MacWilliams identites. We use the MacWilliams identities to construct formally self-dual codes over \mathbb{Z}_{4}. We present some examples.

1 Introduction

Codes over rings have long been part of research in coding theory. Especially after the emergence of [5], a lot of research was directed towards studying codes over \mathbb{Z}_{4}. Later, these studies were mostly generalized to finite chain rings such as Galois rings and rings of the form $\mathbb{F}_{2}[u] /<u^{m}>$, etc. But codes over \mathbb{Z}_{4} remain a special topic of interest because of the connection with lattices, designs and cryptography. For some of the works done in this direction we refer to $[3],[4],[6],[8],[9]$, etc.

Recently, several families of rings have been introduced in coding theory, rings that are not finite chain but are Frobenius. These rings have a rich algebraic structure and they lead to binary codes with large automorphism groups and in some cases new binary codes ([11], [2]).

In this work, we introduce the ring $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$, which is a non-chain, characteristic 4 ring of size 16 , with an ideal structure similar to $R_{2}=\mathbb{F}_{2}+u \mathbb{F}_{2}+$ $v \mathbb{F}_{2}+u v \mathbb{F}_{2}$. We introduce a Gray map and Lee weight for codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ and we give the MacWilliams identity for the Lee weight enumerators of these codes. We then prove that the Gray image of self-dual codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ are formally self-dual linear codes over \mathbb{Z}_{4} and we give some examples to good \mathbb{Z}_{4}-codes that are Gray images of codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$.

2 Linear codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$

The ring $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ is constructed as a commutative, characteristic 4 ring with $u^{2}=0$. It is also isomorphic as a ring to the polynomial ring $\mathbb{Z}_{4}[x] /\left\langle x^{2}\right\rangle$. The
units in $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ are given by

$$
\{1,1+u, 1+2 u, 1+3 u, 3,3+u, 3+2 u, 3+3 u\},
$$

while the non-units are given by

$$
\{0,2, u, 2 u, 3 u, 2+u, 2+2 u, 2+3 u\} .
$$

The ring $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ has a total of 6 ideals given by
$I_{0}=\{0\} \subseteq I_{2 u}=2 u\left(\mathbb{Z}_{4}+u \mathbb{Z}_{4}\right)=\{0,2 u\} \subseteq I_{u}, I_{2}, I_{2+u} \subseteq I_{2, u} \subseteq I_{1}=\mathbb{Z}_{4}+u \mathbb{Z}_{4}$
where

$$
\begin{aligned}
I_{u} & =u\left(\mathbb{Z}_{4}+u \mathbb{Z}_{4}\right)=\{0, u, 2 u, 3 u\}, \\
I_{2} & =2\left(\mathbb{Z}_{4}+u \mathbb{Z}_{4}\right)=\{0,2,2 u, 2+2 u\}, \\
I_{2+u} & =(2+u)\left(\mathbb{Z}_{4}+u \mathbb{Z}_{4}\right)=\{0,2+u, 2 u, 2+3 u\} \\
I_{2, u} & =\{0,2, u, 2 u, 3 u, 2+u, 2+2 u, 2+3 u\} .
\end{aligned}
$$

Note that $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ is a local ring with the unique maximal ideal given by $I_{2, u}$ and that it is a Frobenius ring. Thus it is a feasible ring for coding theory by [10].

Definition 1. A linear code C of length n over the ring $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ is an $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ submodule of $\left(\mathbb{Z}_{4}+u \mathbb{Z}_{4}\right)^{n}$.

