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Optimal 4-dimensional linear codes over [y
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Abstract. We construct new linear codes over Fg with parameters [368, 4, 320]s,
[436,4,380]s, [669,4,584]s, [678,4,592]s, [687,4,600]s, [696,4,608]s, [733,4,640]s.
We also prove the nonexistence of [658, 4, 575]s codes attaining the Griesmer bound.

1 Introduction

An [n,k,d]; code C is a linear code of length n, dimension k& and minimum
weight d over Fy, the field of ¢ elements. The weight of a vector © € Fy,
denoted by wt(x), is the number of nonzero coordinate positions in .

A fundamental problem in coding theory is to find n,(k, d), the minimum
length n for which an [n, k,d],; code exists. See [6] for the updated tables of
ng(k,d) for some small ¢ and k. The Griesmer bound gives a natural lower
bound on ny(k,d): ng(k,d) > gq(k,d) = Zf;ol [d/q"] , where [2] denotes the
smallest integer > x. An [n, k, d]; code attaining the Griesmer bound is called
a Griesmer code. The values of ny(k,d) are determined for all d only for some
small values of ¢ and k. For linear codes over Fg, ng(k,d) is known for k£ < 3
for all d, but the value of ng(4, d) is unknown for many integers d although the
Griesmer bound is attained for all d > 833. It is known that ng(4, d) = gs(4, d)
or gg(4,d) +1 for 575 < d < 608, gg(4,d) +1 < ng(4,d) < gg(4,d) + 3 for 317 <
d < 320, and ng(4,d) = gs(4,d) + 1 or gs(4,d) + 2 for d = 379, 380, 639, 640, see
[3]. Our purpose is to prove the following theorems.

Theorem 1.1. There exist codes with parameters [368,4,320]s, [436,4,380]s,
669, 4, 584]s, [678, 4, 592]s, [687, 4, 600]s, [696, 4, 608]s, [733, 4, 640]s.

Theorem 1.2. There exists no [658,4,575]g code.

Since the existence of an [n, k, d],; code implies the existence of an [n—1, k, d—1],
code, we get the following.

Corollary 1.3. (1) ng(4,d) = gs(4,d) for 581 < d < 608.
(2) ns(4,d) = gs(4,d) + 1 for d = 379, 380, 575, 576, 639, 640.
(3) ns(4,d) = gs(4,d) + 1 or gs(4,d) + 2 for 317 < d < 320.
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2 Preliminary results

We denote by PG(r, ¢) the projective geometry of dimension r over F,. The 0-
flats, 1-flats, 2-flats, (r—2)-flats and (r — 1)-flats are called points, lines, planes,
secundums and hyperplanes respectively. We denote by F; the set of j-flats of
PG(r, q) and by 6; the number of points in a j-flat, i.e. §; = (¢/T1 —1)/(¢—1).

Let C be an [n, k, d]4 code having no coordinate which is identically zero. The
columns of a generator matrix of C can be considered as a multiset of n points
in ¥ = PG(k—1, q) denoted also by C. We see linear codes from this geometrical
point of view. An i-point is a point of ¥ which has multiplicity ¢ in C. Denote
by 7 the maximum multiplicity of a point from ¥ in C and let C; be the set of
i-points in ¥, 0 < ¢ < 9. For any subset S of X we define the multiplicity of
S with respect to C, denoted by me(S), as me(S) = >.;2, i-|SNC;|, where |T|
denotes the number of elements in a set 7. When the code is projective, i.e.
when 9 = 1, the multiset C forms an n-set in ¥ and the above m¢(.S) is equal
to [CNS|. A line [ with t = m¢(l) is called a t-line. A t-plane, a t-hyperplane
and so on are defined similarly. Then we obtain the partition ¥ = [J]°, C;
such that n = m¢(X) and n — d = max{me¢(7) | m € Fr_2}. Conversely such a
partition ¥ = (J]°, C; as above gives an [n, k,d], code in the natural manner.
For an m-flat II in 3 we define

v;(I) = max{mec(A) | ACII, Ae F;}, 0<j<m.

We denote simply by 7; instead of v;(3). It holds that y4_2 = n—d, y—1 = n.
When C attains the Griesmer bound, <;’s are uniquely determined. Every
[n,k,d], code attaining the Griesmer bound is projective if d < ¢*~!. Denote
by a; the number of hyperplanes II in ¥ with m¢(II) = ¢ and by s the number
of s-points in ¥. The list of a;’s is called the spectrum of C. We usually use 7;’s
for the spectrum of a hyperplane of ¥ to distinguish from the spectrum of C.
Simple counting arguments yield the following.

Lemma 2.1. (1) Y% a; =6, 1. (2) X0 ia; = nby_o.
(3) (i — Vas = n(n — b3+ ¢" 237, s(s — 1)

Lemma 2.2 ([8]). Let II be an i-hyperplane through a t-secundum 6. Then
(1) t < -2 — (n—19)/q= (i + qy—2 —n)/q.

