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Abstract. In this paper we prove that there exists an exponential number of
nonequivalent propelinear extended perfect binary codes of length growing to infin-
ity. All such codes have small rank, which is one unit greater than the dimension of
the extended Hamming code of the same length. We investigate the properties of
these codes.

1 Introduction

Let Eq = {0, 1, . . . , q − 1} be a set of q elements, where we distinguish one of
them and write it as 0. We call words the elements of the cartesian product En

q

equipped with the Hamming distance d. Denote by 0 the word (0, . . . , 0). The
action of an isometry of En

q can be presented as the action of a permutation π
on the coordinate positions {1, . . . , n} followed by the action of n permutations
σ1, . . . , σn of Eq: π(x1, . . . , xn) = (xπ−1(1), . . . , xπ−1(n)), (σ1, . . . , σn)(x1, . . . ,
xn) = (σ1(x1), . . . , σn(xn)). The permutation σ = (σ1, . . . , σn) will be called a
multi-permutation. The composition σ ◦ σ′ of multi-permutations σ and σ′ is
the multi-permutation (σ1 ◦ σ′1, . . . , σn ◦ σ′n), where σi ◦ σ′i is the composition
σi ◦ σ′i(xi) = σi(σ′i(xi)), for any i ∈ {1, 2, . . . , n}. By (σ; π)(x) we denote the
image of x under an isometry (σ;π) : (σ;π)(x) = σ(π(x)). A q-ary code C of
length n is a subset of En

q . Denote by Iso(C) the isometry group of the code C,
that is, the subgroup of all isometries of En

q fixing C.
Definition 1. A q-ary code C of length n is called propelinear if for

any codeword x there exists a permutation πx and a multi-permutation σx =
(σx,1, . . . , σx,n) satisfying
(i) for any x ∈ C it holds (σx; πx)(C) = C and (σx;πx)(0) = x,
(ii) if y ∈ C and z = (σx;πx)(y), then πz = πx ◦ πy and σz,i = σx,i ◦ σy,π−1

x (i),

for any i ∈ {1, . . . , n}; or, equivalently, (σz; πz) = (σx;πx)(σy;πy).
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A q-ary code is called transitive if the isometry group of the code acts
transitively on its codewords, i. e., the code satisfies the property (i) in Def-
inition 1. Transitive codes are studied in [10]. As in the binary case, in the
q-ary case, given a q-ary propelinear code C we can define the operation ? as
x ? v = (σx; πx)(v) for any x ∈ C, and any v ∈ En

q . We denote by (C, π, σ, ?)
the propelinear structure, and sometimes by (C, ?) when we do not require any
information about permutations. The code C with operation ? form a group.
Note that there can exist many different propelinear structures on a propelinear
code, including nonisomorphic ones (for binary case see [3]).

In [1,7–9], some properties of binary propelinear codes are studied. In [2,3],
the relations between classes of propelinear and transitive codes are investi-
gated, the classes of propelinear and transitive codes are different – the binary
Best code of length 10 is shown to be transitive, but not propelinear. The pre-
vious lower bound on the number of nonequivalent propelinear extended perfect
binary codes of length n = 2m,m ≥ 4 was blog2(m/2)c2, see [2, 3], the codes
have different ranks. In the paper we prove that all transitive extended perfect
binary codes from [6] are propelinear. Despite the fact that the new class of
propelinear codes obtained in this paper is larger than the old class from [2,3],
it does not cover the old one, since all the codes in the new class have small
rank, which is one unit greater than the dimension of the extended Hamming
code of the same length. In [2,3] there were found propelinear codes with bigger
ranks, therefore the result [2, 3] keeps current.

2 Isotopic propelinear MDS codes

A q-ary code of length n, satisfying the property (i) in Definition 1 with πx =
Idn for any x in the code is called an isotopic transitive code. A notion of isotopic
transitivity was introduced by Potapov in [6] and used for constructing an
exponential number of nonequivalent transitive extended binary perfect codes
of length n as n goes to infinity. We call a q-ary propelinear structure on a code
C of length n isotopic propelinear, if for any x ∈ C it holds πx = Idn. If there
is an isotopic propelinear structure on a code C, we call C isotopic propelinear.

A function f : Em−1
q → Eq is called a (m − 1)-ary quasigroup of or-

der q if f(x1, . . . , xm−1) 6= f(y1, . . . , ym−1) for any words (x1, . . . , xm−1) and
(y1, . . . , ym−1) from Em−1

q that differs in only one position. It is known that
there exists a one-to-one correspondence between (m − 1)-ary quasigroups of
order q and MDS q-ary codes of length m. Given a (m − 1)-ary quasigroup f
we can construct the code {(x, f(x)) : x ∈ Em−1

q }.
Consider E4 = {0, 1, 2, 3}. We use two operations defined in E4: ∗ to refer

to the addition considering the elements in E4 as elements in Z4, and ⊕ to
refer to the addition when we see the elements in E4 as elements in Z2 × Z2

through the Gray map given by 0 → (0, 0), 1 → (0, 1), 2 → (1, 1), 3 → (1, 0).
Next examples were used in [6] to obtain extended perfect transitive codes.
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Example 1. Let us consider the function x1 ∗ x2 from E2
4 to E4. From the

correspondence between MDS codes and quasigroups we have that {(x1, x2, x1∗
x2) : x1, x2 ∈ E4} is a MDS code. It is straightforward to see that this code is an
isotopic propelinear code with the corresponding permutations σx,1(y) = x1 ∗y,
σx,2(y) = x2 ∗ y, σx,3(y) = x3 ∗ y for any y ∈ E4, where x3 = x1 ∗ x2.

