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Abstract. A class of binary cyclic
(
22(`+1) − 1, 2`+2(2` − 1)

)
-codes is character-

ized. The BCH bound implies that the minimum distance is greater than four for
these codes, but the van Lint–Wilson bound asserts that ≥ 2(` + 1).

1 Introduction

Every nonnegative integer can be uniquely represented in base two, namely in
the form

v = ν0 + ν12 + ν222 + ν323 + . . . (1)
with νi from the finite field GF (2). Let B(v) designate the binary representation
of v:

v ↔ B(v) = ν0ν1ν2 · · · ↔ 〈i0, i1, i2, . . . 〉, (2)
where 〈i0, i1, i2, . . . 〉 is the subset of indices such that νij = 1, j ≥ 0.

Let W be the infinite set of all nonnegative integers which are the sum of
distinct powers of four [1], i. e. {0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81 . . . }.
The following lemma states that every w ∈ W can be represented in exactly
one way as w =

∑∞
i=0 ω2i22i, ωi ∈ GF (2).

Lemma 1. Suppose w,w′ ∈ W . Then w = w′ if and only if w2i = w′2i, i ≥ 0.

The proof is based on the observation that B(w) = ω00ω20ω4 . . . and
B(w′) = ω′00ω′20ω′4 . . . and the uniqueness of the binary representation of a
nonnegative integer. One consequence of the lemma is that W with the usual
definition of ≤ is a totally ordered set.

Definition 1. For each ` ≥ 0, let W` be the first 2`+1 elements of W ; that is

W` =

{
w |w =

∑̀

i=0

ω2i22i

}
. (3)

Note that it follows from this definition that for each w ∈ W` the Hamming
weight of B(w) = ω00ω20 . . . ω2`000 . . . is at most ` + 1. For simplicity of
notation, we use B`(w) = ω0ω1ω2 . . . ω2`ω2`+1 instead of B(w) for w < 22(`+1).
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2 Definition

Let α be a primitive nth root of unity in the extension field GF
(
22(`+1)

)
of

GF (2). A cyclic code of length n over GF (2) is generated by a generator
polynomial g(x) ∈ GF (2)[x]. The minimum distance of the cyclic code is
denoted by d.

We can also describe a cyclic code by the set of zeros of g(x). If R is a
subset of {0, 1, 2, . . . , n − 1} such that g(αv) = 0 for all v ∈ R, then we shall
say that R is a defining set for the cyclic code. If R is the maximal defining set
for the cyclic code, we shall call it complete and denote by Z. The dimension
k of a cyclic code is equal to n− |Z| [2, §7.3].

Definition 2. For ` ≥ 1, consider a cyclic code of length n = 22(`+1) − 1 over
the alphabet GF (2) whose defining set R = W`.

3 Dimension

A binary cyclic code must have 2v in R whenever v is in R. Consider the
set 2W`. Any w ∈ 2W` must be of the form w =

∑`
i=0 ω2i22i+1 and it has the

following binary representation: B`(w) = 0ω00ω2 . . . 0ω2`.

Lemma 2. Suppose that s(v) = 2v (mod n). Then functions s : W` → 2W`

and s : 2W` → W` are bijective functions.

Proof. We first observe that s(v) is a cyclic right-shift function under B`(v)
because B`(s(v)) = ν2`+1ν0 . . . ν2`. Set w ∈ W`, then B`(w) = ω00ω20 . . . ω2`0.
Hence B`(s(w)) = 0ω00ω2 . . . 0ω2` and s(w) ∈ 2W`. Set w ∈ 2W`, then
B`(w) = 0ω00ω2 . . . 0ω2`. Hence B`(s(w)) = ω2`0ω00 . . . ω2`−20 and s(w) ∈ W`.
Combining these statements with Lemma 1 gives that s(v) is the bijective func-
tion with domain W` and codomain 2W`, and vice versa.

By extension, we will use the notation sj(v) to denote the jth cyclic right-
shift function. That is s2(v) = s(s(v)) = ν2`ν2`+1ν0 . . . ν2`−1, etc.

Corollary 1. |W`| = |2W`|.
Corollary 2. W` ∩ 2W` = {0}, and consequently |W` ∩ 2W`| = 1.

