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Abstract. The problems of writing data and error correction for flash memories
are discussed.

1 Introduction

Nonvolatile memory is computer memory that maintains stored information
without a power supply. With the rise of portable electronic devices like cell
phones, mp3 players, digital cameras, and PDAs, nonvolatile memory is increas-
ingly important. Flash memory is currently the dominant nonvolatile memory.
It is cheap because it does not contain any moving parts, consumes less power,
and can be electrically programmed and erased with relative ease. Reading and
writing are very fast (∼ 100 times faster than disk).

Flash memory consists of cells that store one or more bits by electrical
charge of two or more voltage levels. The cells are organized in blocks. Each
block stores ∼ 512 KB. Flash memory has two very specific features:

• The voltage of the charge can easily be increased, but can only be de-
creased by an erasure operation. Only whole blocks can be erased.

• Erasures are very slow. Each block has a limited number of erase cycles it
can handle. After 10,000 - 100,000 erasures, the block cannot be reliably
used.

Most recently used flash memory stores 1 or 2 bits per cell (see Figure 1) but
there are proposals for up 8 bits (i.e. 256 voltage levels).

Physical characteristics of flash memory, namely impossibility to decrease
the voltage only in a cell results in asymmetry both in reading and writing
processes. This leads to two main problems concerning flash memories

(R) Development of suitable error correcting codes. Errors occur during the
process of reading are with limited magnitude and in one dominant direc-
tion (the ”read voltage level” is less than the actual one). This is due to
the natural electrons’ leaking out and the 2D intersymbol interference.
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(W) Development of methods for writing in (re-programming) cells with as
minimum as possible erasures (WOM codes, floating codes, flash code,
rewriting codes, etc.).

For solving problem (R), that is, for correcting asymmetric errors, con-
ventional (symmetric) error correcting codes as BCH [7, 9], Reed-Solomon [3],
LDPC codes [8] was first used. Later codes over ring Zq of integers modulo
q specially constructed for correcting asymmetric errors have been proposed.
Cassuto et al. in [2], Klove et al. in [4], [5], etc., have done thorough study of
q-ary codes for asymmetric error.

Figure 1: Left:The voltage distribution in four level cell. Right: A q-ary asymmetric
1-limited-magnitude error channel. [6]

In Section 2 we give necessary definitions. A new general construction
of single asymmetric limited magnitude error correcting integer codes will be
presented in Section 3. Conclusion remarks are given in Section 4.

2 Limited magnitude error-correcting codes

2.1 Notations and definitions

Asymmetric error correcting codes have a long history. First they were con-
sidered in the middle of sixties by Varshamov and Tenengolz [11]. In 1973
Varshamov [12] introduced a q-ary asymmetric channel. Multilevel flash mem-
ories renew interest in codes correcting asymmetric errors. The q level voltage
charge in a cell are well describe by elements of the ring Zq of integers modulo
q. At ACCT’02 in 2002 R. Ahlswede, H. Aydinian and L. Khachatrian [1] in-
troduced a q-ary asymmetric channel that slightly differ from the Varshamov’s
channel. It is described as follows.
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LetA be an alphabet of size q, for exampleA = GF (q) or Zq. Consider codes
of block length n, that is, subsets C ⊂ An. Let a codeword x = (x1, x2, . . . , xn)
be sent through a channel or stored in a memory. During transmission or in
the process of reading from the memory x is transformed into y = x+e, where
e = (e1, e2, . . . , en) ∈ An is called an error vector.

Definition 1. An error vector e = (e1, e2, . . . , en) is called a t-asymmetric
λ-limited-magnitude error if wt(e) = |{i : ei 6= 0}| ≤ t and 0 ≤ ei ≤ λ, for
all i = 1, 2, . . . , n. A code C is called a t-asymmetric λ-limited-magnitude
error correcting code if it can correct all t-asymmetric λ-limited-magnitude
errors.

Let E(λ, n, t) denote the set of all possible t asymmetric λ-limited-magnitude
error vectors of length n over A. Its number of elements is

|E(λ, n, t)| =
t∑

i=1

(
n

i

)
λi.

Let A = Zq. Herein, a q-ary integer code of length n with parity check
matrix H ∈ Zr×n

q , is referred to be the subset of Zn
q , defined by

C(H,d)={c ∈ Zn
q | cHT = d (mod q)}

where d ∈ Zr
q. If d = 0 the code is a linear code over Zq. We will write C(H),

or only C if there is no possibility for ambiguity.

