# Connections between different types of binary self-dual codes 

Stefka Bouyuklieva ${ }^{1}$ stefka@uni-vt.bg<br>Faculty of Mathematics and Informatics, Veliko Tarnovo University,<br>5000 Veliko Tarnovo, Bulgaria<br>Wolfgang Willems willems@ovgu.de<br>Institut für Algebra und Geometrie, Fakultät für Mathematik, Otto-von-Guericke Universität, 39016 Magdeburg, Germany


#### Abstract

In this note we consider the connection between singly-even self-dual codes with minimal shadow, s-extremal self-dual codes and doubly-even self-dual codes. Moreover, we give a bound on the length $n$ of s-extremal self-dual codes with minimum distance $4\lfloor n / 24\rfloor+4$.


## 1 Introduction

Throughout this paper all codes are assumed to be binary. Let $C$ be a singlyeven self-dual code of length $n$ and let $C_{0}$ be its doubly-even subcode. There are three cosets $C_{1}, C_{2}, C_{3}$ of $C_{0}$ such that $C_{0}^{\perp}=C_{0} \cup C_{1} \cup C_{2} \cup C_{3}$, where $C=C_{0} \cup C_{2}$. The set $S=C_{1} \cup C_{3}=C_{0}^{\perp} \backslash C$ is called the shadow of $C$. Shadows for self-dual codes were introduced by Conway and Sloane [3] in order to derive upper bounds for the minimum weight of singly-even self-dual codes and to provide restrictions on their weight enumerators. According to [6] the minimum weight $d$ of a self-dual code of length $n$ is bounded by $4[n / 24]+4$ if $n \not \equiv 22(\bmod 24)$ and by $4[n / 24]+6$ if $n \equiv 22(\bmod 24)$. A self-dual code meeting this bound is called extremal. Moreover, all extremal self-dual codes of length $24 m, m \geq 1$, are doubly-even.

Elkies studied in [4] the minimum weight $s$ of the shadow of self-dual codes, especially in the cases where it attains a high value. Bachoc and Gaborit proposed to study the parameters $d$ and $s$ simultaneously [1]. They proved that

$$
\begin{equation*}
2 d+s \leq \frac{n}{2}+4, \tag{1}
\end{equation*}
$$

except in the case $n \equiv 22(\bmod 24)$ where $2 d+s \leq \frac{n}{2}+8$. They called codes attaining this bound $s$-extremal. In our work [2] we introduced self-dual codes with minimal shadow as singly-even self-dual codes for which the minimum

[^0]weight of the shadow has the smallest possible value. More precisely, a selfdual code $C$ of length $n=24 m+8 l+2 r, l=0,1,2, r=0,1,2,3$, is a code with minimal shadow if: (i) $\mathrm{wt}(S)=r$ if $r>0$, and (ii) $\mathrm{wt}(S)=4$ if $r=0$.

If $W_{S}(y)=\sum_{i=0}^{n} B_{i} y^{i}$ is the weight enumerator of the shadow $S$ then, by [3], $B_{0}=0$ and $B_{i}=0$ unless $i \equiv n / 2(\bmod 4)$.

## 2 Self-dual codes and their children

Let $C$ be a binary $[n, n / 2, d>2$ ] self-dual code and let $\mathcal{D}$ be the subcode which consists of all codewords with 0's in the first two coordinate positions. So

$$
\mathcal{D}=\left\{v \in \mathbb{F}_{2}^{n-2} \mid(00, v) \in C\right\}
$$

If $(11, a) \in C$ and $(10, b) \in C$ then

$$
C=(00, \mathcal{D}) \cup(11, a+\mathcal{D}) \cup(10, b+\mathcal{D}) \cup(01, a+b+\mathcal{D})
$$

Lemma 1. The code $\bar{C}=\mathcal{D} \cup(a+\mathcal{D})$ is a self-dual $[n-2, n / 2-1]$ code with minimum distance at least $d-2$, called a child of $C$.

We can consider a generator matrix of $C$ in the form

$$
G=\left(\begin{array}{cc|c}
1 & 0 & b  \tag{2}\\
\hline 1 & 1 & a \\
\hline 0 & 0 & \\
\vdots & \vdots & D \\
0 & 0 &
\end{array}\right),
$$

where $D$ generates the code $\mathcal{D}$.
We investigate two cases according to the minimum weight $s$ of the shadow of the codes.