Example 2. Let x1⊕x2 be the function from E2
4 to E4. The corresponding

MDS code is isotopic propelinear with the permutations σx,1(y) = x1 ⊕ y,
σx,2(y) = x2 ⊕ y, σx,3(y) = x3 ⊕ y for y ∈ E4, where x3 = x1 ⊕ x2.

Potapov [6] proved the isotopic transitivity of quaternary MDS codes, ob-
tained from an isotopic transitive MDS code M and the MDS code from Ex-
ample 2, using the following concatenation construction:

{(x1, . . . , xi−1, y1, . . . , yr, xi+1, . . . , xm) : y1⊕y2⊕. . .⊕yr = xi, x = (x1, . . . , xm) ∈ M},
(1)

for some fixed i, 1 ≤ i ≤ m− 1, and for any r = 1, 2, . . .
If the initial code corresponds to a quasigroup f , that is, M = {(x, f(x)) :

x ∈ Em−1
4 } then the constructed code corresponds to the following composi-

tion of the quasigroup f and the quasigroup from Example 2: g(x1, . . . , xi−1,
y1, . . . , yr, xi+1, . . . , xm−1) = f(x1, . . . , xi−1, y1 ⊕ y2 ⊕ . . .⊕ yr, xi+1, . . . , xm−1).
Given a permutation σ on the elements of E4 and a word y = (y1, . . . , yr) in Er

4

such that y1 ⊕ . . .⊕ yr = σ(0) we define the permutations τy,1, . . . , τy,r in E4:

τy,s(α) = σ(α)⊕y1⊕. . .⊕yr⊕ys = σ(α)⊕σ(0)⊕ys, where s ∈ {1, 2, . . . , r}. (2)

Proposition 1. Let (M, σ, ?) be a quaternary isotopic propelinear MDS code
of length m and M ′ = {(y1, . . . , yr, x2, . . . , xm)}, where (y1, . . . , yr) ∈ Er

4 , y1 ⊕
y2⊕ . . .⊕ yr = x1, (x1, . . . , xm) ∈ M. Then (M ′, δ, ?) is an isotopic propelinear
structure on the MDS code M ′ with δz = (τy,1, . . . , τy,r, σx,2, . . . , σx,m), assigned
to the word z = (y1, . . . , yr, x2, . . . , xm), where τy,s is defined in (2) with σx,1

as the permutation σ, for any s ∈ {1, 2, . . . , r}.
Potapov [6] considered quasigroups of the following form: f(x1, . . . , xn−1) =

(x1 ⊕ . . . ⊕ xi1) ∗ (xi1+1 ⊕ . . . ⊕ xi2) ∗ . . . ∗ (xim−2+1 ⊕ . . . ⊕ xn−1), where 1 ≤
i1 ≤ . . . ≤ im−1 ≤ n− 1 (we denote this quasigroup by fi1,...,im−2), and proved
the transitivity of any MDS code corresponding to a quasigroup of this type.
Applying construction (1) and Proposition 1 a proper number of times, we
prove that the code M ′ = {(x, fi1,...,im−2(x) : x ∈ En−1

4 } is isotopic propelinear:

Corollary 1. Let M ′ = {(x, fi1,...,im−2(x)) : x ∈ En−1
4 }. Then there exists an

isotopic propelinear structure (M ′, σ, ?), with the multi-permutation σx assigned
to a codeword x being such that σx,ij+t(α) = (α ∗ (xij+1 ⊕ . . .⊕ xij+1))⊕ xij+t,
for 1 ≤ t ≤ ij+1 − ij and 0 ≤ j ≤ m− 2, i0 = 0.
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Corollary 2. There exist at least 1
4(n−1)

√
3
eπ
√

2(n−1)/3(1 + o(1)) nonequivalent
quaternary isotopic propelinear MDS codes of length n, for n going to infinity.

3 Propelinear extended perfect codes

Let C0 be the binary extended Hamming code of length 4: C0 = {(0, 0, 0, 0),
(1, 1, 1, 1)}. Let ea mean the all-zeroes vector in E4

2 , except for the ath coordi-
nate which is 1, e0 = e4. Define the codes in E4

2 :

Cr
a = C0 + (1 + r)e0 + ea, for r ∈ {0, 1}, a ∈ E4. (3)

Now consider the Phelps concatenation construction [5], see also [11]:

C =
⋃

(h1,...,hn)∈H

⋃

(a1,...,an)∈M

Ch1
a1
× . . .× Chn

an
, (4)

where H is an extended Hamming code of length n, M is a quaternary MDS
code of length n and codes Chi

ai
, i = 1, . . . , n, are defined in (3). Using the

construction (4), Potapov [6] found a large class of transitive extended perfect
codes taking M to be one of the MDS codes corresponding to quasigroups

fi1,...,im−2(x1, . . . , xn−1) = (x1⊕. . .⊕xi1)∗(xi1+1⊕. . .⊕xi2)∗. . .∗(xim−2+1⊕. . .⊕xn−1),
(5)

for any i1, . . . , im−2, such that 1 ≤ i1 < . . . < im−2 < n− 1.
In the following theorem we show that extended perfect Phelps code [5]

constructed from an isotopic propelinear MDS codes is propelinear. The proof
is based on a constructive approach, which we omit here and can be found in [4].

