
Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 15-21, 2012, Pomorie, Bulgaria pp. 151–156

List decoding of Reed-Muller codes with
linear complexity up to the Johnson bound

Rafaël Fourquet rafael.fourquet@gmail.com
University Paris 8 Saint-Denis, France

Abstract. We propose a deterministic list decoding algorithm for binary Reed-
Muller codes RM(r, m) of order r in m variables. Given a decoding radius T arbi-
trarily close to the Johnson Bound, the algorithm outputs the list of all codewords
from RM(r, m) which are at Hamming distance at most T from the received vector
with a linear complexity in the length 2m of the code. The memory complexity is also
linear. This algorithm is a generalization to any order of the Kabatiansky-Tavernier
algorithm sums for order 1.

1 Introduction

The binary Reed-Muller (RM) code RM(r,m), for integers r and m such that
0 ≤ r ≤ m, is a linear code over F2 (the field with two elements) of length
n = 2m, dimension k =

∑r
i=0

(
m
i

)
and minimal distance d = 2m−r. This

family of codes has been studied for more than fifty years, and many decoding
algorithms were proposed. However, few of them are deterministic list decoding
algorithms. In this category, the most important ones are from [2, 7] for the
first order RM codes, [5,8] for the second order, and [1,3,6] for any order. The
best complexity for any order r, which is quasi-linear in the length of the code
(of order O (

2mmr−1
)
), was given in [3]; it applies up to the minimal distance

of the code. The complexity of the proposed algorithm is linear in the length
of the code, but applies only up to the Johnson bound. A similar result was
obtained recently in [4] with soft-decision decoding.

2 List decoding

The set of m-variable Boolean functions f : Fm
2 → F2 is denoted by Bm.

A Boolean function f can be uniquely represented as a polynomial belong-
ing to F2[x1, . . . , xm]/(x2

1 − x1, . . . , x
2
m − xm), called its algebraic normal form

(ANF). The algebraic degree deg f of f is the degree of its ANF. The function
f can also be uniquely represented by its truth-table, i.e. the binary vector
(. . . , f(x1, . . . , xm), . . .) ∈ Fn

2 of length n = 2m consisting of all values f(x) for
x ∈ Fm

2 (a total order is fixed in Fm
2). The RM code RM(r,m) ⊂ Fn

2 is the
set of truth-tables associated to the Boolean functions of degrees at most r:
RM(r,m) ' {f ∈ Bm : deg f ≤ r}. We denote by RM×(r,m) ⊂ RM(r,m) the

152 ACCT2012

subset of elements whose constant term (in the ANF) is 0 (the null function),
that is RM×(r,m) ' RM(r,m)/RM(0,m). The Hamming distance d(f, g) be-
tween two functions f and g is defined by d(f, g) := |{x ∈ Fm

2 : f(x) 6= g(x)}|.
The hamming weight of f is defined by wt(f) := d(f, 0).

Definition 1 (List Decoding). Let f ∈ Bm be a received vector, ε ∈ (0, 1). A
deterministic list decoding algorithm for the RM(r,m) code outputs the list

Lε(f) :=
{
q ∈ RM(r,m) : d(f, q) ≤ 2m−1(1− ε)

}
. (1)

We will use in the sequel a particular representation for a Boolean function
in RM(r,m), which is related to the well-known Plotkin construction:

Definition 2 (i-coefficient and i-prefix). Let q ∈ RM(r,m). The i-coefficients
q[i](xi+1, . . . , xm) ∈ RM(r − 1,m− i) of q, 1 ≤ i ≤ m, are uniquely defined by

q(x1, . . . , xm) = q(0) +
m∑

i=1

xiq[i](xi+1, . . . , xm). (2)

The i-prefix q[i] ∈ RM×(r,m) of q is defined by q[i] = x1q[1] + · · ·+ xiq[i].

In particular, either q = q[m] or q = q[m] + 1. The proposed algorithm will
construct recursively potential i-prefixes of the solutions of Lε(f). We denote

F(f) :=
∑

x∈Fm
2

(−1)f(x) = 2m − 2d(f, 0). (3)

We then have

q or q + 1 ∈ Lε(f) ⇐⇒ |F(f + q)| =
∣∣∣F(f + q[m])

∣∣∣ ≥ 2mε. (4)

Let f ∈ Bm, 0 ≤ i ≤ m and α ∈ Fm−i
2 . We denote by fα ∈ Bi the restriction of

f to the facet
{
(x, α) : x ∈ Fi

2

}
(i.e. ∀x ∈ Fi

2, fα(x) = f(x, α)).
The two following lemmas are easy to prove (using the relation q[i] = q[i−1]+

xiq[i]):

Lemma 1. Let i ≤ m,x ∈ Fi−1
2 and α ∈ Fm−i

2 . We have:

q[i]
α (x, 0) = q

[i−1]
(0,α) (5)

q[i]
α (x, 1) = q

[i−1]
(1,α) + q[i](α) (6)