Proof. The proof uses the fact that B(w) = ω00ω20 . . . ω2`0 = 0ν00ν2 . . . 0ν2` =
B(v) if and only if ω2i = ν2i = 0, 0 ≤ i ≤ `, and so w = v = 0, where w ∈ W`

and v ∈ 2W`.

Corollary 3. |W` ∪ 2W`| = 2|W`| − 1.

Proof. The proof is immediate because |W`∪2W`| = |W`|+|2W`|−|W`∩2W`| =
2|W`| − 1.
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We will denote by w∗ the maximal element in W`:

w∗ = max{w |w ∈ W`}. (4)

Since B`(w∗) = 1010 . . . 10, we have w∗ =
∑`

i=0 22i. On the other hand,
B`(2w∗) = 0101 . . . 01, and this gives that 2w∗ =

∑`
i=0 22i+1 is the maximal

element in 2W`.

Lemma 3. If w ∈ W`, then w ≤ 1
3n.

Proof. By definition, n = 22(`+1) − 1. Hence we see that

3w∗ = w∗ + 2w∗ =
∑̀

i=0

22i +
∑̀

i=0

22i+1 =
2`+1∑

i=0

2i = n. (5)

This implies that w∗ = 1
3n, which proves the lemma because w ≤ w∗.

Corollary 4. If w ∈ 2W`, then w ≤ 2
3n.

Corollary 5. The maximal elements in the sets W` and 2W` are w∗ = 1
3n

and 2w∗ = 2
3n, respectively.

Lemma 4. The code has the complete defining set Z = W` ∪ 2W`.

Proof. Z is the union of cyclotomic cosets [2, §7.5]. The cyclotomic coset
containing w consists of w, 2w (mod n), 22w (mod n), 23w (mod n), . . . for bi-
nary codes. In other words, it consists of the integers w, s(w), s2(w), s3(w), . . . .
From Lemma 2, in the case where w ∈ W we have sj(w) ∈ W` for even val-
ues of j and sj(w) ∈ 2W` for odd values of j. Similarly, in the case where
w ∈ 2W` we have sj(w) ∈ W` for odd values of j and sj(w) ∈ 2W` for
even values of j. Further, from Lemma 3 and Corollary 4 we conclude that
w (mod n) ≡ w for all w ∈ (W` ∪ 2W`). Finally, there is no w ∈ W` for which
sj(w) (mod n) 6∈ (W` ∪ 2W`), and this is precisely the assertion of the lemma
because R = W`.

Now we are ready to estimate the dimension of the code.

Theorem 1. The dimension of the code is k = 2`+2(2` − 1).

Proof. Indeed, k = n−|Z|. Lemma 4 gives |Z| = |W`∪2W`|. From Corollary 3
we obtain |Z| = 2|W`|−1. By Definition 1, we know that |W`| = 2`+1. Summing
up, we have

k = n− |Z| = (22(`+1) − 1)− (2 · 2`+1 − 1) = 2`+1(2` − 1). (6)
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4 The BCH bound

A cyclic code of length n is a BCH code [3] of designed distance δBCH if, for
some nonnegative integers a and c, where gcd(c, n) = 1, the set

S = {a + ic (mod n) | 0 ≤ i ≤ δBCH − 2} (7)

is a subset or equal to Z and |S| = δBCH − 1. This lower bound δBCH on the
minimum distance is the so-called BCH bound of the cyclic code.

In this section we will examine δBCH , but before we need some lemmas.

Lemma 5. Suppose w ∈ Z. Then 3w (mod n) ∈ Z if and only if either w = 0,
or w = w∗, or w = 2w∗.

Proof. If w ∈ Z, then w ∈ W` or w ∈ 2W`. Therefore B`(w) = ω00ω20 . . . ω2`0
and B`(2w) = 0ω00ω2 . . . 0ω2` for w ∈ W` or B`(w) = 0ω00ω2 . . . 0ω2` and
B`(2w) = ω2`0ω00 . . . ω2`−20 for w ∈ 2W`. Since 3w = w + 2w (mod n),
B`(3w) = ω0ω0ω2ω2 . . . ω2`ω2` or B`(3w) = ω2`ω0ω0ω2 . . . ω2`−2ω2`. Finally
3w (mod n) ∈ Z if and only if 3w = 0 (mod n), in other words, if and only if
ω2i = 0 or ω2i = 1 for 0 ≤ i ≤ 2`. This gives the assertion of the lemma.

