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Abstract. For q-ary codes we generalize the theorem on reconstructing a binary
code by dimensions of its subcodes. The new reconstructing theorem involves arbi-
trary positive integer q. The term of a correlation coefficient for a set of subcodes
of a code is proposed. Here correlation coefficient of subcodes is a q-ary analog for
dimension of a subcode of a binary code.

1 Introduction

Let En
q be a q-ary cube, that is the set of words of length n over the alphabet

{0, 1, 2, . . . , q − 1} with q symbols. The Hamming distance d(x, y) between
two words x, y ∈ En

q is determined by the number of positions where x and
y differ. The Hamming weight w(x) of a word x ∈ En

q is the number of its
nonzero symbols, i.e. w(x) = d(x, 0). The cube En

q equipped with the Hamming
distance is a metric space. Any subset C of the space En

q is called a code. The
elements of a code C are called codewords. Two codes are equivalent if there
exists an isometry of the space En

q mapping one of the codes into the other one.
In this paper we investigate metric invariants of codes. We propose a gen-

eralization for the notion of a dimension of a binary code introduced and in-
vestigated in [1]. We show that a bijection between two arbitrary q-ary codes
preserving every correlation coefficient of their subcodes is extendable to an
isometry of En

q . As a consequence of this fact, one can conclude that knowing
the multiset of correlation coefficients of subcodes of a q-ary code is sufficient
to reconstruct the code up to equivalence.

It is well known that metric invariants of two q-ary codes can not always
determine if the codes are equivalent or not. For example, all Hadamard codes
are pairwise isometric, but there exist many nonequivalent Hadamard codes.
Some results concerning research what kinds of metric information are sufficient
to reconstruct a code can be found, e.g., in [1–5].

In case q = 2 it is turned out [1] that a bijection between two binary codes
preserving dimensions of their subcodes can be extended to an isometry of the
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space En
2 . In other words, the multiset of dimensions of subcodes of a bi-

nary code determines the code up to equivalence. Here dimension of a code
means dimension of the minimum face of En

2 containing the code. Further re-
search showed [6] that taking all dimensions of subcodes of a code is redundant.
Namely, a bijection between two binary codes can be extended to an isometry
of En

2 if it preserves dimensions of their subcodes with even cardinality.
Direct generalization of the dimension method to reconstruct q-ary codes

is useless. There exist bijective mappings between nonequivalent ternary codes
preserving dimensions of their subcodes. The approach proposed in this paper
is developed in detail for ternary codes only. In conclusion we give some remarks
on correlation coefficients of subcodes of q-ary codes in general.

2 Necessary notations and definitions

Consider a ternary code C of length n. If all of its codewords have the same
symbol at the i-th position, we call the position unessential for the code C. By
N(C) we denote the set of all unessential positions of C. For disjoint subcodes
C1 and C2 of the code C, let K(C1, C2) denote the number of positions from
N(C1)∩N(C2) at which codewords from different codes are distinct. Formally,

K(C1, C2) = |{i ∈ N(C1) ∩N(C2) : xi 6= yi for any x ∈ C1 and y ∈ C2}| ,
We refer to K(C1, C2) as correlation coefficient of the codes C1 and C2. Let us
outline some evident equalities concerning this notion.

1. K(x, y) = d(x, y) for any x, y ∈ En
3 ;

2. K({x, y},∅) = n− d(x, y) for any x, y ∈ En
3 ;

3. K(C,∅) = n−Dim(C), where Dim(C) is dimension of the code C ⊆ En
3

in the sense mentioned above.

By this means, one can easily note that correlation coefficients contain some
metric information about the code structure.

Following [6], we say a bijection I : C1 → C2 between two codes C1, C2 ⊆ En
3

to be a strong isometry if it preserves any correlation coefficient of subcodes of
C1, i.e. K(A,B) = K(I(A), I(B)) for any A,B ⊆ C1. For a code matrix M1 of
the code C1, let M2 = I(M1) denote the code matrix of the code C2 obtained
from M1 by applying the map I to every row of M1.

Consider a code C ⊆ En
3 of cardinality m. Let M be its code matrix. The

ternary alphabet generates a correspondence between columns of the matrix
M and partitions of the set {1, . . . ,m} into three subsets. Each subset of
such an alphabet partition includes indices of the matrix rows with the same
symbol in the corresponding column. For example, the column (0, 1, 0, 1, 2)T
has ({1, 3}, {2, 4}, {5}) as its alphabet partition. Thus every code matrix has its
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own multiset of alphabet partitions. At the same time, it is not difficult to see
that matrices with equal multisets of alphabet partitions represent equivalent
codes.

Proposition 1. Suppose C1, C2 ⊆ En
3 are ternary codes, and M1 is a code

matrix of C1. A bijection I : C1 → C2 is extendable to an isometry of the space
En

3 if and only if the multisets of alphabet partitions of the matrices M1 and
M2 = I(M1) are equal.

In the sequel we will keep usage of the following notation:

• M = {1, . . . , m} is a set of indices for rows of an m× n matrix M .

• P,Q,R are alphabet partitions.

• P, Q,R ⊆M are subsets of M.

• a0(P) = P, a1(P) = Q, a2(P) = R denote three parts of an alphabet
partition P = (P,Q, R).

Taking into account Proposition 1, it can be noticed that the key step in
our approach to reconstruct a code C ⊆ En

3 is to determine how many columns
with a certain alphabet partition a code matrix M of the code contains. Let
k(P) be the number of columns with the alphabet partition P in the matrix M .
For any subset S ⊆ M, denote by C(S) the subcode of the code C formed by
those rows of M that have indices in S. If the code is clear from the context,
then K(Q,R) is used instead of K(C(Q), C(R)).

