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Performance of binary polar codes with
high-dimensional kernel 1
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Abstract. Upper union bound for the decoding error probability of polar codes
with arbitrary binary kernels under the successive cancelation decoding is derived.
The proposed approach is based on the representation of polar codes as multilevel
ones.

1 Introduction

Polar codes is the first class of error correcting codes achieving the symmet-
ric capacity of arbitrary binary-input discrete output-symmetric memoryless
channel. It was shown in [6] that high-dimensional kernels (e.g. based on BCH
codes) provide higher polarization rate than the Arikan kernel. That is, the
decoding error probability of such polar codes decreases much faster with code
length compared to similar Arikan codes. However, there are still no practical
techniques besides simulations for estimating it.

In this paper, a novel method for computing an upper bound on decoding
error probability of binary polar codes with high-dimensional kernels is intro-
duced. It is based on representation of polar codes as a multilevel ones and
exploits the techniques developed for their analysis. We consider only the case
of two-layer polarizing transformation, but the results can be generalized to the
case of arbitrary number of layers.

The paper is organized as follows. Section 2 introduces polar and multilevel
codes. Section 3 presents the proposed error probability estimation method.
Numeric results are given in Section 4. Finally some conclusions are drawn.

2 Background

2.1 Polar codes

A generator matrix of (n = lm, k) polar code consists of k rows of matrix F⊗m,
where F is a l × l polarization kernel and ⊗m denotes the m-times Kronecker
product of a matrix with itself. Let um

i be a vector of length n that consist of k

1This work was partially supported by the grant MK-1976.2011.9 of the President of Russia
and by the Saint-Petersburg government research grant for students.
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Figure 1: Encoding scheme for (9, 6) polar code

information symbols and n− k zero (frozen) symbols. Encoding operation can
be represented as multiplication of um

i by F⊗m.
The polarizing transformation F⊗m can be decomposed into m + 1 layers,

which correspond to intermediate symbols uj
i , i = 0, . . . , n − 1, j = 0, . . . , m

(see Fig. 1). Here layer 0 corresponds to codeword symbols, while layer m
corresponds to information and frozen symbols.

For the sake of simplicity only the case of m = 2 will be considered below.

2.2 Multilevel codes

Multilevel coding is a coded modulation method, which is based on some
labeling of a signal constellation M, and a number of component codes
Ci, i = 0, . . . , l − 1, where l is the number of levels [1], [2]. A codewords of
a multilevel code is a sequence of elements from M, such that the i-th digits of
the corresponding labels constitute a codeword of Ci.

(n = l2, k) polar code can be considered as a multilevel one [4]. Signal
constellation is given by M = {0, 1}l. Labeling is given by

(u0
jl, u

0
jl+1, . . . , u

0
jl+l−1) = (u1

jl, u
1
jl+1, . . . , u

1
jl+l−1)F, j = 0, . . . , l − 1,

where (u0
jl, u

0
jl+1, . . . , u

0
jl+l−1) ∈ M is a constellation element to be trans-

mitted, and (u1
jl, u

1
jl+1, . . . , u

1
jl+l−1) is the corresponding label. Vector
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Figure 2: (9, 6) polar code as a multilevel code

(u1
i , u

1
i+l, . . . , u

1
i+(l−1)l) is obtained by encoding the payload data with Ci. In

the case of polar codes Ci is also generated by some rows of kernel F .
After transmission of codeword (u0

0, u
0
1, . . . , u

0
l·l−1) over a binary-input mem-

oryless output-symmetric channel one obtains LLRs (ũ0
0, ũ

0
1, . . . , ũ

0
l·l−1). The

multistage decoder proceeds by decoding the codewords of component codes at
levels 0, 1, . . . , l−1. At the i-th level it computes the LLRs ũ1

i , ũ
1
i+l, . . . , ũ

1
i+(l−1)l

under the assumption that estimates û1
i′ , û

1
i′+l, . . . , û

1
i′+(l−1)l, i

′ = 0, . . . , i−1 are

correct. This corresponds to SISO decoding of a code C
i generated by last i

rows of F . Let Di represent a unit implementing this operation. The obtained
LLRs are used by decoder Di of component code Ci, which obtains codeword
symbol estimates û1

i , û
1
i+l, . . . , û

1
i+(l−1)l, as well as the corresponding symbols of

the payload data. Fig. 2 illustrates this construction.

