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Abstract. In this paper, we give a characterization of cyclic codes over the ring Ak.
We then examine when cyclic codes are self-dual and describe the binary images of
these codes under a Gray map.

1 Introduction

We shall further investigate cyclic codes over the ring Ak building on the results
of [2]. The ring Ak is defined to be F2[v1, v2, . . . , vk]/〈v2

i = vi, vivj = vjvi〉. It
is easy to see that Ak is a commutative principal ideal ring. We equip it with
a distance preserving Gray map. Specifically, for k = 1 the map is defined as
φA1(a + bv1) = (a, a + b). Then the Gray map for Ak is defined recursively as:

φAk
(a + buk) = (φAk−1

(a), φAk−1
(a) + φAk−1

(b))

where a, b ∈ Ak−1. A code of length n is a subset of An
k and it is said to be a

linear code if it is a submodule of An
k . For a complete description of codes over

this family of rings see [2].
A code is cyclic if it has the following property: if (c0, c1, . . . , cn−1) ∈ C then

(c1, c2, . . . , cn−1, c0) ∈ C. We call this the cyclic shift and denote this action by
the map σ. Let a ∈ F2kn

2 with

a = (a0, . . . , a2kn−1) = (a(0)|a(1)| . . . |a(2k−1)), a(i) ∈ Fn
2

for i = 0, 1, . . . , 2k − 1. Let σ⊗2k
be the map from F2kn

2 to F2kn
2 given by

σ⊗2k
(a) = (σ(a(0))| . . . |σ(a(2k−1))) where σ is the usual shift (c0, . . . , cn−1) 7→

(cn−1, c0, . . . , cn−2) on Fn
2 . A code C of length 2kn over F2 is said to be quasi-

cyclic of index 2k if σ⊗2k
(C) = C. The following is shown in [2].

Lemma 1. [2] If C is a cyclic code over Ak then the image of C under the
Gray map is a quasi-cyclic binary code of length 2kn of index 2k.
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In the usual correspondence, cyclic codes over Ak are in a bijective corre-
spondence with the ideals of Ak[x]/〈xn − 1〉. That is, we associate the vector
(a0, a1, . . . , an−1) with the polynomial a0 + a1x + a2x

2 + · · · + an−1x
n. These

ideals can be described in the following theorem proven in [2].

Theorem 1. [2] Let n be odd and let p(x) be a divisor of xn− 1 in F2[x]. The
ideals in Ak[x]/〈xn − 1〉 are of the form

〈p(x) +
∑

i

(
∑

A⊂{1,2,...,k}
αAvAri(x)),

∑

i

(
∑

B⊂{1,2,...,k}
αBvBsi(x)),

. . . ,
∑

i

(
∑

C⊂{1,2,...,k}
αCvCqi(x))〉.

Notice that even at length 1 there is an abundance of cyclic codes since each
ideal of Ak is a cyclic code. Moreover, there is only one unit in Ak, so there are
numerous non-trivial ideals in Ak.

2 Cyclic codes

We shall give an alternate description of cyclic codes than we gave in [2] as
stated above. This approach is similar to the approach for codes over F2 + vF2

in [5] and for codes over F3 + vF3 in [3].
In [2], it is shown that 〈w1, w2, . . . , wk〉, with wi ∈ {vi, 1 + vi} is a maximal

ideal of Ak and that there are 2k distinct maximal ideals of this form. Let
m1, m2, . . . ,m2k , be these maximal ideals. Since the ring Ak is a principal ideal
ring, we know that each is generated by a single element. Denote the single
element that generates mi by mi. In fact, in Theorem 2.6 in [2], it is shown
that mi is the sum of all non-empty products of w1, w2, . . . , wk.

Let C be a code over Ak. We then have

C = (m1)C1 ⊕ (m2)C2 ⊕ · · · ⊕ (m2k)C2k , (1)

where Ci is a binary code. It follows that

C⊥ = (m1)C⊥
1 ⊕ (m2)C⊥

2 ⊕ · · · ⊕ (m2k)C⊥
2k . (2)

Notice that this gives an isomorphism between F2kn
2 and An

k .

Theorem 2. Let C be a code over Ak and let Ci be the binary codes given in
Equation 1. The code C is cyclic if and only if Ci is a cyclic code for all i.
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Proof. Let σ be the cyclic shift and let v ∈ C and vi ∈ Ci with v = m1v1 +
m2v2 + · · ·+ m2kv2k . Then we have that

σ(v) = v = m1σ(v1) + m2σ(v2) + · · ·+ m2kσ(v2k). (3)

If each Ci is cyclic then σ(vi) ∈ Ci for all i then by Equation 3 we have
σ(v) ∈ C.