Corollary 6. Suppose w ∈ Z and 3w 6= 0 (mod n). Then there is one and
only one partition w + 2w = 3w (mod n) over Z.

Corollary 7. Suppose w ≤ n and w = 0 (mod n). Then there are two and
only two partitions 0 + 0 = w∗ + 2w∗ = w (mod n) over Z.

These corollaries immediately follow from the binary representation of w,
2w (mod n) and 3w (mod n) and the definition of w∗.

Lemma 6. The BCH bound of the code is δBCH ≥ 4.

Proof. Let a = 0 and c = 1. Then S = {0, 1, 2} is a subset of Z for ` ≥ 1 and
we have δBCH ≥ 4 by the BCH bound (7).

Lemma 7. The BCH bound of the code is δBCH < 5.

Proof. Assume to the contrary that δBCH ≥ 5. It follows from (7) that S =
{a, a + c (mod n), a + 2c (mod n), a + 3c (mod n)} is a subset or equal to Z.
We will show that there is no a and c such that |S| = 4.

Let b = a+c (mod n) and w = a+3c (mod n). This means that w = 3b−2a
(mod n), so that w + 2a = 3b (mod n). We only have the cases where 3b 6= 0
(mod n) and 3b = 0 (mod n).

Consider first the case 3b 6= 0 (mod n). Then w = b and 2a = 2b (mod n)
by Corollary 6 implying that (a) S = {a, a, a, a}. Or w = 2b (mod n) and 2a =
b (mod n), hence (b) S = {a, 2a (mod n), 3a (mod n), 4a (mod n)}. Using
Lemma 5 we deduce that a = 0 and S = {0, 0, 0, 0}, or a = w∗ and S =
{w∗, 2w∗, 0, w∗}, or a = 2w∗ and S = {2w∗, w∗, 0, 2w∗}.
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Now suppose that 3b = 0 (mod n). We apply Lemma 5 and see that this
equation has three possible values of b in Z, namely 0, w∗ and 2w∗.

Assume that b = 0. Then it follows from Corollary 7 that w = 0 and a = 0
and S is the same as in case (a), or w = w∗ and 2a = 2w∗ (mod n) and S =
{w∗, 0, 2w∗, w∗}, or w = 2w∗ and 2a = w∗ (mod n) and S = {2w∗, 0, w∗, 2w∗}.

In case b = w∗ we have that w = 0 and a = 0 and S = {0, w∗, 2w∗, 0}, or
w = w∗ and 2a = 2w∗ (mod n) and this is similar to case (a), or w = 2w∗ and
2a = w∗ (mod n) and it gives case (b).

We finally consider the case where b = 2w∗. The possible values are w = 0
and a = 0 and S = {0, 2w∗, w∗, 0}, or w = w∗ and 2a = 2w (mod n) and S
must be as in case (b), or w = 2w∗ and 2a = w∗ (mod n) and this is similar to
case (a).

Applying Corollary 5, we can now make a list of all possibilities for S:
{a, a, a, a}, {

1
3n, 2

3n, 0, 1
3n

}
,

{
2
3n, 1

3n, 0, 2
3n

}
,

{
1
3n, 0, 2

3n, 1
3n

}
,

{
2
3n, 0, 1

3n, 2
3n

}
,{

0, 1
3n, 2

3n, 0
}
,

{
0, 2

3n, 1
3n, 0

}
, where a ∈ Z. Thus in all cases, a = a + 3c

(mod n). So it follows that |S| ≤ 3, and this completes the proof.

Theorem 2. The BCH bound of the code is δBCH = 4.

Proof. Lemma 6 and Lemma 7 immediately yield the theorem.

5 The van Lint–Wilson bound

We first inductively define the notation of an independent set with respect to S,
as follows [4, §5]: (1) the empty set is independent with respect to S, (2) if A
is independent with respect to S, and A ⊆ S, and b 6∈ S, then A ∪ {b} is
independent with respect to S, and (3) if A is independent with respect to S
and 0 < c < n, then {c + a | a ∈ A} is independent with respect to S. The
maximal size of a set which is independent with respect to Z is called the van
Lint–Wilson bound δLW of a cyclic code.

We will examine δLW of the code, and this is aided by the following lemma.