Define $\phi:\left(\mathbb{Z}_{4}+u \mathbb{Z}_{4}\right)^{n} \rightarrow \mathbb{Z}_{4}^{2 n}$ by

$$
\begin{equation*}
\phi(\bar{a}+u \bar{b})=(\bar{b}, \bar{a}+\bar{b}), \quad \bar{a}, \bar{b} \in \mathbb{Z}_{4}^{n} . \tag{2}
\end{equation*}
$$

Then define the Lee weight on $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ by

$$
w_{L}(a+u b)=w_{L}((b, a+b)),
$$

where $w_{L}((b, a+b))$ describes the usual Lee weight on \mathbb{Z}_{4}^{2}. Since the Gray map is linear and distance-preserving we have

Theorem 1. $\phi:\left(\mathbb{Z}_{4}+u \mathbb{Z}_{4}\right)^{n} \rightarrow \mathbb{Z}_{4}^{2 n}$ is a distance preserving linear isometry. Thus, if C is a linear code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ of length n, then $\phi(C)$ is a linear code over \mathbb{Z}_{4} of length $2 n$ and the two codes have the same Lee weight enumerators.

3 MacWilliams identities

Definition 2. Let C be a linear code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ of length n, then we define the dual of C as

$$
C^{\perp}:=\left\{\bar{y} \in\left(\mathbb{Z}_{4}+u \mathbb{Z}_{4}\right)^{n} \mid<\bar{y}, \bar{x}>=0, \quad \forall \bar{x} \in C\right\}
$$

Here, $<>$ denotes the usual Euclidean inner product.
Then since $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ is a Frobenius ring there is a MacWilliams identity for the complete weight enumerator of linear codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ ([10]). If we apply the MacWilliams identity to the Lee weight enumerator, we obtain

Theorem 2. Let C be a linear code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ of length n and C^{\perp} be its dual. With $L e e_{C}(W, X)$ denoting its Lee weight enumerator, we have

$$
L e e_{C^{\perp}}(W, X)=\frac{1}{|C|} \operatorname{Lee}_{C}(W+X, W-X)
$$

This then leads to the following theorem for self-dual codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$:
Theorem 3. Let C be a self-dual code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ of length n. Then
a) $\phi(C)$ is a formally self-dual code over \mathbb{Z}_{4} of length $2 n$.
b) The all $2 u$-vector of length n must be in C.

4 Some examples

- Let C be the linear code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ of length 4 generated by the vectors

$$
\{(u, u, u, u),(1,1,1,1+2 u),(0,2+u, 2,3 u),(0,2, u, 2+3 u)\}
$$

Then C is a self-dual code of size 256 with Lee weight enumerator $1+$ $112 z^{6}+30 z^{8}+112 z^{10}+z^{16}$ and $\phi(C)$ is equivalent to the well known Kerdock code \mathcal{K}_{3}, also known as the octacode.

- Let C be the linear code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ of length 6 generated by the vectors $(2+2 u, 1+2 u, 1,1+3 u, 1+2 u, 0),(3+2 u, 3+u, 3+u, 1+3 u, 1+3 u, 3+u)$ and $(3+3 u, 2+3 u, 3+3 u, 3 u, 2,2 u)$. Then C is a linear code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ of length 6 of size 2^{12} and minimum Lee weight 6 , whose Gray image is the best known \mathbb{Z}_{4}-code of the same parameters.
- Let C be the linear code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ of length 7 generated by the vectors $(3+u, 1+3 u, 1,1,0,3+2 u, 3+2 u),(1+3 u, 1+2 u, 2+u, 2+2 u, 3+2 u, 2+u, 3+2 u)$ and $(3+2 u, 3+2 u, 1+u, 2 u, 2+2 u, 2,1)$. Then C is a linear code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ of length 7 of size 2^{12} and minimum Lee weight 8 whose Gray image is the best known \mathbb{Z}_{4}-code of the same parameters.
- Let C be the linear code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ of length 8 generated by the matrix

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1 & 2+2 u & 1 & 1+2 u \\
0 & 1 & 0 & 0 & 2+2 u & 3 & 3+2 u & 1 \\
0 & 0 & 1 & 0 & 3 & 3+2 u & 1+2 u & 2 \\
0 & 0 & 0 & 1 & 1+2 u & 3 & 2 & 3+2 u
\end{array}\right]
$$

Then C is a self-dual code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ with Lee weight enumerator

$$
1+380 z^{8}+1920 z^{10}+7168 z^{12}+13440 z^{14}+1978 z^{16}+\cdots
$$

where the rest is completed via symmetry. $\phi(C)$ is a self-dual code over \mathbb{Z}_{4} of type $(4)^{8}$ with the same weight enumerator.

