On a class of binary cyclic codes with an increasing gap between the BCH bound and the van Lint-Wilson bound

Valeriy Lomakov

vl@guap.ru
St. Petersburg State University of Aerospace Instrumentation 190000, Bolshaya Morskaya, 67, St. Petersburg, Russia

> Abstract. A class of binary cyclic $\left(2^{2(\ell+1)}-1,2^{\ell+2}\left(2^{\ell}-1\right)\right)$-codes is characterized. The BCH bound implies that the minimum distance is greater than four for these codes, but the van Lint-Wilson bound asserts that $\geq 2(\ell+1)$.

1 Introduction

Every nonnegative integer can be uniquely represented in base two, namely in the form

$$
\begin{equation*}
v=\nu_{0}+\nu_{1} 2+\nu_{2} 2^{2}+\nu_{3} 2^{3}+\ldots \tag{1}
\end{equation*}
$$

with ν_{i} from the finite field $G F(2)$. Let $B(v)$ designate the binary representation of v :

$$
\begin{equation*}
v \leftrightarrow B(v)=\nu_{0} \nu_{1} \nu_{2} \cdots \leftrightarrow\left\langle i_{0}, i_{1}, i_{2}, \ldots\right\rangle, \tag{2}
\end{equation*}
$$

where $\left\langle i_{0}, i_{1}, i_{2}, \ldots\right\rangle$ is the subset of indices such that $\nu_{i_{j}}=1, j \geq 0$.
Let W be the infinite set of all nonnegative integers which are the sum of distinct powers of four [1], i. e. $\{0,1,4,5,16,17,20,21,64,65,68,69,80,81 \ldots\}$. The following lemma states that every $w \in W$ can be represented in exactly one way as $w=\sum_{i=0}^{\infty} \omega_{2 i} 2^{2 i}, \omega_{i} \in G F(2)$.
Lemma 1. Suppose $w, w^{\prime} \in W$. Then $w=w^{\prime}$ if and only if $w_{2 i}=w_{2 i}^{\prime}, i \geq 0$.
The proof is based on the observation that $B(w)=\omega_{0} 0 \omega_{2} 0 \omega_{4} \ldots$ and $B\left(w^{\prime}\right)=\omega_{0}^{\prime} 0 \omega_{2}^{\prime} 0 \omega_{4}^{\prime} \ldots$ and the uniqueness of the binary representation of a nonnegative integer. One consequence of the lemma is that W with the usual definition of \leq is a totally ordered set.
Definition 1. For each $\ell \geq 0$, let W_{ℓ} be the first $2^{\ell+1}$ elements of W; that is

$$
\begin{equation*}
W_{\ell}=\left\{w \mid w=\sum_{i=0}^{\ell} \omega_{2 i} 2^{2 i}\right\} \tag{3}
\end{equation*}
$$

Note that it follows from this definition that for each $w \in W_{\ell}$ the Hamming weight of $B(w)=\omega_{0} 0 \omega_{2} 0 \ldots \omega_{2 \ell} 000 \ldots$ is at most $\ell+1$. For simplicity of notation, we use $B_{\ell}(w)=\omega_{0} \omega_{1} \omega_{2} \ldots \omega_{2 \ell} \omega_{2 \ell+1}$ instead of $B(w)$ for $w<2^{2(\ell+1)}$.

2 Definition

Let α be a primitive nth root of unity in the extension field $G F\left(2^{2(\ell+1)}\right)$ of $G F(2)$. A cyclic code of length n over $G F(2)$ is generated by a generator polynomial $g(x) \in G F(2)[x]$. The minimum distance of the cyclic code is denoted by d.

We can also describe a cyclic code by the set of zeros of $g(x)$. If R is a subset of $\{0,1,2, \ldots, n-1\}$ such that $g\left(\alpha^{v}\right)=0$ for all $v \in R$, then we shall say that R is a defining set for the cyclic code. If R is the maximal defining set for the cyclic code, we shall call it complete and denote by Z. The dimension k of a cyclic code is equal to $n-|Z|[2, \S 7.3]$.
Definition 2. For $\ell \geq 1$, consider a cyclic code of length $n=2^{2(\ell+1)}-1$ over the alphabet $G F(2)$ whose defining set $R=W_{\ell}$.

