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Abstract. In this note we investigate the sharpness of the Jamison-Bruen bound
for t-fold blocking sets with respect to hyperplanes in AG(n, q).

1 The Jamison-Bruen bound

A t-fold blocking set with respect to hyperplanes in AG(n, q) is a set B of points
such that each hyperpalne intersects it in at least t points. A t-fold blocking
set of cardinality N is also referred to as an (N, t)-blocking set. The problem
of finding the minimal size of an affine blocking set with respect to hyperplanes
in AG(n, q) is interesting in its own right, but it has also a nice application to
coding theory due to the following theorem.

Theorem 1. The existence of the following objects is equivalent:

(1) an [n, k, d]q linear code with a word of maximal weight n;

(2) an (n, n− d)-arc in PG(k − 1, q) with an empty hyperplane;

(3) an affine (qk−1 − n, qk−2 − n + d)-blocking set in AG(k − 1, q).

In [4] Jamison and later on Brouwer and Schrijver [2] proved that for an
1-fold blocking set B in AG(n, q)

|B| ≥ n(q − 1) + 1. (1)

This bound was generalized by Bruen in [3]. He proved that if B is a t-fold
blocking set with respect to hyperplanes in AG(n, q) then

|B| ≥ (t + n− 1)(q − 1) + 1. (2)

It was pointed out in [2] that in case of s = 1 equality is achieved in all affine
geometies AG(n, q). To check this just observe that a blocking set in AG(n, q)
can be obtained as a ((n + t− 2)(q − 1) + 1, 1)-blocking set in a hyperplane H
(isomorphic to AG(n − 1, q)) plus q − 1 additional points – one point for each
of the q − 1 hyperplanes parallel to H.
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2 The improvement by Ball

Ball [1] has improved on Bruen’s result by proving the following theorem.

Theorem 2. For t < q a t-fold blocking set with respect to hyperplanes in
AG(n, q) has at least (t + n− 1)(q− 1) + k points provided there exists a j such
that k − 1 ≤ j < t and the binomial coefficient

(
k − n− t

j

)
6≡ 0 (mod p).

Setting k = t and j = k − 1 in Theorem 2, one gets

Corollary 3. For t < q a t-fold blocking set with respect to hyperplanes in
AG(n, q) has at least (t + n− 1)q − n + 1 points provided

( −n

t− 1

)
6≡ 0 (mod p).

Corollary 4. For t < q a t-fold blocking set in AG(2, q) has at least (t+1)q−pe

where e is maximal such that pe divides t.

3 Zanella’s result

It turns out that for fixed t and prime power q, t-fold blocking sets with large t
do not exist. Zanella proved in [5] that the bound (2) can be attained only for
values of t with

t ≤ 1
2
(n− 1)(q − 1) + 1.

Below we include a proof of a somewhat weaker version of Zanella’s result based
on the Griesmer bound.

Theorem 5. There exists no t-fold blocking set in AG(n, q) meeting the Jamison-
Bruen bound for every

t >
qn

(qn − 1)
(q − 1)(n− 1) + 1.

Proof. Assume B is an ((n + t− 1)(q − 1) + 1, t)-blocking set in AG(n, q) with
t > qn

(qn−1)(q−1)(n−1)+1. Then B can be viewed as an ((n+t−1)(q−1)+1, w)-
arc in PG(n, q) with w ≤ (n − 1)(q − 1) + 1. Such an arc is equivalent to an
[N, n + 1, d]q-code with N = (n + t− 1)(q − 1) + 1 and d = N − w ≤ t(q − 1).
By the Griesmer bound, we have

N ≥ t(q − 1) + d t(q − 1)
q

e+ . . . + d t(q − 1)
qn

e.
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Now from t > qn

(qn−1)(q − 1)(n− 1) + 1 we get

t(q − 1) + d t(q − 1)
q

e+ . . . + d t(q − 1)
qn

e ≥

t(q − 1) +
t(qn − 1)

qn
> (n + t− 1)(q − 1) + 1 = N, (3)

a contradiction.

4 Blocking sets meeting the Jamison-Bruen bound

It turns out that equality in (2) can be achieved for n = 3, t = q − 1 (cf. [1]).

Theorem 6. There exists a (q2, q−1)-blocking set in AG(3, q) for every prime
power q.

Proof. Let L and M be two skew lines in PG(3, q). Denote by x0, . . . , xq the
points on L and by y0, . . . , yq the points incident with M . Set Li = 〈xi, yi〉,
i = 0, 1, . . . , q, and let πi = 〈L, yi〉, i = 0, . . . , q, be the planes through L.