Fourquet 153

Lemma 2. Let q = q[m] ∈ RM×(r,m) and 1 ≤ i ≤ m. For all α ∈ Fm−i
2 , we

have

q[m]
α = q[i]

α + qα(0, . . . , 0), (7)
and hence:

F(f + q[m]) =
∑

α∈Fm−i
2

(−1)qα(0,...,0)F(fα + q[i]
α). (8)

Applying the triangle inequality on (8) and using (4), we obtain:

q ∈ Lε(f) =⇒ Σi
f (q) :=

∑

α∈Fm−i
2

∣∣∣F(fα + q[i]
α)

∣∣∣ ≥ 2mε (9)

This quantity denoted Σi
f (q) depends only on the i-prefix q[i] of q. The

relation (9) gives a criterion to decide if a candidate q[i] may be the i-prefix of
a solution q ∈ Lε(f); we denote by Li

ε(f) the list of such candidates:

Li
ε(f) :=

{
q[i] ∈ RM(r,m) : Σi

f (q[i]) ≥ 2mε
}

(10)

From an iterative point of view, the algorithm will determine the intermediate
lists Li

ε(f) for 1 ≤ i ≤ m by computing at the i-th step the criterion Σi
f (q[i])

only for the functions of the form q[i] = q[i−1] + xiq[i], for all q[i−1] ∈ Li−1
ε (f)

and q[i] ∈ RM(r − 1,m − i) (a function q[i] can be in Li
ε(f) only if its prefix

q[i−1] is in Li−1
ε (f)).

3 A recursive algorithm

For efficiency reasons, instead of computing the whole lists Li
ε(f) one after

the other, the algorithm computes at the i-th step, for a given prefix q[i−1] ∈
Li−1

ε (f), all the elements in Li
ε(f) admitting q[i−1] as an (i−1)-prefix, i.e. of the

form q[i−1]+xiq[i]. The corresponding i-coefficients q[i] are stored in a partial list

Li :=
{

q[i] ∈ RM(r − 1,m− i) : Σi
f (q[i−1] + xiq[i]) ≥ 2mε

}
, and the algorithm

is recursively run on each of them; then another element in Li−1
ε (f) is selected

and the same operations are repeated.
In addition to the lists Li, we use an array Fi of size 2m−i defined by

Fi(α) := F(fα + q
[i]
α) for all α ∈ Fm−i

2 (the total memory complexity for storing
the arrays Fi is then O (∑m

i=1 2m−i
)

= O (2m)). The values of Fi can be
computed from Fi−1 and q[i] with complexity O (

2m−i
)

using the relation1

Fi(α) = Fi−1((0, α)) + (−1)q[i](α)Fi−1((1, α)) (11)

1cf. equation (8). Evaluating q[i] on Fm−i
2 has complexity in O (

2m−i
)

for fixed r.

154 ACCT2012

Given q[i−1] ∈ Li−1
ε (f), the list Li can be computed from Fi−1, with an algo-

rithm Θ(ε, Fi−1), precised later.
We can now give the recursive description of the proposed algorithm, de-

noted Γr. It takes as input ε, i, a prefix q[i−1] and Fi−1 (corresponding to q[i−1]).
The output is the set of functions from Lε(f) admitting q[i−1] as prefix (so the
output is Lε(f) itself when the algorithm is called with input i = 1 and q[0] = 0).

Algorithm Γr

Input: ε, i, q[i−1], Fi−1

Initial input: ε, i = 1, q[0] = 0, F0 =
{
(−1)f(α) : α ∈ Fm

2

}
Output: Functions from Lε(f) admitting q[i−1] as (i− 1)-prefix
if i ≤ m then:

compute Li = Θ(ε, Fi−1)
for each q[i] ∈ Li do:

q[i] ← q[i−1] + xiq[i]

compute Fi from Fi−1 and q[i] (cf. (11))
call Γr(ε, i + 1, q[i], Fi)

if i = m + 1 then:

output
{

q[m] if Fm(0) > 0
q[m] + 1 if Fm(0) < 0

We now give the Θ algorithm. For α ∈ Fm−i
2 , and l ∈ RM(r − 1,m− i), let

V (0, α) := |Fi−1((0, α)) + Fi−1((1, α))|
V (1, α) := |Fi−1((0, α))− Fi−1((1, α))|

M(l) :=
∑

α∈Fm−i
2

V (l(α), α)

By definition we have Σi
f (q[i−1] + xil) = M(l). Let

D(α) := (V (0, α)− V (1, α))/2

S(α) := (V (0, α) + V (1, α))/2 ≥ 0.

Then
V (l(α), α) = S(α) + (−1)l(α)D(α)

and hence
M(l) =

∑

α∈Fm−i
2

S(α) +
∑

α∈Fm−i
2

(−1)l(α)D(α).

Finally, we have

l ∈ Li ⇐⇒ M(l) ≥ 2mε ⇐⇒
∑

α∈Fm−i
2

(−1)l(α)D(α) ≥ 2mε−
∑

α∈Fm−i
2

S(α).

