Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 15-21, 2012, Pomorie, Bulgaria pp. 125-129

Cyclic codes over A,

YASEMIN CENGELLENMIS ycengellenmis@yahoo.com
Trakya University
STEVEN T. DOUGHERTY prof.steven.dougherty@gmail.com

University of Scranton

Abstract. In this paper, we give a characterization of cyclic codes over the ring Ag.
We then examine when cyclic codes are self-dual and describe the binary images of
these codes under a Gray map.

1 Introduction

We shall further investigate cyclic codes over the ring A building on the results
of [2]. The ring Ay, is defined to be Fa[vy,va, ..., vk]/(vZ = v, v;v; = vjv;). It
is easy to see that A is a commutative principal ideal ring. We equip it with
a distance preserving Gray map. Specifically, for k¥ = 1 the map is defined as
¢a,(a+bvy) = (a,a+b). Then the Gray map for Ay is defined recursively as:

(bAk (a + buk) - (¢Ak—1 (a’)v ¢Ak—1 (a) + ¢Ak—1 (b))

where a,b € Ap_;. A code of length n is a subset of A} and it is said to be a
linear code if it is a submodule of A}. For a complete description of codes over
this family of rings see [2].

A code is cyclic if it has the following property: if (co, c1,...,cn—1) € C then
(c1,¢2,...,¢cn—1,c0) € C. We call this the cyclic shift and denote this action by
the map 0. Let a € F%k” with

a=(ag,...,ao, 1) =(aPaW]. . \a@k_l)), oV e T}
for i = 0,1,...,2% — 1. Let 0®2" be the map from ]F%k” to F%k” given by
o2 (a) = (o(aD)]... |0(a(2k_1))) where o is the usual shift (cp,...,cn—1) —
(€n-1,¢€05--+,Cn_2) on T A code C of length 2¥n over I, is said to be quasi-
cyclic of index 2¥ if ¢®2"(C') = C. The following is shown in [2].

Lemma 1. /2] If C is a cyclic code over Ay then the image of C under the
Gray map is a quasi-cyclic binary code of length 2n of index 2F.
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In the usual correspondence, cyclic codes over Ay are in a bijective corre-
spondence with the ideals of Ag[z]/(x™ — 1). That is, we associate the vector
(ag,ai,...,a,_1) with the polynomial ag + a;z + asz? + - -- + a,_12". These
ideals can be described in the following theorem proven in [2].

Theorem 1. [2] Let n be odd and let p(x) be a divisor of x™ — 1 in Fa[x]. The
ideals in Ag[x]/{z™ — 1) are of the form

<p($) +Z( Z O‘A'UATZ'($))7Z( Z aBUBS’i(x))a

@ AC{17277k} i BC{17277k}

Y Y acveq(x)).

i Cc{1,2,..,k}

Notice that even at length 1 there is an abundance of cyclic codes since each
ideal of Ay is a cyclic code. Moreover, there is only one unit in Ay, so there are
numerous non-trivial ideals in Ay,.

2 Cyeclic codes

We shall give an alternate description of cyclic codes than we gave in [2] as
stated above. This approach is similar to the approach for codes over IFg + vIFo
in [5] and for codes over I3 + vIF3 in [3].

In [2], it is shown that (wi,ws, ..., wg), with w; € {v;, 1 4+ v;} is a maximal
ideal of Aj and that there are 2F distinct maximal ideals of this form. Let
mp, Mg, ..., Myk, be these maximal ideals. Since the ring Ay is a principal ideal

ring, we know that each is generated by a single element. Denote the single
element that generates m; by m;. In fact, in Theorem 2.6 in [2], it is shown
that m; is the sum of all non-empty products of wi,ws, ..., wg.

Let C be a code over A;. We then have

C = (m1)C1 @ (m2)Cy ® - -+ @ (magk ) Car, (1)
where C; is a binary code. It follows that
Ct = (m1)CF @ (m2)Cy @ -+ @ (mgr) . (2)
Notice that this gives an isomorphism between ]F%k" and Aj}.

Theorem 2. Let C be a code over Ay and let C; be the binary codes given in
Equation 1. The code C' is cyclic if and only if C; is a cyclic code for all 7.



