Optimal 4-dimensional linear codes over \mathbb{F}_{8}

Tatsuya Maruta ${ }^{1}$
maruta@mi.s.osakafu-u.ac.jp
Department of Mathematics and Information Sciences,
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

> Abstract. We construct new linear codes over \mathbb{F}_{8} with parameters $[368,4,320]_{8}$, $[436,4,380]_{8},[669,4,584]_{8},[678,4,592]_{8},[687,4,600]_{8},[696,4,608]_{8},[733,4,640]_{8}$ We also prove the nonexistence of $[658,4,575]_{8}$ codes attaining the Griesmer bound.

1 Introduction

An $[n, k, d]_{q}$ code \mathcal{C} is a linear code of length n, dimension k and minimum weight d over \mathbb{F}_{q}, the field of q elements. The weight of a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$, denoted by $\operatorname{wt}(\boldsymbol{x})$, is the number of nonzero coordinate positions in \boldsymbol{x}.

A fundamental problem in coding theory is to find $n_{q}(k, d)$, the minimum length n for which an $[n, k, d]_{q}$ code exists. See [6] for the updated tables of $n_{q}(k, d)$ for some small q and k. The Griesmer bound gives a natural lower bound on $n_{q}(k, d): n_{q}(k, d) \geq g_{q}(k, d)=\sum_{i=0}^{k-1}\left\lceil d / q^{i}\right\rceil$, where $\lceil x\rceil$ denotes the smallest integer $\geq x$. An $[n, k, d]_{q}$ code attaining the Griesmer bound is called a Griesmer code. The values of $n_{q}(k, d)$ are determined for all d only for some small values of q and k. For linear codes over $\mathbb{F}_{8}, n_{8}(k, d)$ is known for $k \leq 3$ for all d, but the value of $n_{8}(4, d)$ is unknown for many integers d although the Griesmer bound is attained for all $d \geq 833$. It is known that $n_{8}(4, d)=g_{8}(4, d)$ or $g_{8}(4, d)+1$ for $575 \leq d \leq 608, g_{8}(4, d)+1 \leq n_{8}(4, d) \leq g_{8}(4, d)+3$ for $317 \leq$ $d \leq 320$, and $n_{8}(4, d)=g_{8}(4, d)+1$ or $g_{8}(4, d)+2$ for $d=379,380,639,640$, see [3]. Our purpose is to prove the following theorems.

Theorem 1.1. There exist codes with parameters $[368,4,320]_{8},[436,4,380]_{8}$, $[669,4,584]_{8},[678,4,592]_{8},[687,4,600]_{8},[696,4,608]_{8},[733,4,640]_{8}$.

Theorem 1.2. There exists no $[658,4,575]_{8}$ code.
Since the existence of an $[n, k, d]_{q}$ code implies the existence of an $[n-1, k, d-1]_{q}$ code, we get the following.

Corollary 1.3. (1) $n_{8}(4, d)=g_{8}(4, d)$ for $581 \leq d \leq 608$.
(2) $n_{8}(4, d)=g_{8}(4, d)+1$ for $d=379,380,575,576,639,640$.
(3) $n_{8}(4, d)=g_{8}(4, d)+1$ or $g_{8}(4, d)+2$ for $317 \leq d \leq 320$.

[^0]
2 Preliminary results

We denote by $\operatorname{PG}(r, q)$ the projective geometry of dimension r over \mathbb{F}_{q}. The 0 flats, 1-flats, 2-flats, $(r-2)$-flats and $(r-1)$-flats are called points, lines, planes, secundums and hyperplanes respectively. We denote by \mathcal{F}_{j} the set of j-flats of $\mathrm{PG}(r, q)$ and by θ_{j} the number of points in a j-flat, i.e. $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$.

