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Abstract. In this paper we construct an ensemble of regular generalized quasi-
cyclic LDPC codes, which are based on permutation matrices. For the resulting
code construction the condition of absence of cycles of the length 4 is proved. The
results of the received code constructions are presented for the iterative algorithm
Sum-Product when the codeword is transmitted over channel with additive Gaussian
white noise (AGWN).

1 Introduction

R. Gallager was the first to describe pseudo-random code construction with low-
density parity-check (LDPC codes) and suggested the algorithm of generation
of the check matrix H of these codes [1].

It is often comfortable to consider the matrix H of the LDPC code as
Tanner’s graph [2], where the connected symbolic and code vertices are used
for the presentation of the rows and columns of H .

One of the most important characteristics of LDPC code is the absence of
the cycle of a certain length. The cycle of the length 4 can be understood as
the formation in check matrix a rectangle, which vertices are ones. The absence
of the cycle of the length 4 can be defined with the help of scalar product of all
rows (or columns) of the check matrix. If every pairwise scalar product of all
rows (or columns) of the check matrix is less than 1, that means the absence
of the cycle of the length 4. The cycles of a bigger length are defined by the
minimal length of the cycle in Tanner’s graph.

Apart from the random LDPC codes the algebraic LDPC codes are used.
Particularly, if the check-matrix of the LDPC code H consists only of cyclic
shifts of a unit matrix I, it is called quasi-cyclic. It is enough for quasi-cyclic
codes to formulate the absence of the cycles of minimal length, as it was done
in the work [3].

LDPC codes are classified into two groups: regular (check matrix consists
exactly of l ones in each column and n0 ones in each row) and irregular (the
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amount of ones in the row and column is variable). In this work only the regular
code constructions are considered.

Our main aim is to work out and to investigate the constructions of the
LDPC codes, which check matrix H consists of several matrices H1, H2, . . .,
Hk quasi-cyclic LDPC codes with lengthes n1, n2, . . ., nk. The condition of
absence of the cycles of the length 4 is proved for the resulting code construction.
It is shown that it reduces the absence of the cycles of the length 4 in each
matrix H1, H2, . . ., Hk. The resulting statement generalizes Gabidulin’s result,
formulated in [3].

2 Code structure and girth analysis

Definition 1. Let I – is the m ×m identity matrix. Let Ipij – a right cyclic
shift on a pij of columns of a unit matrix I, pij ∈ N, 0 ≤ p < m, 1 ≤ i ≤ l,
1 ≤ j ≤ n0, l ≤ n0. Then the check matrix

H =




Ip11 Ip12 . . . Ip1n0

Ip21 Ip22 . . . Ip2n0

. . . . . . . . . . . .
Ipl1

Ipl2
. . . Ipln0




determines the ensemble of regular (l, n0) binary LDPC codes of the length
n = mn0, that we will define as EQC(l, n0,m). Elements of the ensemble
EQC(l, n0, m) are received with the help of an equiprobable sample of pij ∈ N.
The arbitrary code C ∈ EQC(l, n0,m) will be called quasi-cyclic LDPC code.

Definition 2. Let H1, H2, . . ., Hk, k ≥ 2 are check matrixes of regular (l, n0)
binary quasi-cyclic LDPC codes of the lengthes ni = min0:
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Then the matrix

H =
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determines the ensemble of regular (l, n0) binary LDPC codes of the length

n = n0

k∑
i=1

mi =
k∑

i=1
ni, that we will define as EQQC(l, n0, m). Elements of the

ensemble EQQC(l, n0,m) are received with the help of an equiprobable sample
without replacement of parity matrixes H1, H2, . . ., Hk, k ≥ 2. The arbitrary
code C ∈ EQQC(l, n0,m) will be called generalized quasi-cyclic LDPC code.

The main result of this work can be formulated as the following theorem:

Theorem 1. If the matrix H of the generalized quasi-cyclic code consists of
the matrices H1, H2, . . ., Hk, k ≥ 2, then H does not have cycles of the length
4 if and only if H1, H2, . . ., Hk do not have cycles of the length 4.

Proof. Let

H =




P11 P12 . . . P1n0

. . . . . . . . . . . .
Pl1 Pl2 . . . Pln0




is a check matrix of code C ∈ EQQC(l, n0,m), where

Pij =
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. . . 0

. . . . . .
. . . . . .
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]
.

It is easy to show that
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Since Pij is a permutation matrix, then

P−1
ij = PT

ij =
[
I
m1−p

(1)
ij

, . . . , I
mk−p

(k)
ij

]
.

In [3] it was proved that the block matrix
(
R S
P Q

)
formed by the permutation

matrixes, does not have the cycles of the length 4 only when (PRT )¦(QST ) = 0,
where A ¦B is a Hadamard product of matrices A and B.

Let P =
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, then the condition

(PRT ) ¦ (QST ) = 0 can be expressed as
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The latter condition is equivalent to saying that
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[3, Theorem 1] asserts, that matrix H =




P11 P12 . . . P1n0

. . . . . . . . . . . .
Pl1 Pl2 . . . Pln0


 made of

permutation matrixes, does not have cycles of the length 4 only when any of
its submatrix H1 in the form

H1 =
(
Ppi1j1

Ppi1j2

Ppi2j1
Ppi2j2

)

where (1 ≤ i1 < i2 ≤ l, 1 ≤ j1 < j2 ≤ n0) does not have cycles of the length
4.

Thus the matrix H of the generalized quasi-cyclic LDPC code does not
contain cycles of length 4 only when
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is the condition of absence of cycles
of length 4 in the check matrix Ht, 1 ≤ t ≤ k.
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3 Results of the modeling

To demonstrate the possibilities of building codes from the ensemble EQQC(l, n0,m)
in accordance with proved theorem we will consider the following example:

Example 1. Let H1, H2, H3 are check matrixes of the regular (3, 6) quasi-
cyclic LDPC codes with lengthes n1 = 6m1 = 6 ·80 = 480, n2 = 6m2 = 6 ·113 =
678, n3 = 6m3 = 6 ·134 = 804. The minimum length of a cycle for every matrix
Hi, (i = 1, 2, 3) is 8.

The matrix H of the generalized quasi-cyclic LDPC code consisting of the
matrices H1, H2, H3 has has a minimum length of cycles 8.

The resulting (3, 6) generalized quasi-cyclic LDPC code has length
n = n1 + n2 + n3 = 1962.

The modeling of this code construction was done with the methods of simu-
lating with the use of MatLab. For the information channel transmission there
was chosen a channel with additive white Gaussian noise (AWGN). For the al-
gorithm of decoding there was chosen an iterative algorithm Sum-Product with
”soft input”. The maximum number of iterations is 50.

Pic. 1 The dependence between the error probability per frame (FER) and the
signal-to-noise ratio (EsN0) for the random Gallager code and code from

EQQC(l, n0,m).
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As it follows from the pic. 1, (3, 6) code from EQQC(l, n0,m) with the length
n = 1962, also practically wins the order of the probability of an error on the
frame of a random Gallager’s code with correlation of the signal-noise −0.6 Db.

4 Conclusion

The results of the modeling show, that the described generalized quasi-cyclic
codes do not yield an ensemble of Gallager codes, while having an easier struc-
ture of a check-matrix.

Moreover, the results of modeling allow us to make a conclusion that there
is an opportunity of practical usage of the given code constructions.
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