Lemma 8. Suppose a is odd and c is even. Then 2a + 2c 6∈ Z.

Proof. If w ∈ Z, then w ∈ W` or w ∈ 2W`. Consequently, we can write
B`(w) ↔ 〈i0, i1, i2, . . . 〉 where ij are even if w ∈ W` or odd if w ∈ 2W`. But
B`(2a + 2c) ↔ 〈a, c〉 with odd a and even c. Therefore 2a + 2c 6∈ Z.

Theorem 3. The van Lint–Wilson bound of the code is δLW ≥ 2(` + 1).

Proof. Since the van Lint–Wilson bound is a generalization of the BCH bound [4,
§5] and δBCH = 4 by Theorem 2, we only need to show that δLW ≥ 2(` + 1)
for ` ≥ 2. We construct the sequence A0 = ∅, A1, A2, . . . , A2`+2 of subsets of
GF

(
22(`+1)

)
that are independent with respect to Z. In order to simplify the

notation, we will use the index representation 〈. . . 〉 of an integer.
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Let a0 = 0, a1 = n − 20, a2 = 22(`−1) − 20, a3 = 22(`−2) − 22(`−1), . . . ,
a` = 22 − 24, a`+1 = n − 22, a`+2 = 22(`−1) − 20, a`+3 = 22(`−2) − 22(`−1), . . . ,
a2` = 22−24, a2`+1 = n−22 and b0 = 21+20, b1 = 22`+21, b2 = 22`−1+20, b3 =
22`−3+20, . . . , b` = 22+21, b`+1 = 22`+21, b`+2 = 22`−1+20, b`+3 = 22`−3+20,
. . . , b2` = 22 + 21, b2`+1 = 21 + 20. (Remark: bj 6∈ Z for all 0 ≤ j ≤ 2` + 1 by
Lemma 8.) Then

A1 = {〈0, 1〉},
A2 = {〈1〉, 〈1, 2`〉},
A3 = {〈0, 2(`− 1)〉, 〈0, 2(`− 1), 2`〉, 〈0, 2`− 1〉},
A4 = {〈0, 2(`− 2)〉, 〈0, 2(`− 2), 2`〉, 〈0, 2(`− 2)〉, 〈0, 2`− 3〉},
. . .
A`+1 = {〈0, 2〉, 〈0, 2, 2`〉, 〈0, 2, 2(`− 1)〉, . . . , 〈0, 2, 4〉, 〈1, 2〉},
A`+2 = {〈0〉, 〈0, 2`〉, 〈0, 2(`− 1)〉, . . . , 〈0, 4〉, 〈1〉, 〈1, 2`〉},
A`+3 = {〈2(`− 1)〉, 〈2(`− 1), 2`〉, 〈2`− 1〉, . . . , 〈4, 2(`− 1)〉, 〈0, 2(`− 1)〉,

〈0, 2(`− 1), 2`〉, 〈0, 2`− 1〉},
A`+4 = {〈2(`− 2)〉, 〈2(`− 2), 2`〉, 〈2(`− 2), 2(`− 1)〉, . . . , 〈4, 2(`− 2)〉,

〈0, 2(`− 2)〉, 〈0, 2(`− 2), 2`〉, 〈0, 2(`− 2)〉, 〈0, 2`− 3〉},
. . .
A2`+1 = {〈2〉, 〈2, 2`〉, 〈2, 2(`− 1)〉, . . . , 〈2, 4〉, 〈0, 2〉, 〈0, 2, 2`〉, 〈0, 2, 2(`− 1)〉,

. . . , 〈0, 2, 4〉, 〈1, 2〉},
A2`+2 = {0, 〈2`〉, 〈2(`− 1)〉, . . . , 〈4〉, 〈0〉, 〈0, 2`〉, 〈0, 2(`− 1)〉, . . . , 〈0, 4〉,

〈1〉, 〈0, 1〉}.
It easy to see that Aj \{bj−1} ⊆ Z for all 1 ≤ j ≤ 2`+2 because the elements of
these sets are the sums of even powers of two, i. e. in W`, or a power of two (see
〈1〉 in A`+2 and A2`+2). Since the independent set A2`+2 has the cardinality
2(` + 1), we have δLW ≥ 2(` + 1).

Corollary 8. The minimum distance of the code is d ≥ 2(l + 1).
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