3 Dimension

A binary cyclic code must have $2 v$ in R whenever v is in R. Consider the set $2 W_{\ell}$. Any $w \in 2 W_{\ell}$ must be of the form $w=\sum_{i=0}^{\ell} \omega_{2 i} 2^{2 i+1}$ and it has the following binary representation: $B_{\ell}(w)=0 \omega_{0} 0 \omega_{2} \ldots 0 \omega_{2 \ell}$.
Lemma 2. Suppose that $s(v)=2 v(\bmod n)$. Then functions $s: W_{\ell} \rightarrow 2 W_{\ell}$ and $s: 2 W_{\ell} \rightarrow W_{\ell}$ are bijective functions.
Proof. We first observe that $s(v)$ is a cyclic right-shift function under $B_{\ell}(v)$ because $B_{\ell}(s(v))=\nu_{2 \ell+1} \nu_{0} \ldots \nu_{2 \ell}$. Set $w \in W_{\ell}$, then $B_{\ell}(w)=\omega_{0} 0 \omega_{2} 0 \ldots \omega_{2 \ell} 0$. Hence $B_{\ell}(s(w))=0 \omega_{0} 0 \omega_{2} \ldots 0 \omega_{2 \ell}$ and $s(w) \in 2 W_{\ell}$. Set $w \in 2 W_{\ell}$, then $B_{\ell}(w)=0 \omega_{0} 0 \omega_{2} \ldots 0 \omega_{2 \ell}$. Hence $B_{\ell}(s(w))=\omega_{2 \ell} 0 \omega_{0} 0 \ldots \omega_{2 \ell-2} 0$ and $s(w) \in W_{\ell}$. Combining these statements with Lemma 1 gives that $s(v)$ is the bijective function with domain W_{ℓ} and codomain $2 W_{\ell}$, and vice versa.

By extension, we will use the notation $s^{j}(v)$ to denote the j th cyclic rightshift function. That is $s^{2}(v)=s(s(v))=\nu_{2 \ell} \nu_{2 \ell+1} \nu_{0} \ldots \nu_{2 \ell-1}$, etc.
Corollary 1. $\left|W_{\ell}\right|=\left|2 W_{\ell}\right|$.
Corollary 2. $W_{\ell} \cap 2 W_{\ell}=\{0\}$, and consequently $\left|W_{\ell} \cap 2 W_{\ell}\right|=1$.
Proof. The proof uses the fact that $B(w)=\omega_{0} 0 \omega_{2} 0 \ldots \omega_{2 \ell} 0=0 \nu_{0} 0 \nu_{2} \ldots 0 \nu_{2 \ell}=$ $B(v)$ if and only if $\omega_{2 i}=\nu_{2 i}=0,0 \leq i \leq \ell$, and so $w=v=0$, where $w \in W_{\ell}$ and $v \in 2 W_{\ell}$.

Corollary 3. $\left|W_{\ell} \cup 2 W_{\ell}\right|=2\left|W_{\ell}\right|-1$.
Proof. The proof is immediate because $\left|W_{\ell} \cup 2 W_{\ell}\right|=\left|W_{\ell}\right|+\left|2 W_{\ell}\right|-\left|W_{\ell} \cap 2 W_{\ell}\right|=$ $2\left|W_{\ell}\right|-1$.

We will denote by w^{*} the maximal element in W_{ℓ} :

$$
\begin{equation*}
w^{*}=\max \left\{w \mid w \in W_{\ell}\right\} \tag{4}
\end{equation*}
$$

Since $B_{\ell}\left(w^{*}\right)=1010 \ldots 10$, we have $w^{*}=\sum_{i=0}^{\ell} 2^{2 i}$. On the other hand, $B_{\ell}\left(2 w^{*}\right)=0101 \ldots 01$, and this gives that $2 w^{*}=\sum_{i=0}^{\ell} 2^{2 i+1}$ is the maximal element in $2 W_{\ell}$.