At the end of the section we define a partial order 4 over the set of alphabet
partitions. For two partitions of M, put

(P1, Q1, R1) 4 (P2, Q2, R2) if an only if P1 ⊆ P2, Q1 ⊇ Q2, and R1 ⊇ R2.

This partial order helps us to get a relation between correlation coefficients and
the value k(P). Namely, for any code C ⊆ En

3 , its code matrix M , and an
alphabet partition P = (P, Q,R), the following equality can easily be verified:

K(Q,R) =
∑

Q4P
k(Q). (1)

3 Reconstructing codes by correlation coefficients

In this section we prove the main result:

Theorem 1. Any strong isometry between ternary codes can be extended to an
isometry of the whole space En

3 .
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As indicated above, Proposition 1 allows us to focus our attention on a
code C whose codewords are enumerated and form an unknown code matrix
M . The aim is to obtain the multiset of alphabet partitions of M using the
known correlation coefficients of subcodes of C. In order to show that this
multiset is identified by correlation coefficients, we invert the relation (1) by
means of the Möbius function for the partial order 4. Some information on
posets, their Möbius functions and the Möbius inversion theorem can be found,
e.g., in [7, Chapter 2].

The correlation coefficient is a well-defined function on the set of alphabet
partitions. Indeed, put K(P) = K(a1(P), a2(P)) for any alphabet partition P
and, conversely, K(Q, R) = K(P) for any disjoint subsets Q,R ⊆ M and the
alphabet partition P = (M\ (Q ∪R), Q, R).

By the Möbius inversion theorem we get a reversion of (1):

k(P) =
∑

Q4P
µ(Q,P)K(a1(Q), a2(Q)), (2)

where µ(Q,P) is the Möbius function of the poset of alphabet partitions with
the partial order 4. According to the theory of Möbius functions, we have the
following axioms for µ:

µ(Q,P) = 0 if Q � P,

µ(P,P) = 1 for all P,

µ(Q,P) = −
∑

Q4R≺P
µ(Q,R) if Q ≺ P. (3)

On the base of these axioms we derive the Möbius function for the partially
ordered set of alphabet partitions with the partial order introduced in Section 2.

Proposition 2. Given a partial order 4 by the rule

(P1, Q1, R1) 4 (P2, Q2, R2) if and only if P1 ⊆ P2, Q1 ⊇ Q2, and R1 ⊇ R2,

the poset of alphabet partitions has the Möbius function of the form

µ(Q,P) = (−1)|a0(P)|−|a0(Q)| for Q 4 P. (4)

Proof. The assertion is certainly true when |a0(P)| − |a0(Q)| = 0 or 1. By
induction assume (4) to be true for |a0(P)| − |a0(Q)| < s and consider a case
with |a0(P)| − |a0(Q)| = s. Then (3) becomes

µ(Q,P) = −1 +
(

s

1

)
−

(
s

2

)
+ . . .−

(
s

j

)
(−1)j + . . .−

(
s

s− 1

)
(−1)s−1, (5)
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since there are
(
s
j

)
partitions R with Q 4 R ≺ P and |a0(R)| − |a0(Q)| = j.

Namely, such alphabet partitions are obtained from Q by adjoining to a0(Q)
any j of the s elements of a0(P) not in a0(Q).

Comparison of (5) with the binomial expansion of (1− 1)s gives µ(Q,P) =
(−1)s. This proves the proposition.

Combining (2) and (4), we obtain an explicit formula for k(P).

Proposition 3. The number of columns with an alphabet partition P in a code
matrix of any ternary code is equal to

k(P) =
∑

Q4P
(−1)|a0(P)|−|a0(Q)|K(a1(Q), a2(Q)).

Now let us return to Theorem 1 and finalize its proof. Proposition 3 implies
that the matrices M1 and M2 have the same multisets of alphabet partitions.
It remains to apply Proposition 1.

If there exists a strong isometry between two codes, then the codes are called
strongly isometric. Theorem 1 yields the following.

Corollary 1. Strongly isometric ternary codes are equivalent.

4 Conclusion

In this paper, for the ternary case, we demonstrate how to reconstruct a code
having the correlation coefficients of its subcodes. To get a description of this
approach for q-ary codes in general, one should slightly change the notion of a
correlation coefficient of subcodes. Some remarks on that are made below.

Given a q-ary code C ⊆ En
q , we should consider correlation coefficient of a

set consisting of q − 1 mutually disjoint subcodes of C. By analogy with the
definition for q = 3, given a set of mutually disjoint subcodes C1, . . . , Cq−1 ⊆
C, the correlation coefficient K(C1, . . . , Cq−1) enumerates every position from
N(C1) ∩ . . . ∩N(Cq−1) such that codewords of each of the subcodes have their
unique symbol at this position. All notation used above should be changed in
an obvious way to take the new definition into account. It is needed to omit
the word “ternary” and replace En

3 by En
q in Theorem 1 and Corollary 1 to

formulate the final result.
In order to reconstruct a code, we begin with a code matrix of the code.

Concerning the matrix, we only know correlation coefficient of each set of q− 1
mutually disjoint subsets of its rows, because such a row subset corresponds
to a subcode of the code. The principal point is to determine the multiset of
alphabet partitions of the code matrix. An m× n matrix can contain all of qm

different columns, while n is large enough. Therefore, generally speaking, to
construct the multiset of alphabet partitions of the code matrix it is necessary
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to obtain qm values, which show the number of occurrences in the matrix for
each m column. On the other hand, it is not difficult to see that the set of all
correlation coefficients of subcodes is excessive for that. Thus a natural question
is arises: For a q-ary code, what is the minimal set of correlation coefficients of
its subcodes that is sufficient to reconstruct the code up to equivalence?
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