- Let C be the linear code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ of length 8 generated by the matrix

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1+2 u & 2+u & 1 & 1+2 u \\
0 & 1 & 0 & 0 & 2+u & 3+2 * u & 3+2 u & 1 \\
0 & 0 & 1 & 0 & 3+2 u & 3 & 1+2 u & 2+3 u \\
0 & 0 & 0 & 1 & 1 & 3+2 u & 2+3 u & 3+2 u
\end{array}\right]
$$

Then C is a self-dual code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ with Lee weight enumerator

$$
1+492 z^{8}+1024 z^{10}+10304 z^{12}+71680 z^{14}+27558 z^{16}+\cdots
$$

where the rest is completed via symmetry. The Gray image $\phi(C)$ is a not a self-dual code over \mathbb{Z}_{4}, but it is a formally self-dual code of type $(4)^{8}$ with the same weight enumerator.

- Let C be the linear code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ of length 8 generated by the matrix

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1+3 u & 2 & 1+u & 1 \\
0 & 1 & 0 & 0 & 2+2 u & 3+3 u & 3 & 1+3 u \\
0 & 0 & 1 & 0 & 3+3 u & 3 & 1+3 u & 2 \\
0 & 0 & 0 & 1 & 1 & 3+u & 2+2 u & 3+3 u
\end{array}\right]
$$

Then C is a self-dual code over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ with Lee weight enumerator

$$
1+508 z^{8}+896 z^{10}+10752 z^{12}+6272 z^{14}+28678 z^{16}+\cdots
$$

where the rest is completed via symmetry. The Gray image $\phi(C)$ is a not a self-dual code over \mathbb{Z}_{4}, but it is a formally self-dual code of type (4) ${ }^{8}$ with the same weight enumerator.

References

[1] S.T. Dougherty, P. Gaborit, M. Harada, A. Munemasa and P. Solé, Type IV self-dual codes over rings, IEEE Trans. Inform. Theory, 45, 2345-2360, 1999.
[2] S.T.Dougherty, B.Yildiz and S.Karadeniz, Codes over R_{k}, Gray Maps and their Binary Images, Finite Fields Appl., 17, 205-219, 2011.
[3] I.M. Duursma, M. Greferath and S. E. Schmidt, On the Optimal \mathbb{Z}_{4}-codes of TypeII and length 16, J. Combin. Theory, Series A, 92 77-82, 2000.
[4] T.A. Gulliver and M. Harada, Optimal Double Circulant \mathbb{Z}_{4}-codes, LNCS:AAECC, 2227, 122-128, 2001.
[5] A.R. Hammons, V. Kumar, A.R. Calderbank, N.J.A. Sloane, and P. Solé, The \mathbb{Z}_{4}-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 301-319, 1994.
[6] W.C. Huffman, Decompositions and extremal Type II codes over \mathbb{Z}_{4}, IEEE Trans. Inform. Theory, 44, 800-809, 1998.
[7] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
[8] Z.X. Wan, Series on Applied Mathematics:Quaternary Codes, World Scientific, 1997.
[9] J.Wolfmann, Negacyclic and Cyclic Codes over \mathbb{Z}_{4}, IEEE Trans. Inform. Theory, 45, 2527-2532, 1999.
[10] J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math., 121, 555-575, 1999.
[11] B. Yildiz and S. Karadeniz, Linear codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}+v \mathbb{F}_{2}+u v \mathbb{F}_{2}$, Des. Codes Crypt., 54, 61-81, 2010.