Fourquet 155

By denoting ε′ := 2iε− 2i−m
∑

α∈Fm−i
2

S(α), the last inequality means that the
list Li is the output of the algorithm Γr−1(ε′, 1, 0, D)

4 Complexity

We first give an upper bound on the size of the lists. Let ε > εr :=
√

1− 21−r.
Then the size of the list Lε(f) is upper bounded by the well-known Johnson
bound: |Lε(f)| ≤ Jr := 21−r

ε2−1+21−r . The crucial point in the proof of this bound
is that the minimal distance in RM(r,m) is 2m−r.

Lemma 3. For ε > εr,
∣∣Li

ε(f)
∣∣ ≤ Jr.

Proof. Let q[i] ∈ Li
ε(f): according to (9), there exists a function z(α) ∈ Bm−i

such that
∑

α∈Fm−i
2

F(fα + q
[i]
α + z(α)) ≥ 2mε. We have to upper bound the

number of functions q′ of the form q′ = q[i] + z such that d(f, q′) ≤ 2m−1(1− ε),
“modulo the functions z” 2. We will show that the weight of such a non-
null function q′ (where z is chosen to minimize the weight) is at least 2m−r.
We could then conclude with a proof similar to the Johnson bound one. We
first notice that the component3 R of degree r in q

[i]
α does not depend on α

(∀α, β ∈ Fm−i
2 , q

[i]
α + q

[i]
β ∈ RM(r − 1, i)). If R is non-null, then wt(q[i]

α) ≥ 2i−r,
and hence wt(q′) ≥ 2m−r. Suppose now R = 0. For α such that q′α 6= 0,
wt(q′α) ≥ 2i−r+1 (as deg q

[i]
α < r), and it is easy to check that q′α 6= 0 for at least

2m−i−1 vectors α ∈ Fm−i
2 , hence wt(q′) ≥ 2m−r.

Theorem 1. For fixed r and ε >
√

1− 21−r, the algorithm Γr in RM(r,m) has
linear complexity.

Proof. For a given upper bound l on the sizes of the intermediate lists Li
ε(f),

we denote by γr,m(l) the corresponding complexity for the algorithm Γr in m
variables. We can show by induction on r that γr,m(l) = O (lr2m), using the
following relation (derived from the description page 154):

γr,m(l) =
(m∑

i=1

l︸︷︷︸
|Li−1

ε (f)|
×(O (

2m−i+1
)

︸ ︷︷ ︸
computing Fi−1

+ γr−1,m−i(l)︸ ︷︷ ︸
computing Li

)
)

We conclude by using the bound of lemma 3 for l.

2Two functions q′1 = q[i] + z1 and q′2 = q[i] + z2 are equivalent and count for one.
3i.e. the sum of the monomials in the ANF of q

[i]
α which are of degree r.

156 ACCT2012

5 Conclusion

The proposed deterministic list decoding algorithm has linear complexity up to
the Johnson bound. Evaluating its complexity up to the minimal distance is an
open problem. In practice, this algorithm can sometimes decode well beyond
the Johnson bound (and the minimal distance). For example, the non-linearity
profile4 (112, 82, 48, 22, 8, 2, 0) of the inverse function in 8 variables (trace(x254))
could be obtained within few minutes: this algorithms can be a powerful tool
for the study of (cryptographic) Boolean functions.

References

[1] I. Dumer, G. Kabatiansky, and C. Tavernier. List decoding of reed-muller
codes up to the johnson bound with almost linear complexity. In ISIT,
2006.

[2] I. Dumer, G. Kabatiansky, and C. Tavernier. List decoding of the first-
order binary reed-muller codes. Problems of Information Transmission,
43(3):225–232, 2007.

[3] I. Dumer, G. Kabatiansky, and C. Tavernier. On complexity of decoding
reed-muller codes within their code distance. Proceedings ACCT-11, juin
2008.

[4] I. Dumer, G. Kabatiansky, and C. Tavernier. Soft-decision list decoding of
Reed-Muller codes with linear complexity. IEEE symposium ISIT, 2011.

[5] Rafaël Fourquet and Cédric Tavernier. An improved list decoding algo-
rithm for the second order Reed-Muller codes and its applications. Des.
Codes Cryptography, 49(1-3):323–340, 2008.

[6] P. Gopalan, A. R. Klivans, and D. Zuckerman. List-decoding reed-muller
codes over small fields. Proc. 40th ACM Symp. Theory Computing (STOC),
pp. 265-274, 2008.

[7] G. Kabatiansky and C. Tavernier. List decoding of Reed-Muller codes of
first order. In Ninth International Workshop on Algebraic and Combina-
torial Coding Theory, ACCT’2004, pages 230–235, June 2004.

[8] G. Kabatiansky and C. Tavernier. List decoding of second order Reed-
Muller codes. In in Proc. 8th Intern. Simp. Comm. Theory and Applica-
tions, Ambleside, June 2005.

4The non-linearity nlr(f) of order r of a function f is defined by nlr(f) =
min {d(f, g) : g ∈ RM(r, m)}. The non-linearity profile of f is the sequence
(nl1(f), . . . , nlm−1(f)).

