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Abstract. We consider decoding algorithm of multicomponent codes based on
subspace rank subcodes [1]. These codes are constructed by combinatorial incom-
plete balanced block-scheme and are assigned to random network coding [2], [3], [4].
Examples are given.

1 Introduction

Multicomponent codes are an union of component codes of a definite minimal
code distance having the same minimum distance between any two components.
Cardinality of such code is a sum of cardinalities of all component codes. The
first paper devoted to multicomponent codes with lifted code matrix construc-
tion [2] was published in 2009 [6]. These codes are a set of lifting construction
matrix with extra zero matrices as prefix. The every code matrix is a concate-
nation of zero matrices, the unit matrix and a rank code matrix [5]. The other
approach with so called Ferrets diagrams was used in [3]. Here, we give the new
constructions of rank - metric subcodes [1] based on combinatorial incomplete
balanced block-schemes.

2 Reduced echelon form

Let us recall random network codes by Silva–Kschischang–Koetter (SKK-codes)
[2]. They are represented as a set of basis k×n matrices over the base field Fq.
The matrix is presented in so called lifting construction:

C =
{[

Ik M
]}

, (1)

where Ik – unit matrix of order k, M ∈M – k×(n−k) matrix of the rank code
M. Let dr be rank distance, then subspace distance equals d(C) = 2dr(M).

1This research is partially supported by the grant RFBR 12-07-00122-a
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Consider more general form. Let X be a k×n matrix of rank k. By Gaussian
procedure we get X as k × n matrix of rank k in reduced echelon form. The
following conditions are satisfied:

• the leading element of a row is located on the right of the leading element
of a preceding row;

• all leading element are units;

• all elements on the left of leading elements are zeros;

• each leading element is the only nonzero element in a column;

• all other elements are ”free parameters.”

Suppose that the leading element of the first row is in a column number i1,
the leading element of the second row is in a column number i2, and so on, the
leading element of the last row is in a column number ik, where 1 ≤ i1 < i2 <
· · · < ik ≤ n. The vector i = [i1 i2 . . . ik] is called identifier ID of this form,
and the designated matrix is X(i,a), where a are ”free parameters”.

Example 1. Let be n = 6, k = 3, ID= i = [1 3 4], then there are 7 free
parameters ai,j over Fq in

X(i,a) =




1 a1,1 0 0 a1,2 a1,3

0 0 1 0 a2,2 a2,3

0 0 0 1 a3,2 a3,3


 .

3 Incomplete balanced block-schemes

By definition, incomplete balanced block-scheme is such a disposition where n
different elements are in b blocks and the each block contains exactly k different
elements, each element appears in â r different blocks and each pair of different
elements ai, aj appears exactly in λ blocks.

Let S = {1, 2, . . . , n} be a set of elements. Giving the parameters k, r, λ ≥ 1
we construct a configuration, called 2 B-block, as a set of subsets. Each subset
has k elements from S. It is necessary to satisfy the following condition: the
number r blocks, which contain definite i elements from S, does not depend on
value i, the number λ blocks, which contains different pairs i, j from S does
not depend on their values.

These configurations are determined by the parameters (n, k, λ), or equiva-
lently by (n, b, r, k, λ) where bk = vr and r(k − 1) = λ(v − 1) [8].

Multicomponent code with seven components

Let be k = 3, n = 7, dr = 2. Construct 7 blocks as identifiers with the
corresponding code matrices where ai - free parameters.
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B>
1 =




1
2
3


 =




1 0 0 a1 a2 a3 a4

0 1 0 a5 a6 a7 a8

0 0 1 a9 a10 a11 a12




B>
2 =




1
4
5


 =




1 a1 a2 0 0 a3 a4

0 0 0 1 0 a5 a6

0 0 0 0 1 a7 a8




B>
3 =




1
6
7


 =




1 a1 a2 a3 a4 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




B>
4 =




2
4
6


 =




0 1 a1 0 a2 0 a3

0 0 0 1 a4 0 a5

0 0 0 0 0 1 a6




B>
5 =




2
5
7


 =




0 1 a1 a2 0 a3 0
0 0 0 0 1 a4 0
0 0 0 0 0 0 1




B>
6 =




3
4
7


 =




0 0 1 0 a1 a2 0
0 0 0 1 a3 a4 0
0 0 0 0 0 0 1




B>
7 =




3
5
6


 =




0 0 1 a1 0 0 a2

0 0 0 0 1 0 a3

0 0 0 0 0 1 a4


 .

Now we use disposition of free parameters to construct rank subcodes. Fi-
nally it will be multicomponent code with parameters k = 3, n = 7, dr = 2,
minimal subspace distance 4 of every component code and the same subspace
distance between each pair of the components. The component code have the
following number of code matrices: 256, 16, 1, 16, 2, 4, 2 . The total number is
297 code words, it is 16% more than the number of code words of the first
component.

