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Abstract. In contrast to the classical goal of group testing we want to find m
defective elements among D (m < D) defective elements. We analyse two different
test functions. We give adaptive strategies and lower bounds for the number of tests
and show that our strategy is optimal for m = 1.

1 Introduction

Group testing is of interest for many applications like in molecular biology. For
an overview of results and applications we refer to the books [1] and [2].

We want to find m of D defective elements. These study was motivated by [3]
and [4]. We denote by [N] := {1,2,..., N} the set of elements, by D C [N]
the set of defective elements, by D = |D| its cardinality, and by [i, j] the set of
integers {x € N : i < x < j}. Throughout the paper we consider worst case
analysis.

The classical group testing problem is to find the unknown subset D of all
defective elements in [N].

For a subset S C [N] a test ts is the function tg : 2] — {0,1} defined by

0 ,if|[SND|=0
ts(D) = { 1 , otherwise. (1)
We define search strategies as in [5]. In classical group testing a strategy is
called successful, if we can uniquely determine D. Here we call a strategy
successful if we can find one element of D.
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Let f be a function f : [0, N] — R". We define general group tests with density
as ts : 21N — {0,1}, defined by

(0 L, ifSND| < £(S))
ts(D) —{ 1 ifSND| > £(IS]). (2)

In [4] the case f(|S|) = «|S| is considered. The authors assume that a lower
bound of the cardinality of D is known. The goal is to find m < D defective
elements.

In majority group testing (defined in [6] and more general in [7]) we have
two functions f1, f2 : {0,1,..., N} — RT which put weights on the number D
of defective elements and f1(D) < fo(D) VD € [0,1,..., N].

We describe the structure of tests ts : 2V — {0,1,{0,1}} as follows

0 L if|SND| < fi(D)
ts(D) = {0,1} , otherwise (3)

(the result can be arbitrary 0 or 1).

In [7] it is assumed that the searcher does not know the cardinality of D but
knows some upper bound. In majority group testing it is not always possible
to find the set D of all defective elements (see [7], [8]).In general, one can
find a family F of sets, which contains D. This family depends on f; and
f2, on D, and on the strategy used. In this case we call a strategy successful, if
we can find an F with the smallest possible size.

Now we put the ideas of these two models together such that there are two
functions f1, f2 : [0, N] x [0, N] — R with f1(D,S) < fo(D, S) for all values
of D and S.

We define a test ts : 21V — {0,1,{0,1}} as follows

0 , 1if |SND| < f1(D,|S])
_ )1 , if [SND| = f2(D,[S])
ts(D) = {0,1} , otherwise 4)

(the result can be arbitrary 0 or 1).

For this test function denote by n(N, D,m) the minimal number of tests for
finding m defective elements.

The following lower bound for the minimal number of test is a generalization of
a theorem in [4]. They give this lower bound for fi(D,|S|) = f2(D, |S|) = «|S|.

Theorem 1 n(N,D,1) > [log(N — D +1)]
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Let us assume that we have a successful strategy s which finds a defective
element with n = n(N, D, 1) tests and n < [log(N — D +1)].

Depending on the n test results we have at most 2" different possible results
for a defective element, we denote them by £. It holds by assumption that
€] < 2" < N — D + 1. Therefore |[N]\é| > D — 1 and there exists a set
F C [N]\€ with |F| = D. Now we consider the case D = F. It is obvious now
that strategy s we cannot find any defective element with n tests.

We denote by n(ciq) (N, D,m) the minimal number of tests (1) of finding m
defective elements.

Proposition 1 n(c,) (N, D,1) < [log(N — D +1)]
Proposition 1 together with Theorem 1 implies the following
Corollary 1 1. n(cq)(N, D, 1) = [log(N — D + 1)],

2. ncia)y(N, D,m) <m[log(N — D +1)].

2 Threshold test function without gap

We consider now the test function

Threshold group testing without gap: f(D,|S|) = u. Thus

0 ,if[SND|I<u
ts(D)—{ 1 ,if|[SND|>w. (5)

This kind of test was introduced in [8] and called threshold group testing with-
out gap. First we assume that we know D.

We denote by n(r4,) (N, D, u,m) the minimal number of tests (5) for finding m
defective elements , if we have N elements with D defectives and f(D, |S]) = u.

Our first goal is to find one defective element.

Proposition 2 If D > u then nrpy) (N, D,u, 1) < [log(N — D +1)], otherwise
it is not possible to find any defective element.

We give a strategy which needs [log(N — D + 1)] tests. The idea of the proof
is to partition the set of N elements into the subsets 77 = [1,u — 1], Zy =
[uyN — D 4+ u], and Z3 = [N — D + u + 1, N]. In Zy there is of course at
least one defective, because the union of the two other subsets has cardinality
D — 1. We can find a defective element in Zs by the following strategy with
[log(N — D +1)] tests.
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We start with the test set

1
Si={l,...,u—Lu...,(u—1)+ [mé)(N—D—irlﬂ},
where m(1) = 1.
2m(j—1)—1 if tSj,l(D) =1
2m(j—1)+1 if tSj,l(D) =0,
and S = {1,...,u—Lu,u+1,...,(u—1)+[Z(N - D+1)]}.
After [log(N — D + 1)] tests we can find an i such that t[; ; = 1, t;;,1) = 0
because it is clear that t; ,,_;) = 0 and ¢} y_p4,) = 1. Thus using this strategy
we find an defective element at the position 3.

Inductively, we set m(j) = {

From Theorem 1 and Proposition 2 we get the following

Theorem 2 n 1y, (N, D,u, 1) = [log(N — D +1)], if D > u.

3 Density tests

The test model
Group testing with density tests: f(D,|S|) = «|S| for all values. Thus

[0 i ISAD| < alS
ts(D) —{ | i SND| > als]. (6)

was considered in [4].

Let n(pen)(N, D,m,a) be the minimal number of tests (6) for finding m de-
fective elements, if we have N elements with D defectives. In [4] the authors
obtain the following bounds for n(pey) (N, D, m, a) assuming D > aN
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"(Den) (N,Damaa)a (7)
ﬂOg N—| > N(Den) (Na D, 1, Od). (8)

In general they show that
1Og(N_D+1) én(Den)(NaDalaa)- (9)

We will give a strategy which is optimal for D > aN (it needs [log(N — D +1)]
questions).
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Let us define

2n — 1
i = [———]

l—«a

where i =1,2,...,n—1and s, = 1.
For given D we choose the maximal n such that

D> s —2"+1. (10)
=1

Theorem 3 Let (10) be fulfilled and N < 2™ + D — 1 then after n tests of the
strategqy above we will find one defective element.

Corollary 2 If D > aN then n(pey) (N, D,1) = [log(N — D + 1)].
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