Case 1: $s=1$
Let $C$ be a singly-even self-dual code of length $n$ and $(100 \ldots 0) \in S$. Since $B_{1}=1$ we have $n \equiv 2(\bmod 8)$ and therefore $n=24 m+8 l+2, l=0,1,2$. In this case the doubly-even subcode of $C$ is $C_{0}=(00, \mathcal{D}) \cup(01, a+b+\mathcal{D})$ since $(100 \ldots 0) \in S$. We proved in [2] that extremal self-dual codes with minimal shadow of lengths $24 m+2$ and $24 m+10$ do not exist. So consider a self-dual code $C$ with parameters $[24 m+18,12 m+9,4 m+4]$. Then the code $\bar{C}=\mathcal{D} \cup(a+\mathcal{D})$ is an extremal doubly-even $[24 m+16,12 m+8,4 m+4]$ code.

Theorem 1. If no extremal doubly-even code of length $24 m+16$ exists, then there are no extremal singly-even codes of length $24 m+18$ with minimal shadow.

Case 2: $s=2$
Let $C$ be a singly-even self-dual code and let its doubly-even subcode be $C_{0}=(00, \mathcal{D}) \cup(11, a+\mathcal{D})$. This means that $(1100 \ldots 0) \in S$ and $n \equiv 4(\bmod 8)$. Let now $C$ be an extremal singly-even $[n=24 m+8 l+4, n / 2,4 m+4]$ self-dual code, $l=1,2$, or an $[n=24 m+4, n / 2,4 m+2]$ self-dual code. It follows that $\bar{C}=\mathcal{D} \cup(a+\mathcal{D})$ is a singly-even $[n=24 m+8 l+2, n / 2-1,4 m+4$ or $4 m+2$ ] code with shadow $\bar{S}=b+\bar{C}=(b+\mathcal{D}) \cup(a+b+\mathcal{D})$. Since $C_{2}=(10, b+\mathcal{D}) \cup(01, a+b+\mathcal{D})$ has minimum weight at least $4 m+6$ if $d=4 m+4$ and $4 m+2$ if $d=4 m+2$ then the minimum weight $\bar{s}$ of $\bar{S}$ satisfies $\bar{s} \geq 4 m+5$ if $l=1,2$, and $\bar{s}=4 m+1$ if $l=0$. Using (1), we obtain that:

- if $l=0$ and $d=4 m+2$ then $\bar{C}$ is an s-extremal $[24 m+2,12 m+1,4 m+2]$ code $(\bar{s}=4 m+1)$,
- if $l=1$ and $d=4 m+4$ then $\bar{C}$ is an s-extremal $[24 m+10,12 m+1,4 m+2]$ code $(\bar{s}=4 m+5)$,
- if $l=2$ and $d=4 m+4$ then $\bar{C}$ is an s-extremal $[24 m+18,12 m+9,4 m+4]$ code $(\bar{s}=4 m+5)$ or an $[24 m+18,12 m+9,4 m+2]$ code with $\bar{s}=4 m+5$ or $\bar{s}=4 m+9$ since all vectors in the shadow $\bar{S}$ have weights $\equiv 1(\bmod 4)$.

Conversely, if $\bar{C}$ is a self-dual code of length $24 m+8 l+2$ then the code

$$
C=\left(00, \bar{C}_{0}\right) \cup\left(11 \bar{C}_{2}\right) \cup\left(10, \bar{C}_{1}\right) \cup\left(01, \bar{C}_{3}\right)
$$

is a self-dual code of length $24 m+8 l+4$ with minimal shadow and minimum distance $d=\min \left\{d\left(\bar{C}_{0}\right), \operatorname{wt}\left(\bar{C}_{2}\right)+2, \mathrm{wt}(\bar{S})+1\right\}$. It follows that

- if $\bar{C}$ is an s-extremal $[24 m+2,12 m+1,4 m+2]$ code $(\bar{s}=4 m+1)$ then $C$ is a $[24 m+4,12 m+2,4 m+2]$ code with minimal shadow $(\mathrm{wt}(S)=2)$,
- if $\bar{C}$ is an s-extremal $[24 m+10,12 m+5,4 m+2]$ code $(\bar{s}=4 m+5)$ then $C$ is an extremal $[24 m+12,12 m+6,4 m+4]$ code with minimal shadow,
- if $\bar{C}$ is a $[24 m+18,12 m+9,4 m+2$ or $4 m+4]$ code with $\bar{s} \geq 4 m+5$ then $C$ is an extremal $[24 m+20,12 m+10,4 m+4]$ code with minimal shadow.