3 Error probability

To obtain an expression for the decoding error probability observe that the
multistage decoder makes an uncorrect decision if and only if any of component
decoders make an error. The probability of correct decoding can be represented
as

P {e0, . . . , el−1} = P {el−1|e0, . . . , el−2}P {el−2|e0, . . . , el−3} . . . P {e1|e0}P {e0} ,
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where ei denotes the event of correct decoding at the i-th level. Hence, the
probability of error under the multistage decoding algorithm is given by

P = 1−
l−1∏

i=0

(1− pi), (1)

where pi = 1− P {ei|e0, . . . , ei−1} is the decoding error probability at level i.
Assume for the sake of simplicity that zero codeword was transmitted. Due

to linearity of polar codes this does not affect the probability of error. Further-
more, it does not depend on the decisions at previous levels, provided that they
are correct. At level i the decoder Di makes decisions between subsets C

i,0 and
C

i,1 of C
i ⊂M, where code C

i,s contains all symbols with the i-th label digit
equal to s, s ∈ {0, 1}. It can be seen that linear code C

i is partitioned into its
subcode C

i,0 = C
i+1, and a coset of this code C

i,1.
An error occurs at the i-th level if there exist codewords c(j) =

(c(j)
0 , . . . , c

(j)
l−1) ∈ C

i
, j = 0, . . . , l − 1, such that some of them belong to C

i,1,

and for any c(j) ∈ C
i,0

L(c(0), c(1), . . . , c(l−1)) > L(c(0), c(1), . . . , c(l−1)), (2)

where L(c) =
∑l−1

j=0

∑l−1
q=0 ũ0

jl+q(2c
(j)
q − 1), (v0, v1, . . . , vl−1) ∈ Ci, vj : c(j) ∈

C
i,vj . Since polar codes are linear, one can assume c(j) = 0.

This enables one to employ the techniques presented in [3] for estimation
of the decoding error probability. The linearity of polar codes enables one to
simplify the derivations.

Let A
i,1(Z) =

∑l
j=1 A

i,1
j Zj be the weight enumerator polynomial of C

i,1.

Each vj = 1 can be mapped to any of w = 2n−i−1 elements c(j) ∈ C
i,1 in (2). Let

δ = wt(v0, . . . , vl−1). It can be seen that the total number of possible erroneous
decisions of the decoder is wδ. Let st, t = 0, . . . , w−1, be the number of times a
particular element yt of coset C

i,1 appears in (2), so that
∑w−1

t=0 st = δ. The total
number of such configurations is given by δ!

s0!...sw−1! . Multiplying this expression

by (Zwt(y0))s0(Zwt(y1))s1 . . . (Zwt(y0))sw−1 and summing up over variables st, one
obtains weight enumerator polynomial for the corresponding codewords of the
multilevel code

S(Z) =
∑

s0,...,sw−1
s0+···+sw−1=δ

δ!
s0! . . . sw−1!

(Zwt(y0))s0(Zwt(y1))s1 . . . (Zwt(yw−1))sw−1

= (Zwt(y0) + Zwt(y1) + · · ·+ Zwt(yw−1))δ = (Ai,1(Z))δ. (3)
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Figure 3: (256, 128) polar codes

Let Ai(Z) be the weight enumerator polynomial for code Ci. Then the
weight enumerator polynomial for the multilevel code at level i is given by

Ai(Z) = Ai(Ai,1(Z)). (4)

The coefficients of this polynomial can be used in the union bound for the
decoding error probability at level i

pi ≤ 1
2

l·l∑

j=1

Ai
j erfc

(√
j
k

n

Eb

N0

)
. (5)

The weight enumerator polynomial Ai(Z) describes all possible error events.
However, these events are not independent. It was suggested in [5] to consider
only Voronoi neighbours of zero codeword. Weight distribution for Voronoi
neighbours of zero codeword for the case of binary linear block code is given by
local weight profile of this code. The local weight profile V i(Z) for the code Ci

is given by

V i
j = |{x ∈ Ci|wt(x) = j,@y ∈ Ci \ 0 : supp(y) ⊂ supp(x)

} |, j = 1, . . . , l.

It can be defined in a similar way for the case of coset C
i,1. Hence, one can

replace A
i,1(Z) and Ai(Z) in (4) with the corresponding local weight enumerator

polynomials V
i,1(Z) and V i(Z), respectively.
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4 Numeric results

Fig. 3 presents the performance of polar codes based on 16× 16 Arikan kernel
and 16×16 BCH kernel for the case of AWGN channel with BPSK modulation,
as well as upper union bounds based on full weight spectrum of codes Ci and
C

i,1, and their local weight profile. It can be seen that both bounds coincide
with the simulation results for high SNR values. Furthermore, employing local
weight profiles in the case of Arikan kernel enables one to obtain tighter upper
bound on the decoding error probability in the low-SNR region. In the case of
BCH kernel upper bounds coincide, so only one of them is presented.

5 Conclusion

In this paper a novel method for computing an upper bound on decoding error
pobability of binary polar codes with high-dimensional kernels was proposed.
The proposed approach is based on representation of polar code as multilevel
code and exploits the techniques developed in the area of multilevel coding.
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