Lemma 3. If $w \in W_{\ell}$, then $w \leq \frac{1}{3} n$.
Proof. By definition, $n=2^{2(\ell+1)}-1$. Hence we see that

$$
\begin{equation*}
3 w^{*}=w^{*}+2 w^{*}=\sum_{i=0}^{\ell} 2^{2 i}+\sum_{i=0}^{\ell} 2^{2 i+1}=\sum_{i=0}^{2 \ell+1} 2^{i}=n \tag{5}
\end{equation*}
$$

This implies that $w^{*}=\frac{1}{3} n$, which proves the lemma because $w \leq w^{*}$.
Corollary 4. If $w \in 2 W_{\ell}$, then $w \leq \frac{2}{3} n$.
Corollary 5. The maximal elements in the sets W_{ℓ} and $2 W_{\ell}$ are $w^{*}=\frac{1}{3} n$ and $2 w^{*}=\frac{2}{3} n$, respectively.
Lemma 4. The code has the complete defining set $Z=W_{\ell} \cup 2 W_{\ell}$.
Proof. Z is the union of cyclotomic cosets [2, §7.5]. The cyclotomic coset containing w consists of $w, 2 w(\bmod n), 2^{2} w(\bmod n), 2^{3} w(\bmod n), \ldots$ for binary codes. In other words, it consists of the integers $w, s(w), s^{2}(w), s^{3}(w), \ldots$ From Lemma 2, in the case where $w \in W$ we have $s^{j}(w) \in W_{\ell}$ for even values of j and $s^{j}(w) \in 2 W_{\ell}$ for odd values of j. Similarly, in the case where $w \in 2 W_{\ell}$ we have $s^{j}(w) \in W_{\ell}$ for odd values of j and $s^{j}(w) \in 2 W_{\ell}$ for even values of j. Further, from Lemma 3 and Corollary 4 we conclude that $w(\bmod n) \equiv w$ for all $w \in\left(W_{\ell} \cup 2 W_{\ell}\right)$. Finally, there is no $w \in W_{\ell}$ for which $s^{j}(w)(\bmod n) \notin\left(W_{\ell} \cup 2 W_{\ell}\right)$, and this is precisely the assertion of the lemma because $R=W_{\ell}$.

Now we are ready to estimate the dimension of the code.
Theorem 1. The dimension of the code is $k=2^{\ell+2}\left(2^{\ell}-1\right)$.
Proof. Indeed, $k=n-|Z|$. Lemma 4 gives $|Z|=\left|W_{\ell} \cup 2 W_{\ell}\right|$. From Corollary 3 we obtain $|Z|=2\left|W_{\ell}\right|-1$. By Definition 1, we know that $\left|W_{\ell}\right|=2^{\ell+1}$. Summing up, we have

$$
\begin{equation*}
k=n-|Z|=\left(2^{2(\ell+1)}-1\right)-\left(2 \cdot 2^{\ell+1}-1\right)=2^{\ell+1}\left(2^{\ell}-1\right) \tag{6}
\end{equation*}
$$

4 The BCH bound

A cyclic code of length n is a BCH code [3] of designed distance $\delta_{B C H}$ if, for some nonnegative integers a and c, where $\operatorname{gcd}(c, n)=1$, the set

$$
\begin{equation*}
S=\left\{a+i c(\bmod n) \mid 0 \leq i \leq \delta_{B C H}-2\right\} \tag{7}
\end{equation*}
$$

is a subset or equal to Z and $|S|=\delta_{B C H}-1$. This lower bound $\delta_{B C H}$ on the minimum distance is the so-called BCH bound of the cyclic code.

In this section we will examine $\delta_{B C H}$, but before we need some lemmas.
Lemma 5. Suppose $w \in Z$. Then $3 w(\bmod n) \in Z$ if and only if either $w=0$, or $w=w^{*}$, or $w=2 w^{*}$.
Proof. If $w \in Z$, then $w \in W_{\ell}$ or $w \in 2 W_{\ell}$. Therefore $B_{\ell}(w)=\omega_{0} 0 \omega_{2} 0 \ldots \omega_{2 \ell} 0$ and $B_{\ell}(2 w)=0 \omega_{0} 0 \omega_{2} \ldots 0 \omega_{2 \ell}$ for $w \in W_{\ell}$ or $B_{\ell}(w)=0 \omega_{0} 0 \omega_{2} \ldots 0 \omega_{2 \ell}$ and $B_{\ell}(2 w)=\omega_{2 \ell} 0 \omega_{0} 0 \ldots \omega_{2 \ell-2} 0$ for $w \in 2 W_{\ell}$. Since $3 w=w+2 w(\bmod n)$, $B_{\ell}(3 w)=\omega_{0} \omega_{0} \omega_{2} \omega_{2} \ldots \omega_{2 \ell} \omega_{2 \ell}$ or $B_{\ell}(3 w)=\omega_{2 \ell} \omega_{0} \omega_{0} \omega_{2} \ldots \omega_{2 \ell-2} \omega_{2 \ell}$. Finally $3 w(\bmod n) \in Z$ if and only if $3 w=0(\bmod n)$, in other words, if and only if $\omega_{2 i}=0$ or $\omega_{2 i}=1$ for $0 \leq i \leq 2 \ell$. This gives the assertion of the lemma.

