Cyclic separable Goppa codes

Sergey V. Bezzateev
bsv@aanet.ru
Natalia A. Shekhunova
sna@delfa.net
St. Petersburg State University of Aerospace Insrtumentation, Bolshaya Morskaya 67 ,
St. Petersburg, 190000, Russia

Abstract

The cyclicity criterion of separable Goppa codes is presented. It is shown that the extended cyclic Goppa codes are the classical Goppa codes.

1 Introduction

Goppa codes of length n are determined by two objects: the Goppa polynomial $G(x)$ of degree t with coefficients from field $G F\left(q^{m}\right)$ and a set $L=$ $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$, where $\alpha_{i} \neq \alpha_{j}, G\left(\alpha_{i}\right) \neq 0, \alpha_{i} \in G F\left(q^{m}\right)$.

The Goppa code consists of all q-ary vectors $\mathbf{a}=\left(a_{1} a_{2} \ldots a_{n}\right)$ such that

$$
\sum_{i=1}^{n} a_{i} \frac{1}{x-\alpha_{i}} \equiv 0 \quad \bmod G(x) .
$$

The minimum distance of the Goppa code is $d \geq t+1$ and the code dimension is $k \geq n-m t$. The Goppa code is called separable if the Goppa polynomial G is a separable polynomial [1]. It is known that the minimum distance of binary separable code satisfies inequality $d \geq 2 t+1$. In case this polynomial is irreducible over the field $G F\left(2^{m}\right)$ the code is called irreducible. The Goppa code is called classical if the set $L \subseteq G F\left(q^{m}\right) . L$ is called a set of numerator positions of the codeword. In this case the length of the codeword is $n=|L| \leq q^{m}$. The Goppa code is called "extended" or "the Goppa code with an additional parity check" if the set $L=G F\left(q^{m}\right) \bigcup\{\infty\}$. In the case T.Berger [6] calls L as support of the Goppa code. The length of the extended Goppa code is $n=q^{m}+1$.

It is known that there are cyclic codes among separable codes. These are binary extended Goppa codes with the Goppa polynomial $G(x)=x^{2}+x+A, A \in$ $G F\left(2^{m}\right)$. The cyclicity problem of extended Goppa codes has been studied in $[2-4]$. [5] is a generalization of these researches where the cyclicity criterion of extended Goppa codes is formulated. Let K be the finite field $G F\left(2^{m}\right)$ and $\bar{K}=K \bigcup\{\infty\}, G=P G L\left(2,2^{m}\right)$ [5]. Let $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ is a nonsingular matrix over $K, a d+c b \neq 0$ and transformation $x \rightarrow \theta(x)=\frac{a x+b}{c x+d}$.

Lemma 1. (Lemma 3 [5]) Let us correspond to an arbitrary element $\theta \in G$ the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ over K determined up to a scalar factor and the substitution $x \rightarrow \theta(x)=\frac{a x+b}{c x+d}$. The length of a nontrivial orbit of substitution θ of the set \bar{K} is equal to the order $o(\theta)$ of element $\theta \in G$.

Lemma 2. (Lemma5 [5]) Group G that is considered to be a group of substitutions of the set $\bar{K}=K \bigcup\{\infty\}$ contains the cycle θ_{1} of the length $2^{m}+1$ and the cycle θ_{2} of the length $2^{m}-1$ such that $\theta_{2}^{-1}\left(\beta_{1}\right)=\beta_{1}$ and $\theta_{2}^{-1}\left(\beta_{2}\right)=\beta_{2}$, $\beta_{1}, \beta_{2} \in F$.

Corollary 1. The group G contains the cycles θ_{i} of the length l_{i} : where l_{i} takes values of all possible divisors of $2^{m}-1$ or $2^{m}+1, l_{i}: l_{i} \mid 2^{m}-1$ or $l_{i} \mid 2^{m}+1$.

In this work we will generalize the results of papers [5-8] in particular we will present a development of Lemma 6 [5] which was formulated for extended Goppa codes for the case of classical $\Gamma(L, G)$ Goppa code $\left(L \subseteq G F\left(2^{m}\right)\right)$.