Proposition 1. The code C(H,d) is a t-asymmetric λ-limited-magnitude error
correcting code if syndromes of all elements of E(λ, n, t) are distinct, that is,
all the vectors of the set

{
eHT | e ∈ E(λ, n, t)

}

are distinct.

Proposition 2 (Hamming bound). If C(H) is a q-ary t-asymmetric λ-limited-
magnitude error correcting code then

qr ≥
t∑

i=0

(
n

i

)
λi. (1)

Without loss of generality we shall assume that d = 0 ∈ Zr
q.

Definition 2. A q-ary t-asymmetric λ-limited-magnitude error correcting code
C(H,d) of block length n is called perfect, when we have equality in (1).

The case r = 1, i.e., when H is a row of length n, is mainly discussed in the
literature.



200 ACCT 2012

2.2 Several proposed q-ary codes

In [2] Cassuto et al. describe a general method of constructing t-asymmetric
λ-limited-magnitude error correcting codes from codes correcting symmetric
errors.

Recently T. Klove et al. in [4] and [5] have done thorough study of t-
asymmetric λ-limited-magnitude error correcting codes over Zq. Their study is
based on the fact that the discussed coding problems can be reformulated and
solve as problems in number theory. In the cited papers the notation Bt[λ](q)
is used, or just Bt[λ] when q is known from the context. Namely, Bt[λ](q) is
defined as a set Bt[λ](q) = {b1, b2, . . . , bn} such that the set

eBt[λ](q) = { e1b1 + e2b2 + · · ·+ enbn | e ∈ E(λ, n, t)}
consists of distinct elements of Zq, i.e., modulo q. In these papers classes of
codes correcting t = n and t = n − 1 asymmetric λ-limited-magnitude errors
are proposed. But the most attention was paid to the case t = 1, i.e., the set
B1[λ](q). The Hamming bound for such codes gives q ≥ 1 + λn.

Define Mλ(q) to be the maximal size of a B1[l](q) set. In [4] it has been
shown that for odd values of q we have

Mλ(q) =
q − 1

2
− ωq

2

where ωq is the number of the cyclotomic cosets of odd size. In [5] M2(q) and
bounds for M3(q) and M4(q) are determined.

In [5] a perfect B1[λ](p) sets for a class of primes p is described. Also some
results about B1[λ](q), λ = 3, 4, are obtained. Unfortunately theoretical results
gives good codes for very large values of q. Optimal for codes over reasonable
large alphabets are found by computer search in the case t = 2 and t = n − 2
for small n.

3 A new construction of single asymmetric limited
magnitude codes

In the following Theorem we propose a construction of a single asymmetric
2-limited-magnitude error correctable code.

Proposition 3. A 1 asymmetric 2-limited-magnitude error correctable code C
of length n over Zq has the following parity-check matrix H

• H = (1, 3, 5, . . . , n− 1, n + 3, n + 5, . . . , 2n + 1), where q = 2n + 2 and n
is even

• H = (1, 3, 5, . . . , n− 3, n + 3, n + 5, . . . , 2n + 1), where q = 2n + 4 and n
is odd
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Remark. In the case when n is even the code is quasi perfect - the exceeding
is 1.

Proof. Here we are going to prove the case when n is even and q = 2n+2. The
proof when n is odd is analogous.

To show that a code C with parity-check matrix H = (1, 3, 5, . . . , n− 1, n +
3, n + 5, . . . , 2n + 1) is 1 asymmetric 2-limited-magnitude error correctable it is
enough to prove that all the elements in the set H1 = 2H mod (2n + 2) are
distinct and H ∩H1 6= ∅. We have

2H = (2, 6, 10, . . . , 2n− 6, 2n− 2, 2n + 6, 2n + 10, . . . , 4n− 2, 4n + 2)

and
H1 = (2, 6, 10, . . . , 2n− 6, 2n− 2, 4, 8, . . . , 2n− 4, 2n).

It is not so difficult one to see that all the elements in H1 are distinct.
Moreover, the elements of H1 are even, while the elements of H are odd. So we
have H ∩H1 6= ∅. With that the proof is completed.

We would like to note that the construction in Proposition 3 gives codes
over Zq, q = 2n + 2, that cannot be obtained by the results in [5]

4 Conclusions

In this paper, we showed a construction of a single asymmetric 2-limited mag-
nitude error correctable code. For some parameters, the codes we obtained by
this construction are optimal. One can see that we only consider the case of
single error and small magnitude. Actually, it is very difficult to obtain theo-
retical results for multiple errors and higher magnitude. On that we will focus
for our future research.
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