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Proper integers for search with a lie
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Abstract. In this note we consider nonadaptive search with a lie for an unknown
element from the set A = {1, 2, 3, . . . , 2k}. The question sets are all subsets of A of
weight S for some positive integer S. A positive integer S is called proper if one can
find the unknown element with minimum possible number of questions. We show
that the problem of finding all proper S is connected to one error-correcting codes
with 2k codewords. In particular we show that when using Hamming code of length
n = 2t−1 for t even there exist proper integers Smin and Smax such that S is proper
if and only if Smin ≤ S ≤ Smax.

1 Introduction

Let A = {1, 2, 3, . . . , 2k} and x ∈ A be unknown element. To find x we can ask
questions whether x is an element of a subset B of A where, for some positive
integer S, the sum of elements of B equals S. We consider nonadaptive search,
i.e. we ask all questions simultaneously and allow at most one lie in the answers
received. Firstly, we wish to find the minimum number of questions needed to
find x. It is straightforward that this minimum is equal to the minimum value of
n for which there exists a binary code of length n, cardinality 2k and minimum
distance 3. Second, when this n is found, we want to determine all S for
which there exists a collection B1, B2, . . . , Bn of subsets of A of weight S that
determines x. Search with sets of given sum is considered in [3, 5]. For other
search problems the reader is referred to [1, 2, 4].

We say that a vector (v1, v2, . . . , v2k) is characteristic vector for a subset B
of A if vi = 1 when i ∈ B and vi = 0 otherwise. An n × 2k matrix G is called
characteristic matrix for a collection B1, B2, . . . , Bn of subsets if the rows of G
are all characteristic vectors of B1, B2, . . . , Bn.

Let n be the minimum number of questions needed to find x. Suppose there
exists a collection B1, B2, . . . , Bn of question sets of weight S that determines
x. By asking whether x belongs to Bi for i = 1, 2, . . . , n we obtain as answers
a sequence of ”yes” and ”no” of length n. Note also that if the vector Vi is the
i−th column of the characteristic matrix for this collection, then the element
i gets as answer a binary vector V (1 meaning ”yes” and 0 meaning ”no”)
of length n and d(V, V t

i ) ≤ 1 . Therefore, if the unknown element can be
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found by the collection B1, B2, . . . , Bn then the columns of the corresponding
characteristic matrix form a binary one error-correcting code. Such a matrix is
called proper matrix of weight S. Note that if G is a proper matrix of weight S
then

G(1, 2, 3, . . . , 2k)t = S(1, 1, 1, . . . , 1)t.

Let V = (v1, v2, . . . , vn)t be binary vector column of length n. Denote by
π the cyclic shift of V by one position, i.e. π(V ) = (v2, v3, . . . , vn, v1)t. It
is well known that π partitions the set of all binary vectors of length n into
orbits and the length of each orbit is a divisor of n. Also, the elements in
one and the same orbit have equal weights. If the length of the orbit con-
taining V where wt(V ) = w equals l then call the matrix with columns
V, π(V ), π2(V ), . . . , πl−1(V ) (not necessarily in this order) orbit matrix of weight
w and length l. Denote such matrix by Cw,l. It is easy to see that n divides lw

and there are
lw

n
ones in every row of Cw,l. The matrix obtained from Cw,l by

interchanging 0 and 1 is denoted by Cw,l and has weight n− w.

2 Using binary Hamming code

Consider one error-correcting cyclic code C of length n containing all-one vector.
All codewords split into orbit matrices with respect to cyclic shift. Moreover
if Cw,l is an orbit matrix of codewords then Cw,l is also an orbit matrix of
codewords. In particular we consider an [n = 2t− 1, k = 2t− t− 1, 3] Hamming
code.

Next Lemma shows how, using all orbit matrices of C, one can construct a
proper matrix.

Lemma 1. Let C1, C2, . . . , Cm be all orbit matrices of C such that for any
i, 1 ≤ i ≤ m, Ci is also from this collection. The matrix G = C1C2 . . . Cm is
proper one.

Proof: First note that, since n is odd, for all w we have that w 6= n − w.
Hence Cw,l and Cw,l are distinct matrices.