The set B = ∪q
i=0Li is a ((q + 1)2, q + 1) blocking set. Clearly B \ π0 is a

(q2, q − 1)-blocking set in PG(3, q) \ π0
∼= AG(3, q).

Deleting points from this blocking set we get blocking sets that lie close to
(2).

Corollary 7. There exists a (q2 − t(t + 1), q − t − 1)-blocking set in AG(3, q)
for every prime power q and every t = 1, . . . , q − 2.

Proof. Delete t points on each of the lines L1, . . . , Lt+1 from the proof of The-
orem 6.

The next result is better than Corollary 7 for large q.

Corollary 8. There exists a (q2 − q, q − 4)-blocking set in AG(3, q) for every
prime power q.

Proof. Delete a (q, 3)-arc (q points in general position) from the blocking set in
Theorem 6.

5 A blocking set attaining the Jamison-Bruen bound

The following result generalizes the construction of a (q2, q− 1)-blocking set in
AG(3, q). It has been pointed out by Ball that in all cases with t + n = q + 2,
Theorem 2 does not improve on (2). In fact, in this case blocking sets meeting
the Jamison-Bruen bound can be constructed.
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Theorem 9. There exists a (q2, q − n + 2)-blocking set in AG(n, q) for every
prime power q and every 3 ≤ n ≤ q + 1.

Proof. Let T be subspace of codimension 2 in Ω = PG(n, q) and denote by
H0, . . . , Hq the hyperplanes through T in Ω. Fix q + 1 points in T that are in
general position1, a normal rational curve, say. Let x0, . . . , xq be these q + 1
points. In each of the hyperpalnes Hi select a line meeting T in xi. Now the
set

B = ∪q
i=1(Li \ xi)

is a blocking set in Ω \H0
∼= AG(n, q).

We have to check that every hyperplane different from H0 is blocked at least
q − n + 2 times. For the hyperplanes through T this is obvious since all they
contain q points from B. A hyperplane H that does not contain T meets in a
subspace of codimension 3 contained in T . Such a subspace contains at most
n− 1 of the points xi. Hence meets at least q − n + 2 of the lines L1, . . . , Lq in
points different from x1, . . . , xq.

6 Other blocking sets of small cardinality

The folowing theorem produces sometimes blocking sets with cardinality close
to the lower bound.

Theorem 10. If there exists a (N,w)-arc in PG(n − 1, q) then there exists a
(qN, N − w)-blocking set in AG(n, q).

Proof. Choose N lines L1, . . . , LN in PG(n, q) such that the set of points

{Pi = Li ∩H∞ | i = 1, . . . , N}

forms an (N, w)-arc in the (n− 1)-dimensional projective space at infinity H∞.
The set of points B on these lines in the affine space AG(n, q) = PG(n, q) \H∞
is the desired blocking set.

Another good constructions comes from the blocking sets constructed in
Theorem 9.

Theorem 11. For every s = 0, 1, . . . , q − 1 − n, there exists an affine (q2 −
s(n− s + 2), q − (n− 2 + s))-blocking set in AG(n, q).

Proof. Start with a blocking set of the type described in Theorem 9. It consists
of the points of q mutually skew lines in AG(n, q) meeting the hyperplane at
infinity in a q-arc. Remove n−2+s points from each of the lines L1, . . . , Ls. Now
it easily checked that the obtained blocking set has the desired parameters.

1no u + 2 points lie in a subspace of dimension u
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Let us note that for s = 0 and s = q + 1− n, we get blocking sets meeting
(2).

Ball proved that for double blocking sets the lower bound given by Theo-
rem 2 is attained. The problem of finding the minimal size of a triple blocking
set in AG(n, q) stays open. By Theorem 10, we get blocking sets of size (n+2)q,
while the lower bound is (n + 2)q − n − 1 or (n + 2)q − n + 1 depending on
whether

(−n
t−1

)
is 0 modulo the characteristic of the field. The table below gives

the best known triple blocking sets for small fields and small dimensions. The
lower bounds are obtained by (2) or Theorem 2.

Bounds for 3-fold blocking sets in AG(n, q), n = 3, 4, 5.

AG(3, q) AG(4, q) AG(5, q)
q LB UB Comment LB UB Comment LB UB Comment
4 16 16 Thm 6
5 23 23 Cor 7 25 25 Thm 6
7 33 35 Thm 10 39 41 Thm 11 45 45 Thm 11
8 36 40 Thm 10 44 48 Thm 10 52 54 Thm 11
9 41 45 Thm 10 51 54 Thm 10 57 63 Thm 10
11 53 55 Thm 10 63 66 Thm 10 73 77 Thm 10
13 63 65 Thm 10 75 78 Thm 10 87 91 Thm 10
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