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Abstract. The cyclicity criterion of separable Goppa codes is presented. It is
shown that the extended cyclic Goppa codes are the classical Goppa codes.

1 Introduction

Goppa codes of length n are determined by two objects: the Goppa poly-
nomial G(x) of degree t with coefficients from field GF (qm) and a set L =
{α1, α2, . . . , αn} , where αi 6= αj , G(αi) 6= 0, αi ∈ GF (qm).

The Goppa code consists of all q-ary vectors a = (a1a2 . . . an) such that

n∑

i=1

ai
1

x− αi
≡ 0 mod G(x) .

The minimum distance of the Goppa code is d ≥ t + 1 and the code dimension
is k ≥ n −mt . The Goppa code is called separable if the Goppa polynomial
G is a separable polynomial [1]. It is known that the minimum distance of
binary separable code satisfies inequality d ≥ 2t + 1. In case this polynomial is
irreducible over the field GF (2m) the code is called irreducible. The Goppa code
is called classical if the set L ⊆ GF (qm) . L is called a set of numerator positions
of the codeword. In this case the length of the codeword is n = |L| ≤ qm. The
Goppa code is called ”extended” or ”the Goppa code with an additional parity
check” if the set L = GF (qm)

⋃{∞}. In the case T.Berger [6] calls L as support
of the Goppa code. The length of the extended Goppa code is n = qm + 1.

It is known that there are cyclic codes among separable codes. These are bi-
nary extended Goppa codes with the Goppa polynomial G(x) = x2+x+A,A ∈
GF (2m). The cyclicity problem of extended Goppa codes has been studied
in [2–4]. [5] is a generalization of these researches where the cyclicity criterion
of extended Goppa codes is formulated. Let K be the finite field GF (2m) and

K = K
⋃{∞}, G = PGL(2, 2m) [5]. Let

(
a b
c d

)
is a nonsingular matrix

over K , ad + cb 6= 0 and transformation x → θ(x) = ax+b
cx+d .
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Lemma 1. (Lemma 3 [5]) Let us correspond to an arbitrary element θ ∈ G the

matrix
(

a b
c d

)
over K determined up to a scalar factor and the substitution

x → θ(x) = ax+b
cx+d . The length of a nontrivial orbit of substitution θ of the set

K is equal to the order o(θ) of element θ ∈ G.

Lemma 2. (Lemma5 [5]) Group G that is considered to be a group of substi-
tutions of the set K = K

⋃{∞} contains the cycle θ1 of the length 2m + 1 and
the cycle θ2 of the length 2m − 1 such that θ−1

2 (β1) = β1 and θ−1
2 (β2) = β2,

β1, β2 ∈ F .

Corollary 1. The group G contains the cycles θi of the length li: where li takes
values of all possible divisors of 2m − 1 or 2m + 1 , li : li|2m − 1 or li|2m + 1.

In this work we will generalize the results of papers [5–8] in particular we
will present a development of Lemma 6 [5] which was formulated for extended
Goppa codes for the case of classical Γ(L,G) Goppa code (L ⊆ GF (2m)) .

2 Main results

Theorem 1. The following condition is sufficient condition for the cyclicity of
the separable (n, k, d ≥ 6) Goppa code with a polynomial G(x) of the degree 2
and the numerator set L ⊆ GF (2m):

1. n < 2m − 1, n|2m + 1 or n|2m − 1,

2. L = {α0, α2, . . . , αn−1}, αi ∈ GF (2m), θ−1(αi) = αi+1( mod n) ,

θ ∈ G, θ(x) = ax+b
cx+d ,

3. G(x) = cx2 + (a + d)x + b and G(x) is either irreducible over GF (2m) or
G(β1) = G(β2) = 0, β1 6= β2, β1, β2 ∈ GF (2m),
θ−1(β1) = β1, θ−1(β2) = β2.

4. wt(a) is even for any a = (a1a2 . . . an) ∈ Γ(L,G).

Theorem 2. Let us consider the separable Γ(L,G) code with

L = {α1, α2, . . . αn}, αi ∈ GF (2m), α2l

i = α−1
i for all i = 1, . . . , n, l < m

and
G(x) : deg G(x) = t,

(
xt

)2l

G(x−1)2
l
= AG(x2l

), A ∈ GF (2m).

Any codeword a = (a1a2 . . . an) of this code has an even weight.
n∑

i=1

ai
1

x + αi
≡ 0 mod G(x), wt(a) ≡ 0 mod 2.



90 ACCT2012

Corollary 2. The sufficient cyclicity condition for the separable Γ(L,G)-code
is the following:

1. it exists a transformation θ(x) = ax+b
cx+d such that (cx + d)tθ(G(x)) =

AG(x), t = deg G(x), a, b, c, d, A ∈ GF (2m) and θ−1(L) = L ,

2. L = {α0, α2, . . . , αn−1}, αi ∈ GF (2m), α2l

i = α−1
i , l < m, G(αi) 6= 0,

3.
(
xt

)2l

G(x−1)2
l
= AG(x), A ∈ GF (2m).

Corollary 3. A reversible (n = 2l+1, 2l−2l, 6) Goppa code with the polynomial
G(x) = x2 + rx + 1, r ∈ GF (2l) \ {0} and the set L = {1, α, α2, ....αn−1}, α ∈
GF (22l), αn = 1 is a cyclic separable Goppa code.