Theorem 2. (1) There exists a self-dual $[24 m+4,12 m+2,4 m+2]$ code with minimal shadow if and only if there is an $s$-extremal $[24 m+2,12 m+1,4 m+2]$ code $(\bar{s}=4 m+1)$.
(2) There exists a self-dual $[24 m+12,12 m+6,4 m+4]$ code with minimal shadow if and only if there is an s-extremal $[24 m+10,12 m+5,4 m+2]$ code $(\bar{s}=4 m+5)$.
(3) There exists an extremal self-dual $[24 m+20,12 m+10,4 m+4]$ code with minimal shadow if and only if there is a $[24 m+18,12 m+9, \geq 4 m+2]$ code with $\bar{s} \geq 4 m+5$.

## 3 Bounds for $s$-extremal self-dual codes

In [2] we proved that extremal self-dual codes of lengths $n=24 m+2,24 m+4$, $24 m+6,24 m+10$ and $24 m+22$ with minimal shadow do not exist. For the other lengths, we obtained the following proposition

Proposition 1. [2, Corollary 4, Corollary 6] There are no extremal singly-even self-dual codes of length $n$ with minimal shadow if
(i) $n=24 m+8$ and $m \geq 53$,
(ii) $n=24 m+12$ and $m \geq 142$,
(iii) $n=24 m+14$ and $m \geq 146$,
(iv) $n=24 m+16$ and $m \geq 164$,
(v) $n=24 m+18$ and $m \geq 157$.

We apply the same technique here to obtain similar bounds for the extremal singly-even self-dual codes of length $24 m+2 t$ for $1 \leq t \leq 10$, which attain the bound (1). The weight enumerators of $C$ and its shadow are given by [3]:

$$
\begin{aligned}
& W(y)=\sum_{j=0}^{12 m+4 l+r} a_{j} y^{2 j}=\sum_{i=0}^{3 m+l} c_{i}\left(1+y^{2}\right)^{12 m+4 l+r-4 i}\left(y^{2}\left(1-y^{2}\right)^{2}\right)^{i}, \text { and } \\
& S(y)=\sum_{j=0}^{6 m+2 l} b_{j} y^{4 j+r}=\sum_{i=0}^{3 m+l}(-1)^{i} c_{i} 2^{12 m+4 l+r-6 i} y^{12 m+4 l+r-4 i}\left(1-y^{4}\right)^{2 i},
\end{aligned}
$$

where $t=4 l+r, r=0,1,2,3, l=0,1,2$. Moreover by $[6]$

$$
\begin{equation*}
c_{i}=\sum_{j=0}^{i} \alpha_{i j} a_{j}=\sum_{j=0}^{3 m+l-i} \beta_{i j} b_{j} . \tag{3}
\end{equation*}
$$

The values of $\alpha_{2 m+1,0}=\alpha_{2 m+1}(n)$ and $\alpha_{2 m, 0}=\alpha_{2 m}(n)$ for $n=24 m+2 t$, $t=1,2, \ldots, 10$, are calculated in [2].

Theorem 3. No s-extremal singly-even self-dual $[24 m+2 t, 12 m+t, 4 m+4]$ codes exist if (1) $t=1$; (2) $t=2$ and $m \neq 7$; (3) $t=3$ and $m \neq 7,13,14,15$; (4) $t=4$ and $m \geq 43$; (5) $t=5$ and $m \geq 78$; (6) $t=6$ and $m \geq 113$; (7) $t=7$ and $m \geq 136$; (8) $t=8$ and $m \geq 148$; (9) $t=9$ and $m \geq 152$; (10) $t=10$ and $m \geq 153$.

Proof. Since $d=4 m+4$, it follows that $s=12 m+t+4-8 m-8=4 m+t-4=$ $4 m+4 l+r-4$. According to [5] extremal self-dual codes of length $24 m+2 r$ do not exist for $r=1,2,3$ and $m=1,2, \ldots, 6,8, \ldots, 12,16, \ldots, 22$. Hence we can consider only codes with $m>23$. As $s=4(m+l-1)+r$, for these codes

$$
a_{0}=1, \quad a_{1}=a_{2}=\cdots=a_{2 m+1}=0, \quad b_{0}=b_{1}=\cdots=b_{m+l-2}=0
$$