Let \mathcal{C} be an $[n, k, d]_{q}$ code having no coordinate which is identically zero. The columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma=\mathrm{PG}(k-1, q)$ denoted also by \mathcal{C}. We see linear codes from this geometrical point of view. An i-point is a point of Σ which has multiplicity i in \mathcal{C}. Denote by γ_{0} the maximum multiplicity of a point from Σ in \mathcal{C} and let C_{i} be the set of i-points in $\Sigma, 0 \leq i \leq \gamma_{0}$. For any subset S of Σ we define the multiplicity of S with respect to \mathcal{C}, denoted by $m_{\mathcal{C}}(S)$, as $m_{\mathcal{C}}(S)=\sum_{i=1}^{\gamma_{0}} i \cdot\left|S \cap C_{i}\right|$, where $|T|$ denotes the number of elements in a set T. When the code is projective, i.e. when $\gamma_{0}=1$, the multiset \mathcal{C} forms an n-set in Σ and the above $m_{\mathcal{C}}(S)$ is equal to $|\mathcal{C} \cap S|$. A line l with $t=m_{\mathcal{C}}(l)$ is called a t-line. A t-plane, a t-hyperplane and so on are defined similarly. Then we obtain the partition $\Sigma=\bigcup_{i=0}^{\gamma_{0}} C_{i}$ such that $n=m_{\mathcal{C}}(\Sigma)$ and $n-d=\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\}$. Conversely such a partition $\Sigma=\bigcup_{i=0}^{\gamma_{0}} C_{i}$ as above gives an $[n, k, d]_{q}$ code in the natural manner. For an m-flat Π in Σ we define

$$
\gamma_{j}(\Pi)=\max \left\{m_{\mathcal{C}}(\Delta) \mid \Delta \subset \Pi, \Delta \in \mathcal{F}_{j}\right\}, 0 \leq j \leq m
$$

We denote simply by γ_{j} instead of $\gamma_{j}(\Sigma)$. It holds that $\gamma_{k-2}=n-d, \gamma_{k-1}=n$. When \mathcal{C} attains the Griesmer bound, γ_{j} 's are uniquely determined. Every $[n, k, d]_{q}$ code attaining the Griesmer bound is projective if $d \leq q^{k-1}$. Denote by a_{i} the number of hyperplanes Π in Σ with $m_{\mathcal{C}}(\Pi)=i$ and by λ_{s} the number of s-points in Σ. The list of a_{i} 's is called the spectrum of \mathcal{C}. We usually use τ_{j} 's for the spectrum of a hyperplane of Σ to distinguish from the spectrum of \mathcal{C}. Simple counting arguments yield the following.

Lemma 2.1. (1) $\sum_{i=0}^{n-d} a_{i}=\theta_{k-1}$.
(2) $\sum_{i=1}^{n-d} i a_{i}=n \theta_{k-2}$.
(3) $\sum_{i=2}^{n-d} i(i-1) a_{i}=n(n-1) \theta_{k-3}+q^{k-2} \sum_{s=2}^{\gamma_{0}} s(s-1) \lambda_{s}$.

Lemma 2.2 ([8]). Let Π be an i-hyperplane through a t-secundum δ. Then
(1) $t \leq \gamma_{k-2}-(n-i) / q=\left(i+q \gamma_{k-2}-n\right) / q$.
(2) $a_{i}=0$ if an $\left[i, k-1, d_{0}\right]_{q}$ code with $d_{0} \geq i-\left\lfloor\left(i+q \gamma_{k-2}-n\right) / q\right\rfloor$ does not exist, where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x.
(3) $\gamma_{k-3}(\Pi)=\left\lfloor\left(i+q \gamma_{k-2}-n\right) / q\right\rfloor$ if an $\left[i, k-1, d_{1}\right]_{q}$ code with $d_{1} \geq i-$ $\left\lfloor\left(i+q \gamma_{k-2}-n\right) / q\right\rfloor+1$ does not exist.
(4) Let c_{j} be the number of j-hyperplanes through δ other than Π. Then

$$
\begin{equation*}
\sum_{j}\left(\gamma_{k-2}-j\right) c_{j}=i+q \gamma_{k-2}-n-q t \tag{2.1}
\end{equation*}
$$

(5) For a γ_{k-2}-hyperplane Π_{0} with spectrum $\left(\tau_{0}, \cdots, \tau_{\gamma_{k-3}}\right)$, $\tau_{t}>0$ holds if $i+$ $q \gamma_{k-2}-n-q t<q$.

