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Abstract.The focus in this work is on quadratic residue codes over the ring F2+vF2.
We define these codes in terms of their idempotent generators and show that these
codes share the properties analogous to that of quadratic residue codes over finite
fields. We study Euclidean and Hermitian self-dual families of codes as extended
quadratic residue codes over F2 + vF2. Further, we obtain two optimal self-dual
codes from this family.

1 Introduction

Quadratic residue codes fall into the family of BCH codes and have proven
to be a promising family of cyclic codes. Pless and Qian studied quaternary
quadratic residue codes(over the ring Z4) and some of their properties in [5].
Recently, Taeri considered quadratic residue codes over the ring Z9 in [7]. Our
aim in this paper is to work on quadratic residue codes over the ring F2 + vF2

which is isomorphic to F2 × F2. Codes over F2 + vF2 were first introduced by
Bachoc in [1] together with a new weight. They are shown to be connected to
lattices and have since generated interest among coding theorists. For some of
the works in the literature about these codes we refer the readers to [1], [2], [3]
and [4]. Recently, Zhu et. al. considered the structure of cyclic codes over
F2 + vF2 in [8]. We will first give some preliminaries about the ring F2 + vF2

and codes over F2 + vF2 in section 2. In section 3, quadratic residue codes
over the ring F2 + vF2 are defined and it is shown that they share the same
general properties with quadratic residue codes over fields. In section 4, we
obtain Euclidean self-dual codes for p = 8r − 1 and Hermitian self-dual codes
for p = 8r + 1 as the extended quadratic residue codes over F2 + vF2. The
binary images of these codes are also described.

2 Preliminaries

The ring F2 + vF2 = {0, 1, v, 1 + v} is a commutative ring of order 4 and char-
acteristic 2, with the restriction v2 = v. It has two maximal ideals {0, v} and
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{0, 1 + v}. So, it is not a local ring. A code C of length n over F2 + vF2 is an
(F2 + vF2)-submodule of (F2 + vF2)

n. An element of C is called a codeword of
C. A generator matrix of C is a matrix whose rows generate C. The Hamming
weight of a codeword is the number of non-zero components. The Lee weight
is defined as wL (0) = 0, wL (1) = 2, wL (1 + v) = 1 = wL (v) and the following
Gray map is a linear isometry;

ϕ : F2 + vF2 → F2
2

a + bv 7→ (a, a + b) .

It is easily observed that the ring F2 + vF2 is isomorphic to the ring F2 × F2.
In [1], Bachoc defined the following weight on F2 + vF2:

wB (0) = 0, wB (1) = 1, wB (1 + v) = 2, wB (v) = 2.

The weight of a codeword is the sum of the weights of its components. The
minimum Hamming, Lee and Bachoc weights, dH , dL and dB of C are the
smallest Hamming, Lee and Bachoc weights among the non-zero codewords
of C, respectively. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two
elements of (F2 + vF2)

n. We consider two inner products, namely, the Euclidean
inner product 〈x, y〉E =

∑
xiyi and the Hermitian inner product 〈x, y〉H =∑

xiyi where 0 = 0, 1 = 1, v = 1 + v and 1 + v = v. The dual code C⊥ of C
with respect to the Euclidean inner product is defined as

C⊥ = {x ∈ (F2 + vF2)
n | 〈x, y〉E = 0 for all y ∈ C}

and the dual code C∗ with respect to the Hermitian inner product of C is
defined as

C∗ = {x ∈ (F2 + vF2)
n | 〈x, y〉H = 0 for all y ∈ C} .

C is Euclidean self-dual if C = C⊥ and Hermitian self-dual if C = C∗. The
following theorems, taken from [8] characterize the structure of cyclic codes
over the ring F2 + vF2:
Theorem 1. [8] For any cyclic code C of length n over F2 + vF2, there is
a unique polynomial g (x) such that C = (g (x)), and g (x) | xn − 1, where
g (x) = g1 (x) + v (g1 (x) + g2 (x)).
Theorem 2. [8] Every ideal of Rn = (F2 + vF2)[x]/(xn − 1) is principal.
Theorem 3. [8] If n is odd then every cyclic code over F2 + vF2 has a unique
idempotent generator, i.e., it has a generator a(x) ∈ Rn such that a(x)2 = a(x).