Using the formula (3) and the values $\beta_{2 m+1, m+l-1}=-2^{6-t}, \beta_{2 m, m+l-1}=$ $2^{1-t}(2 m+1)$ and $\beta_{2 m, m+l}=2^{-t}$ [2], we obtain

$$
c_{2 m+1}=\alpha_{2 m+1}(n)=\beta_{2 m+1, m+l-1} b_{m+l-1}=-2^{6-t} b_{m+l-1}
$$

and hence $b_{m+l-1}=-2^{t-6} \alpha_{2 m+1}(n)$. Similarly,

$$
c_{2 m}=\alpha_{2 m}(n)=\beta_{2 m, m+l-1} b_{m+l-1}+\beta_{2 m, m+l} b_{m+l}=2^{1-t}(2 m+1) b_{m+l-1}+2^{-t} b_{m+l}
$$

Hence $b_{m+l}=2^{t} \alpha_{2 m}(n)-2(2 m+1) b_{m+l-1}=2^{t} \alpha_{2 m}(n)+2^{t-5}(2 m+1) \alpha_{2 m+1}(n)$. The values of $b_{m+l}$ are given in Table1.

For the given values of $n$ above the parameter $b_{m+l}$ is negative, which is impossible.

## References

[1] C. Bachoc and P. Gaborit, Designs and self-dual codes with long shadows, J. Combin. Theory Ser. A, 105 (2004), 15-34.
[2] S. Bouyuklieva and W. Willems, Singly-even self-dual codes with minimal shadow, IEEE Transactions on Information Theory (to appear), [arXiv:1106.5936v1].
[3] J.H.Conway and N.J.A.Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, $\mathbf{3 6}$ (1990), 13191333.
[4] N. Elkies, Lattices and codes with long shadows, Math. Res. Lett. (5) (1995), 643-651.
[5] S. Han and J.B. Lee, Nonexistence of some extremal self-dual codes, J. Korean Math. Soc. 43 (2006), 1357-1369.
[6] E.M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory 44 (1998), 134-139.

Table 1: The coefficient $b_{m+l}$ for an $s$-extremal self-dual code of length $n$ and minimum distance $4 m+4$

| $n$ | $b_{m+l}(n)$ |
| :---: | :---: |
| $24 m+2$ | $\frac{(12 m+1)(39-14 m)}{20 m}\binom{5 m}{m-1}$ |
| $24 m+4$ | $\frac{(15-2 m)(8 m+1)(6 m+1)}{2 m(4 m+2)}\binom{5 m}{m-1}$ |
| $24 m+6$ | $\frac{3(4 m+1)(6 m+1)\left(-8 m^{2}+150 m+29\right)}{2 m(4 m+2)(4 m+3)}\binom{5 m}{m-1}$ |
| $24 m+8$ | $\frac{4(3 m+1)\left(-8 m^{3}+334 m^{2}+171 m+21\right)}{m(m+1)(4 m+3)}\binom{5 m+1}{m-1}$ |
| $24 m+10$ | $\frac{2(12 m+5)(4 m+1)\left(-8 m^{3}+614 m^{2}+447 m+81\right)}{m(m+1)(4 m+3)(4 m+5)}\binom{5 m+1}{m-1}$ |
| $24 m+12$ | $\frac{24(2 m+1)\left(-32 m^{4}+3568 m^{3}+4146 m^{2}+1573 m+195\right)}{m(m+1)(4 m+5)(4 m+6)}\binom{5 m+2}{m-1}$ |
| $24 m+14$ | $\frac{24(2 m+1)(12 m+7)\left(-32 m^{4}+4304 m^{3}+5850 m^{2}+2593 m+375\right)}{m(m+1)(4 m+5)(4 m+6)(4 m+7)}\binom{5 m+2}{m-1}$ |
| $24 m+16$ | $\frac{256(3 m+2)(2 m+1)\left(-32 m^{4}+4656 m^{3}+7322 m^{2}+3759 m+630\right)}{m(m+2)(4 m+5)(4 m+6)(4 m+7)}\binom{5 m+3}{m-1}$ |
| $24 m+18^{*}$ | $\frac{384 a_{m}\left(-224 m^{5}+33360 m^{4}+83870 m^{3}+77955 m^{2}+31869 m+4830\right)}{m(m+2)(4 m+5)(4 m+6)(4 m+7)(4 m+9)}\binom{5 m+3}{m-1}$ |
| $24 m+20^{*}$ | $\frac{64 a_{m}(6 m+5)(20 m+11)\left(-8 m^{3}+1210 m^{2}+1743 m+630\right)}{m(m+2)(2 m+3)(4 m+7)(4 m+9)(2 m+5)}\binom{5 m+4}{m-1}$ |

$$
{ }^{*} a_{m}=(2 m+1)(4 m+3)
$$


[^0]:    ${ }^{1}$ The research of this author is partially supported by VTU Science Fund under Contract RD-642-01/26.07.2010