Corollary 6. Suppose $w \in Z$ and $3 w \neq 0(\bmod n)$. Then there is one and only one partition $w+2 w=3 w(\bmod n)$ over Z.

Corollary 7. Suppose $w \leq n$ and $w=0(\bmod n)$. Then there are two and only two partitions $0+0=w^{*}+2 w^{*}=w(\bmod n)$ over Z.

These corollaries immediately follow from the binary representation of w, $2 w(\bmod n)$ and $3 w(\bmod n)$ and the definition of w^{*}.
Lemma 6. The $B C H$ bound of the code is $\delta_{B C H} \geq 4$.
Proof. Let $a=0$ and $c=1$. Then $S=\{0,1,2\}$ is a subset of Z for $\ell \geq 1$ and we have $\delta_{B C H} \geq 4$ by the BCH bound (7).
Lemma 7. The $B C H$ bound of the code is $\delta_{B C H}<5$.
Proof. Assume to the contrary that $\delta_{B C H} \geq 5$. It follows from (7) that $S=$ $\{a, a+c(\bmod n), a+2 c(\bmod n), a+3 c(\bmod n)\}$ is a subset or equal to Z. We will show that there is no a and c such that $|S|=4$.

Let $b=a+c(\bmod n)$ and $w=a+3 c(\bmod n)$. This means that $w=3 b-2 a$ $(\bmod n)$, so that $w+2 a=3 b(\bmod n)$. We only have the cases where $3 b \neq 0$ $(\bmod n)$ and $3 b=0(\bmod n)$.

Consider first the case $3 b \neq 0(\bmod n)$. Then $w=b$ and $2 a=2 b(\bmod n)$ by Corollary 6 implying that (a) $S=\{a, a, a, a\}$. Or $w=2 b(\bmod n)$ and $2 a=$ $b(\bmod n)$, hence $(\mathrm{b}) S=\{a, 2 a(\bmod n), 3 a(\bmod n), 4 a(\bmod n)\}$. Using Lemma 5 we deduce that $a=0$ and $S=\{0,0,0,0\}$, or $a=w^{*}$ and $S=$ $\left\{w^{*}, 2 w^{*}, 0, w^{*}\right\}$, or $a=2 w^{*}$ and $S=\left\{2 w^{*}, w^{*}, 0,2 w^{*}\right\}$.

Now suppose that $3 b=0(\bmod n)$. We apply Lemma 5 and see that this equation has three possible values of b in Z, namely $0, w^{*}$ and $2 w^{*}$.

Assume that $b=0$. Then it follows from Corollary 7 that $w=0$ and $a=0$ and S is the same as in case (a), or $w=w^{*}$ and $2 a=2 w^{*}(\bmod n)$ and $S=$ $\left\{w^{*}, 0,2 w^{*}, w^{*}\right\}$, or $w=2 w^{*}$ and $2 a=w^{*}(\bmod n)$ and $S=\left\{2 w^{*}, 0, w^{*}, 2 w^{*}\right\}$.

In case $b=w^{*}$ we have that $w=0$ and $a=0$ and $S=\left\{0, w^{*}, 2 w^{*}, 0\right\}$, or $w=w^{*}$ and $2 a=2 w^{*}(\bmod n)$ and this is similar to case (a), or $w=2 w^{*}$ and $2 a=w^{*}(\bmod n)$ and it gives case (b).

We finally consider the case where $b=2 w^{*}$. The possible values are $w=0$ and $a=0$ and $S=\left\{0,2 w^{*}, w^{*}, 0\right\}$, or $w=w^{*}$ and $2 a=2 w(\bmod n)$ and S must be as in case (b), or $w=2 w^{*}$ and $2 a=w^{*}(\bmod n)$ and this is similar to case (a).

