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Abstract. We investigate properties of subspace subcodes of a family of maximal
rank distance (MRD) codes. We design systematic encoding and decoding algo-
rithms for subspace subcodes.

1 Introduction

Subspace subcodes of rank codes have applications in the field of error-correction
whenever information is stored under the form of bi-dimensional arrays (like in
tape-recording or memory arrays for chips) and the errors occur along lines or
columns.

They can also be used in the construction of Space-Time codes with optimal
rate diversity trade-off [9, 10].

Using subcodes in the GPT cryptosystem [11] is under investigation.
Also implementation in network coding is not well known.
Section 2 contains some background. Section 3 introduces to the general

definition of subcodes. Known constructions are presented in Section 4. New
results are given in Section 5. Section 6 concludes the paper.

2 Rank codes

Let Kq be the finite field with q elements and let KqN be an extension field of
degree N . We will also consider KqN as a N -dimensional vector space over Kq.

Let x = (x1, . . . , xn) ∈ Kn
qN . The rank of x over Kq is the maximal number

of xi which are linearly independent over Kq. Equivalently, the rank of x over
Kq is the rank of the N×n q-ary matrix obtained by extending the components
of x over a basis of KqN /Kq.

The Kq-rank of x is denoted by Rk(x).
A code V is a linear code of dimension k if it is a k-dimensional subspace of

the space Kn
qN .

The minimum rank distance of a linear vector code V is defined by

d
def
= min

v∈V\{0}
(Rk(v))
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Such a code is denoted as a [n, k, d] code.
If N ≥ n, then an equivalent of Singleton bound has a form

k ≤ n− d + 1.

A linear code attaining the bound is called a maximum rank distance code
(MRD-code).

Define [i]
def
= qi, when i ≥ 0 and [i]

def
= qm+i when i < 0. Let n ≤ N . A

generator matrix of a MRD [n, k, d] code was proposed in [1] in the form

G =




g1 · · · gn

g
[1]
1 · · · g

[1]
n

. . . . . . . . . . . .

g
[k−1]
1 · · · g

[k−1]
n


 , (1)

where elements g1, . . . , gn ∈ KqN are linearly independent over Kq. Matrix
G generates a the rank code V. A parity-check matrix H of V has a similar
structure:

H =




h1 · · · hn

h
[1]
1 · · · h

[1]
n

. . . . . . . . . . . .

h
[d−2]
1 · · · h

[d−2]
n


 , (2)

for some elements h1, . . . , hn ∈ Kqm linearly independent over Kq.
The code V has minimum rank distance d = n − k + 1 and is therefore an

MRD-code. They can correct errors of rank up to t = b(d− 1)/2c.
Let i = (i0 i1 . . . ik−1) ∈ Kk

qN be an information vector.
Non-systematic encoding. The corresponding code vector is calculated

as
g(i) = i ·G. (3)

Systematic encoding. The corresponding code vector is represented as

g(i) = (v i), (4)

where v = (v0 . . . vd−2) denotes the parity-check vector. The parity-check
matrix is represented as H = (H1 H2), where H1 is the square non-singular
submatrix of order d− 1, H2 is the (d− 1)× (n− d + 1) submatrix. Then the
parity-check part v of g(i) is calculated as

v = −iH>
2

(
H>

1

)−1
. (5)

Several polynomial-time decoding algorithms were designed, see [1–6].



Gabidulin 159

3 Subspaces of the extension field and subspace sub-
codes

Consider the extension field KqN as a N -dimensional vector space over Kq.
Let b = (b1, . . . , bs), s ≤ N , be a set of s elements which are linearly inde-

pendent over the ground field Kq.
Let Vb(s) be the linear s-dimensional subspace spanned by b.
Define the direct product of n possibly different subspaces as

Φ = Vb1,...,bn(s1, s2, . . . , sn) = Vb1(s1)⊗ Vb2(s2)⊗ Vbn(sn).

Let V be a MRD (n, k, d)-ê̂ıä.
A subspace subcode of the code V over the subspace Φ is defined as the

intersection VΦ = V ∩ Φ.
Our goal: to construct subcodes VΦ for interesting Φ.
If Φ is the product of identical subspaces, then subcodes are called uniformly

restricted rank codes. Otherwise they are called irregularly restricted rank
codes.

4 Uniformly restricted rank codes

These subcodes were investigated in [7, 8]. In this case

Φ = Vb(s)n.

It was shown that a uniformly restricted subcode is isomorphic to a MRD
[s, s− d + 1, d]-code. For given b, H and s× n matrix U over the ground field
Kq define the mapping

bU ⇔ (h1 h2 . . . hn)U>.

Let

HΦ =




β
[N ]
1 . . . β

[N−d+2]
1

. . . . . . . . . . . .

β
[N ]
s . . . β

[N−d+2]
s


 (6)

be the parity-check matrix of the MRD [s, s − d + 1, d]-code and GΦ the cor-
responding generator matrix. The non-systematic encoding is as follows. For
a given information vector j = (j1 . . . js−d+1), calculate a local code vector
jGΦ = (z1 . . . zs). To find U> represent this vector as

(z1 . . . zs) = (h1 h2 . . . hn)U>.

Use the obtained matrix U> to calculate a code vector bU of the uniformly
restricted subcode.
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5 Irregularly restricted rank codes

Another interesting case is described as follows. Assume that d − 1 subspaces
Vbi(si) coincide with Kq, i.e., there are no restrictions for these positions. The
subspace Φ is of the form

Φ =
(
KqN

)d−1 ⊗ Vb1(s1)⊗ Vb2(s2)⊗ Vbn−d+1
(sn−d+1).

A code vector of a subspace subcode VΦ = V ∩ Φ has a structure

(v1 . . . vd−1 c1 . . . cn−d+1) = (v c),

where v = (v1 . . . vd−1), c = (c1 . . . cn−d+1). It must be ci ∈ Vbi(si), i =
1, . . . , n− d + 1. In other words,

c ∈ Vb1(s1)⊗ Vb2(s2)⊗ Vbn−d+1
(sn−d+1).

The Singleton bound is

|VΦ| ≤ |Φ| = qs1+s2+···+sn−d+1 . (7)

To construct a subspace subcode with these restrictions, we use the sys-
tematic encoding (3)-(5). The vector c is treated as an information vector,
while the vector v = −cH>

2

(
H>

1

)−1 as a parity-check vector. Note, that this
construction attains the Singleton bound (7).

Subcodes with this restrictions can be used in constructions of multicom-
ponent network codes [12–15].

6 Conclusion

A new class of subspace subcodes of rank codes is proposed. It is matched
especially for network coding and cryptography applications. Still specific im-
plementations need to be investigated in more details.
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