(2) a; =0 if an [i,k — 1,dp]q code with dg > i — [(i + qyx—2 — n)/q| does not
exist, where | x| denotes the largest integer less than or equal to x.

(3) Ye—3(Il) = [(¢+qyk—2—n)/q] if an [i,k — 1,d1]y code with di > i —
| (i + qyk—2 —m)/q] + 1 does not exist.

(4) Let c¢; be the number of j-hyperplanes through § other than II. Then

> (k2 —§)ej =i+ qu—2—n—qt. (2.1)
i
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(5) For a vyg—2-hyperplane Iy with spectrum (7o, - , Ty, 4), ¢ > 0 holds if i+
qVk—2 —n —qt <q.

An f-set F in PG(r, q) satisfying m = min{|F N 7| | # € F,_1} is called an
{f,m;r,q}-minihyper. When ~y = 1, the set of 0-points Cy forms a {0;_1 —
n,0p_o — (n —d); k — 1, g}-minihyper, and vice versa.

We also use the following theorems to prove Theorem 1.2.

Theorem 2.3 ([2]). LetC be an [n, k,d|, code with gcd(d, q) = 1 whose spectrum
satisfies a; = 0 for all i Zn,n —d (mod 3). Then C is extendable.

Theorem 2.4 ([9]). Let C be a Griesmer [n,k,d]s code. If 8 divides d, then C
is 2-divisible.

Let Fs = {0,1,a,0?,---,a%}, with o® = o + 1. For simplicity, we denote

a,a? - a®by 2,3,--- 7 so that Fg = {0,1,2,3,---,7}.

Lemma 3.1 ([4]). Let Cy be the linear code over Fg with generator matric
11111100111 101111TT1T1T11

G_667451116635104435263

° 106 070033217425 7212031
26 3647 3125230406056 7 2

Then Cy is a [21,4,16]s code with spectrum (a1, as,as) = (228,240, 117).

Lemma 3.2 ([4]). (1) There exists a [76, 4, 64]g code with spectrum (a4, as, a12) =
(72,224, 289).
(2) A [28,4,22]g code with spectrum (ao, az, a4, as) = (25,231,196, 133) exists.

As a method to construct good codes, we first introduce the projective dual.
An [n, k,d], code is called m-divisible if all codewords have weights divisible by
an integer m > 1.

Lemma 3.3 ([8]). Let C be an m-divisible [n,k,d], code with ¢ = p", p prime,
whose spectrum is

(an—d—(w—l)Tm Ap—d—(w—2)m> """ s An—d—m; an—d) = (aw—1> Qy—2," "+, 1, 060),
where m = p" for some 1 < r < h(k — 2) satisfying Ao > 0. Then there exists a
t-divisible [n*, k,d*], code C* with t = ¢*=2/m, n* = Z;'U:_ol joy =ntq— %Gk,l,

d* =n* —nt+ %Qk,g = ((n — d)q — n)t whose spectrum is

(an*—d*—’yota an*—d*—('yo—l)t7 Tty Apx—dx —t, an*—d*) = (>"707 )"yofla to >>\13 )\0)
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C* is called the projective dual of C, see [1]. Applying Lemma 3.3 to the codes
in Lemmas 3.1 and 3.2, we obtain the following codes.

Corollary 3.4. (1) There exists a [368,4,320]s code with spectrum (ass, asa, aip)
= (511,72,2).

(2) There exists a [696,4,608]s code with spectrum (ase, ags) = (21,564).

(3) There exists a [733,4,640]s code with spectrum (a1, ags) = (28,557).

We apply the following “geometric puncturing” to obtain other codes.

Lemma 3.5 ([7]). Let C be an [n,k,d|q code and let U]°,C; be the partition of
¥ = PG(k — 1,q) obtained from C. If U°,C; contains a t-flat and if d > ¢,
then an [n — 0y, k,d — q'], code exists.

The above lemma can be generalized as follows.

Lemma 3.6. Let C and U}°,C; be as in Lemma 3.5. If U°,C; contains an
{f,m;k — 1, q}-minihyper F such that (Cy \ F)U (U;>2C;) spans X, then there
exists an [n — f,k,d+m — f], code.