An f-set F in $\mathrm{PG}(r, q)$ satisfying $m=\min \left\{|F \cap \pi| \mid \pi \in \mathcal{F}_{r-1}\right\}$ is called an $\{f, m ; r, q\}$-minihyper. When $\gamma_{0}=1$, the set of 0-points C_{0} forms a $\left\{\theta_{k-1}-\right.$ $\left.n, \theta_{k-2}-(n-d) ; k-1, q\right\}$-minihyper, and vice versa.

We also use the following theorems to prove Theorem 1.2.
Theorem $2.3([2])$. Let \mathcal{C} be an $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=1$ whose spectrum satisfies $a_{i}=0$ for all $i \not \equiv n, n-d(\bmod 3)$. Then \mathcal{C} is extendable.

Theorem 2.4 ([9]). Let \mathcal{C} be a Griesmer $[n, k, d]_{8}$ code. If 8 divides d, then \mathcal{C} is 2-divisible.

3 Proof of Theorem 1.1

Let $\mathbb{F}_{8}=\left\{0,1, \alpha, \alpha^{2}, \cdots, \alpha^{6}\right\}$, with $\alpha^{3}=\alpha+1$. For simplicity, we denote $\alpha, \alpha^{2}, \cdots, \alpha^{6}$ by $2,3, \cdots, 7$ so that $\mathbb{F}_{8}=\{0,1,2,3, \cdots, 7\}$.
Lemma 3.1 ([4]). Let \mathcal{C}_{0} be the linear code over \mathbb{F}_{8} with generator matrix
$G_{0}=\left[\begin{array}{lllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 6 & 6 & 7 & 4 & 5 & 1 & 1 & 1 & 6 & 6 & 3 & 5 & 1 & 0 & 4 & 4 & 3 & 5 & 2 & 6 & 3 \\ 0 & 6 & 0 & 7 & 0 & 0 & 3 & 3 & 2 & 1 & 7 & 4 & 2 & 5 & 7 & 2 & 1 & 2 & 0 & 3 & 1 \\ 2 & 6 & 3 & 6 & 4 & 7 & 3 & 1 & 2 & 5 & 2 & 3 & 0 & 4 & 0 & 6 & 0 & 5 & 6 & 7 & 2\end{array}\right]$.
Then \mathcal{C}_{0} is a $[21,4,16]_{8}$ code with spectrum $\left(a_{1}, a_{3}, a_{5}\right)=(228,240,117)$.
Lemma 3.2 ([4]). (1) There exists $a[76,4,64]_{8}$ code with spectrum $\left(a_{4}, a_{8}, a_{12}\right)=$ (72, 224, 289).
(2) $A[28,4,22]_{8}$ code with spectrum $\left(a_{0}, a_{2}, a_{4}, a_{6}\right)=(25,231,196,133)$ exists.

As a method to construct good codes, we first introduce the projective dual. An $[n, k, d]_{q}$ code is called m-divisible if all codewords have weights divisible by an integer $m>1$.
Lemma 3.3 ([8]). Let \mathcal{C} be an m-divisible $[n, k, d]_{q}$ code with $q=p^{h}$, p prime, whose spectrum is

$$
\left(a_{n-d-(w-1) m}, a_{n-d-(w-2) m}, \cdots, a_{n-d-m}, a_{n-d}\right)=\left(\alpha_{w-1}, \alpha_{w-2}, \cdots, \alpha_{1}, \alpha_{0}\right)
$$