Cengellenmis, Dougherty 127

Proof. Let o be the cyclic shift and let v € C' and v; € C; with v. = mivy +
MmaVa + - - - + Mok Vor. Then we have that

J(V) :V:mla(vl)—‘erJ(VQ)—i--"—I—kaJ(VQk). (3)

If each Cj is cyclic then o(v;) € C; for all ¢ then by Equation 3 we have
o(v)eC.

If C is cyclic then o(v) € C and so by Equation 3 we have that o(v;) € C;
for all i. O

The following is immediate from this theorem using Equation 2, since the
orthogonal of a binary cyclic code is cyclic.

Corollary 1. If a code C over Ay, is cyclic then C* is cyclic.

The following theorem gives an alternate description of cyclic codes as op-
posed to Theorem 1.

Theorem 3. Let C be a cyclic code over Ay, then there exists a polynomial
g(x) in Ag[x] that divides ™ — 1 that generates the code.

Proof. Let C = (m1)C1 & (m2)Ca & -+ & (mgr)Cor be a cyclic code and let
gi(x) be the generator of C; in its polynomial representation. Then the code C'
has the form

(m1gi (), maga (), . .., maigar (€)). (4)

Consider the code D = (migi1(z) + maga(x) + -+ - + Mok gor (z)). It is im-
mediate that D C C. Notice that m;m; = m; and mym; = 0 if i # j.
Then m;(migi(x), maga(z), ..., morgor (z)) = m;gi(x) which gives that C C D.
Hence C = D and C is generated by a single element.

Next, we know that g;(x) divides 2™ — 1. Let r;(x) be the binary polynomial
such that g;(x)r;(x) = 2™ — 1. Then we have 2" — 1 = (myg1(z) + maga(z) +
Mok gor () (Mary () +mare(z) +- - - +marrar (x)) recalling that m;m; = m;
and m;m; = 0 for ¢ # j. Then we have

2" — 1 = g(x)(miri(z) + mara(z) + - - - + maorror ()).
O

We can combine this result with the result in Theorem 1 and we have the
following.
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Corollary 2. Any ideal of the form

<P($)+Z( Z @AUATi(x))7Z< Z apvpsi()),

i AC{1,2,...k} t  BC{1,2,..,k}

L0 acvea(@)

( CC{17277k}

where p(x) is a binary polynomial that divides ™ — 1 can be rewritten as {g(x))
where g(x) divides z™ — 1 in Ag|x].

For a polynomial, p(z) = ag + a1z + ..., arz" define p(x) = ap, + ap_1x +
R aoxk.

Lemma 2. If C is a cyclic code over Ay, generated by g(x) then C* is a cyclic
code generated by (z™ — 1)/g(x).

Proof. Let C be a cyclic code over Ay, generated by g(z) where the code is of
the form (mig1(z), maga(x),...,morger(x)) as given in Equation 4. This gives
that, as in Equation 1,

C = (m1)C1 ® (m2)C2 @ - -+ & (mgr ) Cor,
where C; is a binary code. It follows that
Ct = (m)Cf @ (m2)C5 @ -+ @ (moyw) O

We know that if g;(z) generates the binary cyclic code C; then there exists a
polynomial h;(z) that generates C+, where h;(z) = (z" — 1)/g;(z).
The result follows by applying the isomorphism to these polynomials. [

Theorem 4. If C = (g(x)) is a cyclic self-orthogonal code over Ay then
g9(x)g(z) = 2" — 1.

Proof. As before let C' be a cyclic code over Ay generated by g(x) where the

code is of the form (mygi(x), maga(z),...,morgor(x)) as given in Equation 4.
Then by the isomorphism each g;(x) generates a binary self-dual code. Then
by [4], we have g;(z)g;(z) = =™ — 1. O

Corollary 3. The image of a cyclic self-dual code of length n over Ay is a
length 28n self-dual quasi-cyclic code of index 2.

Proof. From [2] we have that the image of a self-dual code under the Gray map
is a self-dual code and by Lemma 1 we have that the image of a cyclic code is
a quasi-cyclic code of index 2F. O
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We shall give an example of the importance of self-dual codes over these
rings. Let K = Q(+/—7) be a quadratic number field with the ring of integers
O = Z[a] with a® + a +2 = 0. Then we can see A; = O/(2). Then using
Consruction A on a Hermitian self-dual code we have that the corresponding
lattice is 7-modular.
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