In the sequel we let p ≡ ±1 (mod 8) and Rp := (F2 + vF2) [x] (xp − 1) .
Lemma 1. {(1 + v) f + vh | f and h are idempotents in F2 [x] / (xp − 1)} is the
set of all idempotents in Rp .
Theorem 4. Any cylic code C of length p over F2+vF2 has a unique idempotent
generator of the form (1 + v) f + vh where p is an odd prime and f and h are
idempotents in F2 [x] / (xp − 1).
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3 Quadratic residue codes over F2 + vF2

We will use idempotents to describe quadratic residue codes over F2 + vF2. For
the rest of this work e1(x) =

∑
i∈Qp

xi and e2(x) =
∑

i∈Np

xi, where Qp denotes the

set of quadratic residues modulo p and Np denotes the set of quadratic non-
residues modulo p and h = 1+e1 +e2 is the polynomial that corresponds to the
all 1-vector of length p. Let a be a non-zero element of Fp, the map µa : Fp → Fp

is defined as µa (i) = ai (mod p). It is easy to see that µa (fg) = µa (f) µa (g)
for polynomials f and g in Rp.

3.1 Case I

If p = 8r − 1 then e1 and e2 are generating idempotents of
[
p, p+1

2

]
binary

quadratic residue codes so e1e2 = h. In the following, we define (F2 + vF2)-QR
codes and investigate their properties.

Definition 1. If p = 8r−1 let Q1 = ((1 + v) e1 + ve2), Q2 = ((1 + v) e2 + ve1)
and Q′

1 = ((1 + v) (1 + e2) + v (1 + e1)), Q′
2 = ((1 + v) (1 + e1) + v (1 + e2)).

These four codes are called quadratic residue codes over F2 + vF2 of length p.

Theorem 5. With the notation as in the above definition, the following hold
for (F2 + vF2)-QR codes:

a) Q1 and Q2 are equivalent and Q′
1 and Q′

2 are equivalent;
b) Q1 ∩Q2 = (h) and Q1 + Q2 = (F2 + vF2) [x] / (xp − 1) where h = 1 + e1 + e2

the all one vector;
c) |Q1| = 4(p+1)/2 = |Q2| ;
d) Q1 = Q′

1 + 〈h〉 , Q2 = Q′
2 + 〈h〉 ;

e) |Q′
1| = 4(p−1)/2 = |Q′

2| ;
f) Q′

1 and Q′
2 are self-orthogonal and Q⊥

1 = Q′
1 and Q⊥

2 = Q′
2;

g) Q′
1 ∩Q′

2 = {0} and Q′
1 + Q′

2 = 〈1 + h〉

3.2 Case II

If p = 8r + 1 then e1 and e2 are generating idempotents of
[
p, p−1

2

]
binary

quadratic residue codes so e1e2 = 0.

Definition 2. If p = 8r + 1 let Q1 = ((1 + v) (1 + e1) + v (1 + e2)), Q2 =
((1 + v) (1 + e2) + v (1 + e1)), Q′

1 = ((1 + v) e2 + ve1), Q′
2 = ((1 + v) e1 + ve2).

These four codes are called quadratic residue codes over F2 + vF2 of length p.

Theorem 6. With the notation as in the above definition, the following hold
for (F2 + vF2)-QR codes:
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a) Q1 and Q2 are equivalent and Q′
1 and Q′

2 are equivalent;
b) Q1 ∩Q2 = (h) and Q1 + Q2 = (F2 + vF2) [x] / (xp − 1) where h = 1 + e1 + e2

the all one vector;
c) |Q1| = 4(p+1)/2 = |Q2| ;
d) Q1 = Q′

1 + 〈h〉 , Q2 = Q′
2 + 〈h〉 ;

e) |Q′
1| = 4(p−1)/2 = |Q′

2| ;
f) Q⊥

1 = Q′
2 and Q⊥

2 = Q′
1;

g) Q′
1 ∩Q′

2 = {0} and Q′
1 + Q′

2 = 〈1 + h〉

4 Extended quadratic residue codes and binary
images

In this section, we define extended quadratic residue codes over F2 + vF2. Fur-
ther, we provide two optimal self-dual codes as applications to the main the-
orems. The extended code of a code C over F2 + vF2 will be denoted by C,
which is the code obtained by adding an overall parity check with respect to
the Euclidean product to each codeword of C.

Theorem 7. Suppose p = 8r−1 and Q1, Q2 are F2+vF2-QR codes in Theorem
5. Then Q1 and Q2 are self-dual.