If C is cyclic then σ(v) ∈ C and so by Equation 3 we have that σ(vi) ∈ Ci

for all i.

The following is immediate from this theorem using Equation 2, since the
orthogonal of a binary cyclic code is cyclic.

Corollary 1. If a code C over Ak is cyclic then C⊥ is cyclic.

The following theorem gives an alternate description of cyclic codes as op-
posed to Theorem 1.

Theorem 3. Let C be a cyclic code over Ak, then there exists a polynomial
g(x) in Ak[x] that divides xn − 1 that generates the code.

Proof. Let C = (m1)C1 ⊕ (m2)C2 ⊕ · · · ⊕ (m2k)C2k be a cyclic code and let
gi(x) be the generator of Ci in its polynomial representation. Then the code C
has the form

〈m1g1(x),m2g2(x), . . . , m2kg2k(x)〉. (4)

Consider the code D = 〈m1g1(x) + m2g2(x) + · · · + m2kg2k(x)〉. It is im-
mediate that D ⊆ C. Notice that mimi = mi and mimj = 0 if i 6= j.
Then mi(m1g1(x),m2g2(x), . . . , m2kg2k(x)) = migi(x) which gives that C ⊆ D.
Hence C = D and C is generated by a single element.

Next, we know that gi(x) divides xn−1. Let ri(x) be the binary polynomial
such that gi(x)ri(x) = xn − 1. Then we have xn − 1 = (m1g1(x) + m2g2(x) +
· · ·+m2kg2k(x))(m1r1(x)+m2r2(x)+· · ·+m2kr2k(x)) recalling that mimi = mi

and mimj = 0 for i 6= j. Then we have

xn − 1 = g(x)(m1r1(x) + m2r2(x) + · · ·+ m2kr2k(x)).

We can combine this result with the result in Theorem 1 and we have the
following.
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Corollary 2. Any ideal of the form

〈p(x) +
∑

i

(
∑

A⊂{1,2,...,k}
αAvAri(x)),

∑

i

(
∑

B⊂{1,2,...,k}
αBvBsi(x)),

. . . ,
∑

i

(
∑

C⊂{1,2,...,k}
αCvCqi(x))〉

where p(x) is a binary polynomial that divides xn−1 can be rewritten as 〈g(x)〉
where g(x) divides xn − 1 in Ak[x].

For a polynomial, p(x) = a0 + a1x + . . . , akx
k define p(x) = ak + ak−1x +

· · ·+ a0x
k.

Lemma 2. If C is a cyclic code over Ak generated by g(x) then C⊥ is a cyclic
code generated by (xn − 1)/g(x).

Proof. Let C be a cyclic code over Ak generated by g(x) where the code is of
the form 〈m1g1(x),m2g2(x), . . . , m2kg2k(x)〉 as given in Equation 4. This gives
that, as in Equation 1,

C = (m1)C1 ⊕ (m2)C2 ⊕ · · · ⊕ (m2k)C2k ,

where Ci is a binary code. It follows that

C⊥ = (m1)C⊥
1 ⊕ (m2)C⊥

2 ⊕ · · · ⊕ (m2k)C⊥
2k .

We know that if gi(x) generates the binary cyclic code Ci then there exists a
polynomial hi(x) that generates C⊥, where hi(x) = (xn − 1)/gi(x).

The result follows by applying the isomorphism to these polynomials.

Theorem 4. If C = 〈g(x)〉 is a cyclic self-orthogonal code over Ak then
g(x)g(x) = xn − 1.

Proof. As before let C be a cyclic code over Ak generated by g(x) where the
code is of the form 〈m1g1(x),m2g2(x), . . . ,m2kg2k(x)〉 as given in Equation 4.
Then by the isomorphism each gi(x) generates a binary self-dual code. Then
by [4], we have gi(x)gi(x) = xn − 1.

Corollary 3. The image of a cyclic self-dual code of length n over Ak is a
length 2kn self-dual quasi-cyclic code of index 2k.

Proof. From [2] we have that the image of a self-dual code under the Gray map
is a self-dual code and by Lemma 1 we have that the image of a cyclic code is
a quasi-cyclic code of index 2k.
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We shall give an example of the importance of self-dual codes over these
rings. Let K = Q(

√−7) be a quadratic number field with the ring of integers
O = Z[α] with α2 + α + 2 = 0. Then we can see A1 = O/〈2〉. Then using
Consruction A on a Hermitian self-dual code we have that the corresponding
lattice is 7-modular.
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