where $m=p^{r}$ for some $1 \leq r<h(k-2)$ satisfying $\lambda_{0}>0$. Then there exists a t-divisible $\left[n^{*}, k, d^{*}\right]_{q}$ code \mathcal{C}^{*} with $t=q^{k-2} / m, n^{*}=\sum_{j=0}^{w-1} j \alpha_{j}=n t q-\frac{d}{m} \theta_{k-1}$, $d^{*}=n^{*}-n t+\frac{d}{m} \theta_{k-2}=((n-d) q-n) t$ whose spectrum is

$$
\left(a_{n^{*}-d^{*}-\gamma_{0}}, a_{n^{*}-d^{*}-\left(\gamma_{0}-1\right) t}, \cdots, a_{n^{*}-d^{*}-t}, a_{n^{*}-d^{*}}\right)=\left(\lambda_{\gamma_{0}}, \lambda_{\gamma_{0}-1}, \cdots, \lambda_{1}, \lambda_{0}\right)
$$

\mathcal{C}^{*} is called the projective dual of \mathcal{C}, see [1]. Applying Lemma 3.3 to the codes in Lemmas 3.1 and 3.2, we obtain the following codes.

Corollary 3.4. (1) There exists a $[368,4,320]_{8}$ code with spectrum $\left(a_{48}, a_{32}, a_{16}\right)$ $=(511,72,2)$.
(2) There exists a $[696,4,608]_{8}$ code with spectrum $\left(a_{56}, a_{88}\right)=(21,564)$.
(3) There exists a $[733,4,640]_{8}$ code with spectrum $\left(a_{61}, a_{93}\right)=(28,557)$.

We apply the following "geometric puncturing" to obtain other codes.
Lemma $3.5([7])$. Let \mathcal{C} be an $[n, k, d]_{q}$ code and let $\cup_{i=0}^{\gamma_{0}} C_{i}$ be the partition of $\Sigma=\operatorname{PG}(k-1, q)$ obtained from \mathcal{C}. If $\cup_{i=1}^{\gamma_{0}^{0}} C_{i}$ contains a t-flat and if $d>q^{t}$, then an $\left[n-\theta_{t}, k, d-q^{t}\right]_{q}$ code exists.

The above lemma can be generalized as follows.
Lemma 3.6. Let \mathcal{C} and $\cup_{i=0}^{\gamma_{0}} C_{i}$ be as in Lemma 3.5. If $\cup_{i=1}^{\gamma_{0}} C_{i}$ contains an $\{f, m ; k-1, q\}$-minihyper \mathcal{F} such that $\left(C_{1} \backslash \mathcal{F}\right) \cup\left(\cup_{i \geq 2} C_{i}\right)$ spans Σ, then there exists an $[n-f, k, d+m-f]_{q}$ code.

Proof. Let $C_{i}^{\prime}=\left(C_{i} \backslash \mathcal{F}\right) \cup\left(C_{i+1} \cap \mathcal{F}\right)$ for all i. Then $\cup_{i=0}^{\gamma_{0}} C_{i}^{\prime}$ forms a partition of Σ giving an $\left[n^{\prime}=n-f, k, d^{\prime}\right]_{q}$ code, say \mathcal{C}^{\prime}. For any hyperplane π of Σ, π meets \mathcal{F} in at least m points. So, $m_{\mathcal{C}^{\prime}}(\pi) \leq n^{\prime}-d^{\prime} \leq n-d-m$, giving $d^{\prime} \geq d-f+m$.