4 Code matrix of the first component

Let us construct code matrices of the first components with the parameters
q = 2, dr = 2, k = n − dr + 1 = 3 − 2 + 1 = 2, a primitive polynomial
f(λ) = λ4 + λ + 1 and generator matrix
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G =
[
1 α α2

1 α2 α4

]
. (2)

Information vectors have two components u1, u2, because k = 2. The code
vector is

g = (u1, u2)G = (u1 + u2), (u1α + u2α
2), (u1α

2 + u2α
4) = (g1, g2, g3).

The rank code matrix is

M1 =




0 1 0
1 1 0
1 1 1
0 0 0


 .

The code matrix of the first component is X1 = I3 + MT
1 , that is

X1 =




1 0 0 0 1 1 0
0 1 0 1 1 1 0
0 0 1 0 0 1 0


 .

Binary vectors u1 and u2 have 24 values, so the first component has 28 = 256
code matrices.

5 Code matrices of the second component

Let be the same parameters. Using identifier of the second component we have
the following code matrix of the second component

X2 =
1 a11 a12 0 0 a13 a14

0 0 0 1 0 a23 a24

0 0 0 0 1 a33 a34

, (3)

where a11, a12, a13, a14, a23, a24, a33, a34 – free parameters of the rank subcode.
All other elements are zeros, that is a21 = 0, a22 = 0, a31 = 0, a32 = 0. The
matrix of rank subcode is

M1 =




a11 0 0
a12 0 0
a13 a23 a33

a14 a24 a34


 . (4)

Giving basis 1, α, α2, α3 transform the second and the third columns of the
matrix in vector form and equate them to g2 and g3 correspondingly. We will
get equations for code vectors u1, u2

0×1+0×α+a23α
2+a24α

3 = u1α+u2α
2, 0×1+0×α+a33α

2+a34α
3 = u1α

2+u2α
4
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and

u1 = a33α
11 +a34α

12 +a23α
13 +a24α

14, u2 = a33α
10 +a34α

11 +a23α
11 +a24α

12.

We have 4 elements of the code matrix, each element has two values 0 and
1. The total number of this rank subcode matrices is 16. For example let be
a23 = 1, a24 = 1, a33 = 1, a34 = 1. Then u1 = α13 + α14 + α11 + α12 = α8,
u2 = α11 +α12 +α10 +α11 = α3 and g1 = u1 +u2 = α13, g2 = u1α+u2α

2 = α6,
g3 = u1α

2 + u2α
4 = α6. The code vector is g = α13α6α6 The matrix of the

subcode is

M16 =




1 0 0
0 0 0
1 1 1
1 1 1


 .

6 Decoding

Insert the matrix MT
16 into the second component as it is shown by the identifier.

We have

X16 =




1 1 0 0 0 1 1
0 0 0 1 0 1 1
0 0 0 0 1 1 1


 . (5)

The network channel (without adversaries) [2] is characterized by equation

Y = AX16, (6)

where for example

A =




1 0 1
0 1 0
1 1 1


 . (7)

Let a received matrix be

Y = AX16 =




1 1 0 0 1 0 0
0 0 0 1 0 1 1
1 1 0 1 1 1 1


 . (8)

Applying to Y Gauss elimination procedure we get

Ỹ =




1 1 0 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 0 0 0


 . (9)
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The positions of leading units in two first columns of the matrix Ỹ indicate two
column of the unit matrix. They are the first column and the fourth column.
The position of the last column of the unit matrix we will determine using the
identifier, it is the fifth. Present A as a sum of the unit matrix and a matrix L,
where

L =




0 0 1
0 0 0
0 0 1


 . (10)

The last columns of the matrix Ỹ is subcode matrix M16 multiplied by A =
I + L:

M16 + LM16 =




1 0 0 0
0 0 1 1
0 0 0 0


 . (11)

Use the transpose form of the matrices. Apply any of known fast rank decoding
algorithms, for example [9]. Transform the matrix MT

16 in the m1m2m3, multi-
ply by LT : (m1m2m3)LT = (m30m3). Using m3, write down the syndrome:

S1 = m3(101)




1
α2

α12


 = m3(1 + α12) = m3α

11 (12)

Transform the matrix M̃T
16 into the vector y = (1α60) and calculate the syn-

drome:

S1 = (1α60)




1
α2

α12


 = 1 + α8 = α2 (13)

Equate two expressions for S1 and get m3α
11 = α2, that is m3 = α6.

The mistake as vector is e = (m30m3) = α60α6. The real vector is y + e =
(1 + α6)α6α6 = α13α6α6. The real subcode matrix is

M16 =




1 0 0
0 0 0
1 1 1
1 1 1


 (14)
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