Theorem 1. Let M be a quaternary isotopic propelinear MDS code of length
n, H be a binary extended Hamming code of length n. Then, the code (4) is a
binary propelinear extended perfect code of length 4n.

And finally considering Potapov MDS codes corresponding to quasigroups
of the type fi1,...,im−2(a1, . . . , an−1) = (a1 ⊕ . . . ⊕ ai1) ∗ (ai1+1 ⊕ . . . ⊕ ai2) ∗ . . . ∗
(aim−2+1⊕ . . .⊕an−1) and applying the results of the previous section we obtain:

Theorem 2. There exist at least 1
8n2

√
3
eπ
√

2n/3(1 + o(1)) nonequivalent prope-
linear extended perfect binary codes of length 4n, for n going to infinity. These
are the codes (4), corresponding to Potapov MDS codes:

⋃

h∈H

⋃

(a1,...,an−1)∈En−1
4

Ch1
a1
× . . .× Chn−1

an−1
× Chn

fi1,...,im−2
(a1,...,an−1).

All such codes have small rank, which is one unit greater than the dimension
of the extended Hamming code of the same length.
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4 Kernels

In this section we describe the kernels of Phelps codes, considered by Potapov
in [6] and establish whether the propelinear structures of the codes defined in
Theorem 2 are normalized or not.

Further on, we consider only quaternary MDS codes. The kernel of a quater-
nary MDS code M is the collection of the codewords preserving the code under
translation, Ker(M) = {a ∈ M : a⊕M = M}, where ⊕ means component-wise
“addition”: a⊕ b = (a1 ⊕ b1, . . . , an ⊕ bn).

Proposition 2. Let M be a quaternary MDS code of length n, H be an extended
Hamming code of length n, C =

⋃
h∈H

⋃
a∈M Ch1

a1
× . . .×Chn

an
. Then a codeword

from the code C
h′1
a′1
× . . . × C

h′n
a′n

belongs to Ker(C) if and only if the word a′ =
(a′1, . . . , a

′
n) belongs to Ker(M).

From now on, we consider a codeword of a MDS code corresponding to a
quasigroup f as (a, f(a)). For the case of Potapov MDS codes, i.e., MDS code
corresponding to the quasigroup fi1,...,im−2(a1, . . . , an−1) = (a1 ⊕ . . . ⊕ ai1) ∗
(ai1+1⊕ . . .⊕ai2)∗ . . .∗ (aim−2+1⊕ . . .⊕an−1), we obtain the following criterion:

Theorem 3. Let M = {(a, fi1,...,im−2(a)) : a ∈ En−1
4 } be a MDS code. Then

(a, fi1,...,im−2(a)) belongs to Ker(M) if and only if the word of partial sums
(⊕i1

j=1aj ,⊕i2
j=i1+1aj , . . . ,⊕n−1

j=im−2+1aj) belongs to {0, 2}m−1 for odd m and to
{0, 2}m−1 ∪ {1, 3}m−1 for even m.

From Theorem 3 and Proposition 2 we obtain the values for the size of
kernel of Phelps codes, corresponding to Potapov MDS codes:

Corollary 3. Let C be the code obtained by Phelps construction

C =
⋃

h∈H

⋃

(a,fi1,...,im−2
(a))∈M

Ch1
a1
× . . .× Chn−1

an−1
× Chn

fi1,...,im−2
(a1,...,an−1).

If m is odd then |Ker(C)| = 23n−2−log2(n); if m is even |Ker(C)| = 23n−1−log2(n).

5 Normality

A propelinear structure on a binary code is called normalized if the codewords
of the same coset of the code by the kernel have the same assigned permuta-
tion [3]. Analyzing the propelinear structure on Phelps codes corresponding
to Potapov MDS code from Theorem 2 (see [4]), and using the description of
kernels obtained in previous section, we obtain
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Theorem 4. Let (C, π, σ, ?) be the propelinear structure in (4), where

C =
⋃

h∈H

⋃

(a1,...,an−1)∈En−1
4

Ch1
a1
× . . .× Chn−1

an−1
× Chn

fi1,...,im−2
(a1,...,an−1).

Then, if m is odd, (C, π, σ, ?) is normalized, otherwise it is not normalized, but
there exist at least 2n−2 different normalized propelinear structures on C.
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[1] J. Borges, J. Rifà, “A characterization of 1-perfect additive codes”, IEEE
Trans. Inform. Theory, 45, 1688–1697, 1999.
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