Let \mathcal{C} be the 2^{5}-divisible $[696,4,608]_{8}$ code found in Corollary 3.4 and let $C_{0} \cup C_{1} \cup C_{2}$ be the partition of $\Sigma=\operatorname{PG}(3,8)$ obtained from \mathcal{C}. Then it follows from Lemmas 3.2 and 3.3 that $\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)=(117,240,228)$, where $\lambda_{i}=\left|C_{i}\right|$. Actually, the sets C_{i} for \mathcal{C} are constructed from G_{0} in Lemma 3.1 as follows:
$C_{i}=\left\{\mathbf{P}\left(p_{0}, p_{1}, p_{2}, p_{3}\right) \in \mathrm{PG}(3,8) \mid w t\left(p_{0} g_{0}+\cdots+p_{3} g_{3}\right)=16+2 i\right\}$ for $0 \leq i \leq 2$,
where g_{i} is the $(i+1)$-th row of G_{0} for $0 \leq i \leq 3$. It can be checked with the aid of a computer that the set $C_{1} \cup C_{2}$ contains three skew lines $l_{1}=\langle 1523,0152\rangle$, $l_{2}=\langle 2342,7220\rangle$ and $l_{3}=\langle 3545,5352\rangle$, where $x_{0} x_{1} x_{2} x_{3}$ stands for the point $\mathbf{P}\left(x_{0}, \cdots, x_{3}\right)$ of Σ represented by a vector $\left(x_{0}, \cdots, x_{3}\right)$. Applying Lemma 3.5 with $\Pi=l_{1}$ to \mathcal{C} gives a $[687,4,600]_{8}$ code \mathcal{C}_{1} with spectrum

$$
\left(a_{55}, a_{79}, a_{87}\right)=(21,9,555)
$$

and applying Lemma 3.5 with $\Pi=l_{2}$ to \mathcal{C}_{1} gives a $[678,4,592]_{8}$ code \mathcal{C}_{2} with spectrum

$$
\left(a_{54}, a_{78}, a_{86}\right)=(21,18,546) .
$$

Furthermore, applying Lemma 3.5 with $\Pi=l_{3}$ to \mathcal{C}_{2} gives a $[669,4,584]_{8}$ code with spectrum

$$
\left(a_{53}, a_{77}, a_{85}\right)=(21,27,537) .
$$

Next, we construct a $[436,4,380]_{8}$ code from a $[449,4,392]_{8}$ code by the projective puncturing Lemma 3.6. Let $\mathcal{H}=\mathbf{V}\left(x_{0} x_{1}+x_{2} x_{3}\right)$ be a hyperbolic quadric in $\Sigma=\operatorname{PG}(3,8)$. Take $P(0010) \in \mathcal{H}$ and $\pi=\mathbf{V}\left(x_{3}\right)$, the tangent plane at P. Putting $C_{0}=(\mathcal{H} \cup \pi) \backslash\{P\}$ and $C_{1}=\Sigma \backslash C_{0}$, one can get a Griesmer [449, 4,392$]_{8}$ code \mathcal{C} [5]. We cannot find a line to apply Lemma 3.5 since C_{1} contains no line, for $\gamma_{1}=8$. Instead, we take a blocking 13 -set in a plane through P as \mathcal{F} in Lemma 3.6. Let $\delta=\mathbf{V}\left(x_{0}+x_{1}\right)$ and take a blocking 13 -set in δ :

$$
\mathcal{B}=\{P, 0011,0012,0014,0017,1101,1121,1161,1171,1112,1132,1142,1152\} .
$$

Applying Lemma 3.6 with \mathcal{B} to \mathcal{F} gives a $[436,4,380]_{8}$ code with spectrum

$$
\left(a_{0}, a_{44}, a_{46}, a_{48}, a_{52}, a_{54}, a_{56}\right)=(1,1,10,54,24,118,377) .
$$

This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Lemma 4.1. The spectrum of $a[83,3,72]_{8}$ code satisfies $a_{i}=0$ for all $i \notin$ $\{3,5,7,9,11\}$.

Proof. Let l be a t-line through a 1-point P in $\Sigma=\mathrm{PG}(2,8)$. Then we have $n=83 \leq\left(\gamma_{1}-1\right) 8+t$, giving $t \geq 3$. Since there is no line with even multiplicity by Theorem 2.4, our assertion follows.
Now, let \mathcal{C}_{0} be a putative $[659,4,576]_{8}$ code and let δ_{0} be a γ_{2}-plane in $\Sigma=$ $\mathrm{PG}(3,8)$. Then δ_{0} satisfies $\tau_{i}=0$ for all $i \notin\{3,5,7,9,11\}$ by Lemmas 4.1, so $a_{i}=0$ for all $i<19$ by Lemma 2.2. Hence $a_{i}=0$ for all $i \notin\{67,69,71,73,83\}$ by Lemma 2.2, Theorem 2.4 and the known $n_{8}(3, d)$-table.