Applying Corollary 5 , we can now make a list of all possibilities for S : $\{a, a, a, a\},\left\{\frac{1}{3} n, \frac{2}{3} n, 0, \frac{1}{3} n\right\},\left\{\frac{2}{3} n, \frac{1}{3} n, 0, \frac{2}{3} n\right\},\left\{\frac{1}{3} n, 0, \frac{2}{3} n, \frac{1}{3} n\right\},\left\{\frac{2}{3} n, 0, \frac{1}{3} n, \frac{2}{3} n\right\}$, $\left\{0, \frac{1}{3} n, \frac{2}{3} n, 0\right\},\left\{0, \frac{2}{3} n, \frac{1}{3} n, 0\right\}$, where $a \in Z$. Thus in all cases, $a=a+3 c$ $(\bmod n)$. So it follows that $|S| \leq 3$, and this completes the proof.

Theorem 2. The BCH bound of the code is $\delta_{B C H}=4$.
Proof. Lemma 6 and Lemma 7 immediately yield the theorem.

5 The van Lint-Wilson bound

We first inductively define the notation of an independent set with respect to S, as follows [4, §5]: (1) the empty set is independent with respect to S, (2) if A is independent with respect to S, and $A \subseteq S$, and $b \notin S$, then $A \cup\{b\}$ is independent with respect to S, and (3) if A is independent with respect to S and $0<c<n$, then $\{c+a \mid a \in A\}$ is independent with respect to S. The maximal size of a set which is independent with respect to Z is called the van Lint-Wilson bound $\delta_{L W}$ of a cyclic code.

We will examine $\delta_{L W}$ of the code, and this is aided by the following lemma.
Lemma 8. Suppose a is odd and c is even. Then $2^{a}+2^{c} \notin Z$.
Proof. If $w \in Z$, then $w \in W_{\ell}$ or $w \in 2 W_{\ell}$. Consequently, we can write $B_{\ell}(w) \leftrightarrow\left\langle i_{0}, i_{1}, i_{2}, \ldots\right\rangle$ where i_{j} are even if $w \in W_{\ell}$ or odd if $w \in 2 W_{\ell}$. But $B_{\ell}\left(2^{a}+2^{c}\right) \leftrightarrow\langle a, c\rangle$ with odd a and even c. Therefore $2^{a}+2^{c} \notin Z$.
Theorem 3. The van Lint-Wilson bound of the code is $\delta_{L W} \geq 2(\ell+1)$.
Proof. Since the van Lint-Wilson bound is a generalization of the BCH bound [4, $\S 5]$ and $\delta_{B C H}=4$ by Theorem 2 , we only need to show that $\delta_{L W} \geq 2(\ell+1)$ for $\ell \geq 2$. We construct the sequence $A_{0}=\emptyset, A_{1}, A_{2}, \ldots, A_{2 \ell+2}$ of subsets of $G F\left(2^{2(\ell+1)}\right)$ that are independent with respect to Z. In order to simplify the notation, we will use the index representation $\langle\ldots\rangle$ of an integer.

Let $a_{0}=0, a_{1}=n-2^{0}, a_{2}=2^{2(\ell-1)}-2^{0}, a_{3}=2^{2(\ell-2)}-2^{2(\ell-1)}, \ldots$, $a_{\ell}=2^{2}-2^{4}, a_{\ell+1}=n-2^{2}, a_{\ell+2}=2^{2(\ell-1)}-2^{0}, a_{\ell+3}=2^{2(\ell-2)}-2^{2(\ell-1)}, \ldots$, $a_{2 \ell}=2^{2}-2^{4}, a_{2 \ell+1}=n-2^{2}$ and $b_{0}=2^{1}+2^{0}, b_{1}=2^{2 \ell}+2^{1}, b_{2}=2^{2 \ell-1}+2^{0}, b_{3}=$ $2^{2 \ell-3}+2^{0}, \ldots, b_{\ell}=2^{2}+2^{1}, b_{\ell+1}=2^{2 \ell}+2^{1}, b_{\ell+2}=2^{2 \ell-1}+2^{0}, b_{\ell+3}=2^{2 \ell-3}+2^{0}$, $\ldots, b_{2 \ell}=2^{2}+2^{1}, b_{2 \ell+1}=2^{1}+2^{0}$. (Remark: $b_{j} \notin Z$ for all $0 \leq j \leq 2 \ell+1$ by Lemma 8.) Then