Proof. Let C! = (C; \ F) U (Ciy1 NF) for all i. Then U2 C’ forms a partition
of ¥ giving an [0’ = n — f,k,d']; code, say C’. For any hyperplane 7 of ¥,
m meets F in at least m points. So, me(7) < n’ —d < n—d— m, giving
d>d—f+m. 0

Let C be the 25-divisible [696, 4, 608]s code found in Corollary 3.4 and let
Cp U C1 U C4 be the partition of ¥ = PG(3,8) obtained from C. Then it follows
from Lemmas 3.2 and 3.3 that (Ao, A1, A2) = (117,240, 228), where \; = |C;].
Actually, the sets C; for C are constructed from Gy in Lemma 3.1 as follows:

C; = {P(po, p1,p2,p3) € PG(3,8) | wt(pogo+- - -+p3g3) = 16+2i} for 0 <i <2,

where g; is the (i+1)-th row of Gy for 0 < i < 3. It can be checked with the aid
of a computer that the set C; U Cy contains three skew lines [; = (1523,0152),
lo = (2342,7220) and I3 = (3545, 5352), where zgxrixoxs stands for the point
P(xg,--- ,x3) of ¥ represented by a vector (xq,---,x3). Applying Lemma 3.5
with IT = [; to C gives a [687,4,600]g code C; with spectrum

(ass, arg, agr) = (21,9, 555)

and applying Lemma 3.5 with IT =I5 to Cy gives a [678,4,592]s code C; with
spectrum
(as4, ars, agg) = (21,18, 546).

Furthermore, applying Lemma 3.5 with IT = I3 to Cy gives a [669, 4, 584]s code
with spectrum

(as3,ar7,a85) = (21,27,537).
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Next, we construct a [436,4,380]s code from a [449,4,392]s code by the
projective puncturing Lemma 3.6. Let H = V(xgz1 + z2x3) be a hyperbolic
quadric in ¥ = PG(3,8). Take P(0010) € H and m = V(x3), the tangent plane
at P. Putting Cy = (HU) \ {P} and C; = ¥\ Cp, one can get a Griesmer
[449,4,392]3 code C [5]. We cannot find a line to apply Lemma 3.5 since Cy
contains no line, for v; = 8. Instead, we take a blocking 13-set in a plane
through P as F in Lemma 3.6. Let § = V(zp + x1) and take a blocking 13-set
in 0:

B = {P,0011,0012,0014, 0017, 1101, 1121, 1161, 1171, 1112, 1132, 1142, 1152}.
Applying Lemma 3.6 with B to F gives a [436, 4, 380]s code with spectrum
(a0, aa4, a6, asg, asz, asa, ase) = (1,1, 10, 54,24,118,377).

This completes the proof of Theorem 1.1. O

4 Proof of Theorem 1.2

Lemma 4.1. The spectrum of a [83,3,72]s code satisfies a; = 0 for all i ¢
{3,5,7,9,11}.

Proof. Let [ be a t-line through a 1-point P in ¥ = PG(2,8). Then we have
n =83 < (v —1)8+t, giving t > 3. Since there is no line with even multiplicity
by Theorem 2.4, our assertion follows. O

Now, let Cy be a putative [659,4,576]s code and let §y be a yo-plane in ¥ =
PG(3,8). Then 4y satisfies 7, = 0 for all i ¢ {3,5,7,9,11} by Lemmas 4.1, so
a; = 0 for all i < 19 by Lemma 2.2. Hence a; = 0 for all i ¢ {67,69,71,73,83}
by Lemma 2.2, Theorem 2.4 and the known ng(3, d)-table.

Suppose a73 > 0 and let @ be a 73-plane. Then 7 gives a projective
[73,3,64]s code consisting of the points in 7. Hence 7 has a 9-line. Since (2.1)
for (i,t) = (73,9) has no solution, a contradiction. Hence ars = 0. We can prove
a71 = agg = 0 similarly. Then we have (ag7, ag3) = (28,557) by Lemma 2.1. Let
d be a 67-plane. Then, § corresponds to a projective Griesmer [67, 3, 58|g code.
So, ¢ has exactly six O-points, and has a 8-line, say £. Let x be the number of
67-planes through ¢. Then we have (67 — 8)z + (83 — 8)(9 — x) + 8 = 659, i.e.,
y = 15/2, a contradiction. Thus we get the following.

Lemma 4.2. There exists no [659,4,576]g code.

Next, let C be a putative [658,4,575]g code and let dy be a vo-plane in ¥ =
PG(3,8). Then we have a; = 0 for all ¢ ¢ {66,67,68,69,70,71,72,73,82,83}
by Lemma 2.2 and the known ng(3, d)-table.
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Suppose agg+e > 0 and let © be a (66 + e)-plane for 0 < e < 7. Then 7
gives a projective code, and 7 has a 8-line. Since it follows from Lemma 4.1
that cg3 = 0 in (2.1) for (i,t) = (66 + ¢, 8), (2.1) has no solution for 1 < e < 6.
Hence a; = 0 for 67 <1 < 72. For (i,t) = (73,9), (2.1) has the unique solution
(cg2,cg3) = (7,1). Then we have the spectrum (ars,asg2,as3) = (1,511,73),
which gives A2 = 3001/64 from (3) in Lemma 2.1, a contradiction. Hence
az3 = 0. Thus, we have a; = 0 for all ¢ ¢ {66,82,83}, which implies that C is
extendable by Theorem 2.3. But there exists no [659,4,576]s code by Lemma
4.2, a contradiction. This completes the proof. O
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