Similarly to construction of a cyclic codes as extended Goppa codes [2–4]
with support L =GF (2l)

⋃{∞} and code length n = 2l + 1 or n = 2l − 1,
we can present here the construction of the cyclic (n, k, d ≥ 6) codes as a
classical Goppa codes with the length n : n < 2m + 1 and n|2m + 1 or n|2m − 1
with an additional parity check. In other words, the following corollary can be
formulated.

Corollary 4. The cyclic (n, k − 1, d∗ ≥ 6) code can be obtained from any
(n, k, d ≥ 5) Goppa code with the separable polynomial G(x) = cx2 + (a + d)x +
b, ad + cd 6= 0, a, b, c, d ∈ GF (2m) by addition parity check. n is a orbit length
of a transformation θ(x) = ax+b

cx+d in the set GF (2m) , d∗ is the least odd integer
larger than d. If HΓ is a parity-check matrix of (n, k, d ≥ 5) Goppa code then
the parity-check matrix of the cyclic (n, k − 1, d∗) code can be presented in the

following form: HC =
[

HΓ

I

]
, I = [11....1].

Using group of transformation θ(x) = ax2l
+b

cx2l+d
, l < m−1 which is considered

by O.Moreno for finding symmetry groups of Goppa codes [9], it can prove the
following theorem. This theorem defines the cyclicity criterion for the separable
(n, k, d ≥ 2l+1 + 4) Goppa codes with deg G(x) = 2l + 1 and L ⊆ GF (2m).

Theorem 3. The sufficient conditions for the cyclicity of separable (n, k, d ≥
2l+1 +4) Goppa codes with the polynomial G(x) of degree 2l +1 and the numer-
ator set L ⊆ GF (2m) are the following :

1. n is the orbit length of the transformation θ(x) = ax2l
+b

cx2l+d
in the set GF (2m),

2. L = {α0, α2, . . . , αn−1}, αi ∈ GF (2m), θ−1(αi) = αi+1( mod n),

3. G(x) = cx2l+1 + ax2l
+ dx + b , and G(x) is either irreducible polynomial

over GF (2m) or G(βi) = 0, βi ∈ GF (2m), θ−1(βi) = βi.
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4. wt(a) is even for any a = (a1a2 . . . an) ∈ Γ(L,G).

It is obvious that Corollaries 2, 3, 4 can be generalized for Theorem 3 also.

3 Code examples

Example 1. (Theorem 1) Let us consider a separable Γ1(L,G) code as a cyclic
(21, 8, 6) -code with G(x) = x2 + α714x + α63, α is a primitive element from
GF (212),

L = {αi, i = 0, 2646, 3717, 1953, 1890, 1008, 2583, 2961, 1323, 2079, 2835,
1197, 1575, 3150, 2268, 2205, 441, 1512, 63, 3906, 252},

transformation θ(x) = α6x+α63

x+α447 .
The cyclic Goppa code Γ1(L,G) is the cyclic code with length 21 and gener-

ator polynomial

g(x) = (x + 1)(x6 + x4 + x2 + x + 1)(x6 + x5 + x4 + x2 + 1).

Example 2. (Corollary 3) Let us consider as example of a separable Γ3(L, G)
reversible cyclic code (33, 22, 6) with G(x) = x2 + α560x + α31, α is a primitive
element from GF (210),

L = {αi, i = 0, 62, 93, 527, 961, 992, 31, 155, 682, 217, 930, 744, 341, 496, 465, 775,
403, 248, 620, 868, 186, 434, 806, 651, 279, 589, 558, 713, 310, 124, 837, 372, 899},

transformation θ(x) = α901x+α31

x+α219 .
The cyclic Goppa code Γ3(L,G) is the cyclic code of length 33 and generator

polynomial
g(x) = (x + 1)(x10 + x7 + x5 + x3 + 1).

Example 3. (Theorem 3) Let us consider a separable Γ4(L,G) code as a cyclic
(15, 2, 10)-code with G(x) = x3 +α96x2 +α3x+1, α is a primitive element from
GF (210),

L = {αi, i = 589, 713, 744, 558, 992, 682, 62, 651, 620, 341, 806, 31, 279, 217, 0},

transformation θ(x) = α3x2+1
x2+α96 .

The cyclic Goppa code Γ4(L,G) is the cyclic code of length 15 and generator
polynomial

g(x) = (x + 1)(x4 + x + 1)(x4 + x3 + 1)(x4 + x3 + x2 + x + 1).
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4 Conclusion

In the paper the cyclicity criterion for Goppa codes with separable polynomial
and numerator set has been formulated. It generalizes the known criterion for
extended Goppa codes ( with length n = 2m +1). Our results (Theorems 1 and
3) enable to present as cyclic separable Goppa codes with n 6= 2m−1, n 6= 2m+1

which are not either extended codes, no primitive BCH-codes. As an addition
to examples that were considered above, it can be presented (89,66,8) code
with Goppa polynomial of the degree two. It is BCH- code with the generator
polynomial g(x) = (x + 1)(x11 + x7 + x6 + x + 1)(x11 + x10 + x5 + x4 + 1). And
finally, the extended Goppa codes [1–5] could be presented as classical Goppa
codes.
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