$$
\begin{aligned}
A_{1}= & \{\langle 0,1\rangle\}, \\
A_{2}= & \{1\rangle,\langle 1,2 \ell\rangle\}, \\
A_{3}= & \{\langle 0,2(\ell-1)\rangle,\langle 0,2(\ell-1), 2 \ell\rangle,\langle 0,2 \ell-1\rangle\}, \\
A_{4}= & \{\langle 0,2(\ell-2)\rangle,\langle 0,2(\ell-2), 2 \ell\rangle,\langle 0,2(\ell-2)\rangle,\langle 0,2 \ell-3\rangle\}, \\
\ldots & \\
A_{\ell+1}= & \{\langle 0,2\rangle,\langle 0,2,2 \ell\rangle,\langle 0,2,2(\ell-1)\rangle, \ldots,\langle 0,2,4\rangle,\langle 1,2\rangle\}, \\
A_{\ell+2}= & \{\langle 0\rangle,\langle 0,2 \ell\rangle,\langle 0,2(\ell-1)\rangle, \ldots,\langle 0,4\rangle,\langle 1\rangle,\langle 1,2 \ell\rangle\}, \\
A_{\ell+3}= & \{\langle 2(\ell-1)\rangle,\langle 2(\ell-1), 2 \ell\rangle,\langle 2 \ell-1\rangle, \ldots,\langle 4,2(\ell-1)\rangle,\langle 0,2(\ell-1)\rangle, \\
& \langle 0,2(\ell-1), 2 \ell\rangle,\langle 0,2 \ell-1\rangle\}, \\
A_{\ell+4}= & \{\langle 2(\ell-2)\rangle,\langle 2(\ell-2), 2 \ell\rangle,\langle 2(\ell-2), 2(\ell-1)\rangle, \ldots,\langle 4,2(\ell-2)\rangle, \\
& \langle 0,2(\ell-2)\rangle,\langle 0,2(\ell-2), 2 \ell\rangle,\langle 0,2(\ell-2)\rangle,\langle 0,2 \ell-3\rangle\}, \\
\ldots & \\
A_{2 \ell+1}= & \{\langle 2\rangle,\langle 2,2 \ell\rangle,\langle 2,2(\ell-1)\rangle, \ldots,\langle 2,4\rangle,\langle 0,2\rangle,\langle 0,2,2 \ell\rangle,\langle 0,2,2(\ell-1)\rangle, \\
& \ldots,\langle 0,2,4\rangle,\langle 1,2\rangle\}, \\
A_{2 \ell+2}= & \{0,\langle 2 \ell\rangle,\langle 2(\ell-1)\rangle, \ldots,\langle 4\rangle,\langle 0\rangle,\langle 0,2 \ell\rangle,\langle 0,2(\ell-1)\rangle, \ldots,\langle 0,4\rangle, \\
& \langle 1\rangle,\langle 0,1\rangle\} .
\end{aligned}
$$

It easy to see that $A_{j} \backslash\left\{b_{j-1}\right\} \subseteq Z$ for all $1 \leq j \leq 2 \ell+2$ because the elements of these sets are the sums of even powers of two, i.e. in W_{ℓ}, or a power of two (see $\langle 1\rangle$ in $A_{\ell+2}$ and $A_{2 \ell+2}$). Since the independent set $A_{2 \ell+2}$ has the cardinality $2(\ell+1)$, we have $\delta_{L W} \geq 2(\ell+1)$.
Corollary 8. The minimum distance of the code is $d \geq 2(l+1)$.

References

[1] N. G. de Bruijn, Some Direct Decompositions of the Set of Integers, Math. Comput., 18, 537-546, 1964.
[2] F. J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
[3] R. C. Bose and D. K. Ray-Chaudhuri, On a Class of Error Correcting Binary Group Codes, Inform. Contr., 3, 68-79, 1960.
[4] J.H.van Lint and R.M. Wilson, On the Minimum Distance of Cyclic Codes, IEEE Trans. on Inform. Theory, 32, 23-40, 1986.