Example 1. For p = 7 we get the Euclidean self-dual code Q1 with dL

(
Q1

)
=

4 = dH

(
Q1

)
so it corresponds to [16, 8, 4] optimal self-dual binary code and

dB

(
Q1

)
= 7. Q1 which is generated by the idempotent e = (1 + v)

(
x + x2 + x4

)
+

v
(
x3 + x5 + x6

)
in R7.

A self-dual code is called Type IV if all the Hamming weights are even, a
binary code is called even if all the weights are even.

Proposition 1. [1] [3] If C = (1 + v) C1⊕vC2 then C is a Euclidean self-dual
if and only if C1 and C2 are binary self-dual codes. C = (1 + v) C1 ⊕ vC2 is
Euclidean Type IV self-dual if and only if C1 = C2.

Proposition 2. [1] [3] If C = (1 + v) C1⊕vC2 then C is a Hermitian self-dual
if and only if C1 = C⊥

2 . C = (1 + v) C1 ⊕ vC⊥
1 is Hermitian Type IV self-dual

if and only if C1 and C⊥
1 are even codes.

The following gives an upper bound on the distances of Hermitian self-dual
codes.

Theorem 8. [1] Let C be a Hermitian self-dual code of length n over F2× F2

then wB (C) ≤ 2 ([n/3] + 1).
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Codes that meet this bound are called extremal codes and Bachoc has shown
that they correspond to extremal modular lattices. In the next theorem we
would like to introduce another family of Hermitian self-dual codes by using
quadratic residue codes:

Theorem 9. Suppose p = 8r+1 and Q′
1, Q

′
2 are F2+vF2-QR codes in Theorem

3.2. Then Q′
1 + 〈v〉, Q′

2 + 〈v〉, Q′
1 + 〈1 + v〉 and Q′

2 + 〈1 + v〉 are Hermitian
self-dual codes of length p where v denotes the polynomial vh which corresponds
to all-v vector and 1 + v denotes the polynomial (1 + v) h which corresponds to
all-(1 + v) vector.

In [2] it is proven that there are no extremal codes for the lengths greater
than 10, a self-dual code is called optimal if it has the best possible distance.
Betsumiya et. al. obtained unique optimal self-dual codes for lengths 17 and
18 which are obtained by quadratic residue codes in a different way in the next
examples:

Example 2. For p = 17, the code Q′
1+〈v〉 is the unique optimal Hermitian self-

dual code of length 17 with dB (Q′
1 + 〈v〉) = 10 and Bachoc weight enumerator

1 + 187z10 + 1156z12 + 2924z14 + 10030z16 + 18513z18 + 27744z20

+29954z22 + 23188z24 + 12019z26 + 850z30 + 85z32 + z34.

Example 3. For p = 17, the extended quadratic residue code Q1 is the unique
optimal Hermitian self-dual code of length 18 with dB

(
Q1

)
= 12 and Bachoc

weight enumerator

1 + 1734z12 + 1836z14 + 13158z16 + 23869z18 + 46818z20 + 55080z22

+57324z24 + 37026z26 + 18054z28 + 6324z30 + 756z32 + 153z34 + 2z36

dH

(
Q1

)
= 6 = dL

(
Q1

)
and Q1 is an optimal Hermitian Type IV self-dual code

of length 18 as given in [4].

Example 4. For p = 23, the extended quadratic residue code Q1 is Euclidean
self-dual code with dB

(
Q1

)
= 14, dH

(
Q1

)
= 8 = dL

(
Q1

)
and Lee weight

enumerator

1 + 1518z8 + 5152z12 + 577599z16 + 3910368z20 + 7787940z24

+3910368z28 + 577599z32 + 5152z36 + 1518z40 + z48.

Theorem 10. Suppose p = 8r+1 and Q1, Q2 are F2+vF2-QR codes in Theorem
6. Then Q1 and Q2 are Hermitian self-dual codes.

We finish this section with the following theorem describing the duality
relation between the extended quadratic residue codes:
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Theorem 11. Suppose p = 8r+1 and Q1, Q2 are F2+vF2-QR codes in Theorem
6. Then the Euclidean dual of Q1 is Q2 and the Euclidean dual of Q2 is Q1.

Theorem 12. The Gray images of the extended quadratic residue codes over
F2 + vF2 are self-dual binary codes if p = 8r − 1 and formally self-dual binary
codes if p = 8r + 1.
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