Therefore it suffices to show that Cw,l and Cw,l add one and the same amount
in the scalar product of every row of G with (1, 2, . . . , 2n). Let the first column
of Cw,l be on position p and the first column of Cw,l be on position q. Using

that Cw,l and Cw,l are complementary to each other it is easy to see that the
amount added to the scalar product of each row with (1, 2, . . . , 2k) equals

p + (p + 1) + · · ·+ (p + l − 1) + (q − p)
l(n− w)

n
=

l(l − 1)
2

+ ql − (q − p)
lw

n
.
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This completes the proof. ¦
Remark 1. Note that Lemma 1 is true for any collection D1, D2, . . . , Ds

where for any i = 1, 2, . . . , s the columns of Di are any permutation of the
columns of several orbit matrices and Di is also from this collection.

Let H1 be submatrix of a matrix G. If H2 is a matrix having the same
dimensions as H1 then denote by G(H1 → H2) the matrix obtained from G by
replacing H1 by H2. The next lemmas shows how, given a proper matrix, one
can obtain new proper matrices by transformations of the type H1 → H2.

Lemma 2. Consider proper matrix G and let Cp,t and Cq,h be neighboring
orbit matrices in G. Then G1 = G(Cp,tCq,h → Cq,hCp,t) is a proper matrix of
weight wt(G1) = wt(G) + th(p−q)

n .
Remark 2. Lemma 2 is applicable not only for orbit matrices but in more

general situation. Let C1 and C2 be neighboring matrices in G. If all rows of
C1 contain one and the the same number of 1’s and all rows of C2 also contain
one and the same number of 1’s then G1 = G(C1C2 → C2C1) is proper matrix.
The weight of G1 depends on the size of C1 and C2 and the number of 1’s in
each row.

Lemma 3. Let V be a vector-column of weight w and let

Cw,l =
(
V π(V )π2(V ) . . . πl−1(V )

)

be orbit matrix of weight w and length l. Also, set

Tw,n−w =
(
V V π

(
V

)
π

(
V

)
. . . πl−1

(
V

)
πl−1

(
V

))

and Tn−w,w = Tw,n−w.

a) If G is a proper matrix having Cw,l and Cw,l as neighboring matrices then

G1 = G
(
Cw,lCw,l → Tw,n−w

)
is proper and wt(G1) = wt(G)+(2w−n)

l(l − 1)
2n

;

b) Consider a proper matrix G having Tw,n−w as submatrix. The matrix

G2 = G (Tw,n−w → Tn−w,w) is proper and wt(G2) = wt(G) + (2w − n)
l

n
.

It follows from Lemma 1 that the maximal value of Smax is obtained when
the orbit matrices are in increasing order of their weights (see also [3]). By
ordering orbit matrices in decreasing order of their weights one finds the value
of Smin.

As shown in [5] when using [7, 4, 3] Hamming code not all integers in the
interval [Smin = 57, Smax = 79] are proper.
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Theorem 1. For the binary Hamming code of length n = 2t − 1, t even,
all integers in the interval [Smin, Smax] are proper ones.

Sketch proof. According to Lemma 1 we order the orbit matrices in
increasing order of their weights and get a proper matrix G of weight Smax.
Note that if G is a proper matrix of weight w then G is also a proper matrix
of weight 2k−w. In particular Smax +Smin = 2k. Therefore it suffices to prove
that there exists a proper matrix of weight w for w ∈ [2k−1, Smax]. The main
idea is by using Lemma 2 and Lemma 3 to manipulate the orbit matrices from
G in order to get a proper matrix of desired weight.

For example, to obtain a proper matrix of weight Smax − 1 we use the
assertions of Lemma 1, Lemma 2 and the observation from Remark 1 and
remark 2. According to Lemma 1 the matrix G = C0C3,1C3,2 . . . C3,r . . . Cs is
proper of weight Smax. Take 2t−1

3 codewords V1, V2, . . . V 2t−1
3

of weight 3 with

sum equals to all one vector (it is not difficult to be seen that such codewords
exist). According to Remark 2 there exists a proper matrix G of weight Smax

of the form G = V t
0 V t

1 . . . V t
2t−1

3

. . . where V0 is the zero vector. It is clear now

that G1 = V t
1 . . . V t

2t−1
3

V t
0 . . . is a proper of weight Smax − 1.

Using Lemma 2 and Lemma 3 in a proper way one can find a proper matrix
G of weight w for any w ∈ [2k−1, Smax].
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