Suppose $a_{73}>0$ and let π be a 73 -plane. Then π gives a projective $[73,3,64]_{8}$ code consisting of the points in π. Hence π has a 9 -line. Since (2.1) for $(i, t)=(73,9)$ has no solution, a contradiction. Hence $a_{73}=0$. We can prove $a_{71}=a_{69}=0$ similarly. Then we have $\left(a_{67}, a_{83}\right)=(28,557)$ by Lemma 2.1. Let δ be a 67 -plane. Then, δ corresponds to a projective Griesmer $[67,3,58]_{8}$ code. So, δ has exactly six 0 -points, and has a 8 -line, say ℓ. Let x be the number of 67 -planes through ℓ. Then we have $(67-8) x+(83-8)(9-x)+8=659$, i.e., $y=15 / 2$, a contradiction. Thus we get the following.

Lemma 4.2. There exists no $[659,4,576]_{8}$ code.
Next, let \mathcal{C} be a putative $[658,4,575]_{8}$ code and let δ_{0} be a γ_{2}-plane in $\Sigma=$ $\operatorname{PG}(3,8)$. Then we have $a_{i}=0$ for all $i \notin\{66,67,68,69,70,71,72,73,82,83\}$ by Lemma 2.2 and the known $n_{8}(3, d)$-table.

Suppose $a_{66+e}>0$ and let π be a $(66+e)$-plane for $0 \leq e \leq 7$. Then π gives a projective code, and π has a 8 -line. Since it follows from Lemma 4.1 that $c_{83}=0$ in (2.1) for $(i, t)=(66+e, 8),(2.1)$ has no solution for $1 \leq e \leq 6$. Hence $a_{i}=0$ for $67 \leq i \leq 72$. For $(i, t)=(73,9)$, (2.1) has the unique solution $\left(c_{82}, c_{83}\right)=(7,1)$. Then we have the spectrum $\left(a_{73}, a_{82}, a_{83}\right)=(1,511,73)$, which gives $\lambda_{2}=3001 / 64$ from (3) in Lemma 2.1, a contradiction. Hence $a_{73}=0$. Thus, we have $a_{i}=0$ for all $i \notin\{66,82,83\}$, which implies that \mathcal{C} is extendable by Theorem 2.3. But there exists no $[659,4,576]_{8}$ code by Lemma 4.2 , a contradiction. This completes the proof.

References

[1] A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr. 11, 261-266, 1997.
[2] R. Hill, An extension theorem for linear codes, Des. Codes Cryptogr. 17 (1999) 151-157.
[3] R. Kanazawa, T. Maruta, On optimal linear codes over \mathbb{F}_{8}, Electron. J. Combin. 18, \#P34, 27pp, 2011.
[4] A. Kohnert, Best linear codes, http://www.algorithm.uni-bayreuth.de/ en/research/Coding_Theory/Linear_Codes_BKW/
[5] T. Maruta, On the minimum length of q-ary linear codes of dimension four, Discrete Math. 208/209, 427-435, 1999.
[6] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.geocities.jp/mars39geo/griesmer.htm.
[7] T. Maruta, Y. Oya, On optimal ternary linear codes of dimension 6, Advances in Mathematics of Communications 5, 505-520, 2011.
[8] M. Takenaka, K. Okamoto, T. Maruta, On optimal non-projective ternary linear codes, Discrete Math. 308, 842-854, 2008.
[9] H.N. Ward, Divisible codes - a survey, Serdica Math. J. 27, 263-278, 2001.

[^0]: ${ }^{1}$ This research is partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