2 Main results

Theorem 1. The following condition is sufficient condition for the cyclicity of the separable $(n, k, d \geq 6)$ Goppa code with a polynomial $G(x)$ of the degree 2 and the numerator set $L \subseteq G F\left(2^{m}\right)$:

1. $n<2^{m}-1, n \mid 2^{m}+1$ or $n \mid 2^{m}-1$,
2. $L=\left\{\alpha_{0}, \alpha_{2}, \ldots, \alpha_{n-1}\right\}, \alpha_{i} \in G F\left(2^{m}\right), \theta^{-1}\left(\alpha_{i}\right)=\alpha_{i+1(\bmod n)}$, $\theta \in G, \theta(x)=\frac{a x+b}{c x+d}$,
3. $G(x)=c x^{2}+(a+d) x+b$ and $G(x)$ is either irreducible over $G F\left(2^{m}\right)$ or $G\left(\beta_{1}\right)=G\left(\beta_{2}\right)=0, \beta_{1} \neq \beta_{2}, \beta_{1}, \beta_{2} \in G F\left(2^{m}\right)$, $\theta^{-1}\left(\beta_{1}\right)=\beta_{1}, \theta^{-1}\left(\beta_{2}\right)=\beta_{2}$.
4. $w t(\boldsymbol{a})$ is even for any $\boldsymbol{a}=\left(a_{1} a_{2} \ldots a_{n}\right) \in \Gamma(L, G)$.

Theorem 2. Let us consider the separable $\Gamma(L, G)$ code with

$$
L=\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right\}, \alpha_{i} \in G F\left(2^{m}\right), \alpha_{i}^{2^{l}}=\alpha_{i}^{-1} \text { for all } i=1, \ldots, n, l<m
$$

and

$$
G(x): \operatorname{deg} G(x)=t,\left(x^{t}\right)^{2^{l}} G\left(x^{-1}\right)^{2^{l}}=A G\left(x^{2^{l}}\right), A \in G F\left(2^{m}\right)
$$

Any codeword $\boldsymbol{a}=\left(a_{1} a_{2} \ldots a_{n}\right)$ of this code has an even weight.

$$
\sum_{i=1}^{n} a_{i} \frac{1}{x+\alpha_{i}} \equiv 0 \quad \bmod G(x), w t(a) \equiv 0 \quad \bmod 2
$$

Corollary 2. The sufficient cyclicity condition for the separable $\Gamma(L, G)$-code is the following:

1. it exists a transformation $\theta(x)=\frac{a x+b}{c x+d}$ such that $(c x+d)^{t} \theta(G(x))=$ $A G(x), t=\operatorname{deg} G(x), a, b, c, d, A \in G F\left(2^{m}\right)$ and $\theta^{-1}(L)=L$,
2. $L=\left\{\alpha_{0}, \alpha_{2}, \ldots, \alpha_{n-1}\right\}, \alpha_{i} \in G F\left(2^{m}\right), \alpha_{i}^{2^{l}}=\alpha_{i}^{-1}, l<m, G\left(\alpha_{i}\right) \neq 0$,
3. $\left(x^{t}\right)^{2^{l}} G\left(x^{-1}\right)^{2^{l}}=A G(x), A \in G F\left(2^{m}\right)$.

Corollary 3. A reversible $\left(n=2^{l}+1,2^{l}-2 l, 6\right)$ Goppa code with the polynomial $G(x)=x^{2}+r x+1, r \in G F\left(2^{l}\right) \backslash\{0\}$ and the set $L=\left\{1, \alpha, \alpha^{2}, \ldots . \alpha^{n-1}\right\}, \alpha \in$ $G F\left(2^{2 l}\right), \alpha^{n}=1$ is a cyclic separable Goppa code.

Similarly to construction of a cyclic codes as extended Goppa codes [2-4] with support $L=G F\left(2^{l}\right) \bigcup\{\infty\}$ and code length $n=2^{l}+1$ or $n=2^{l}-1$, we can present here the construction of the cyclic $(n, k, d \geq 6)$ codes as a classical Goppa codes with the length $n: n<2^{m}+1$ and $n \mid 2^{m}+1$ or $n \mid 2^{m}-1$ with an additional parity check. In other words, the following corollary can be formulated.
Corollary 4. The cyclic ($n, k-1, d^{*} \geq 6$) code can be obtained from any $(n, k, d \geq 5)$ Goppa code with the separable polynomial $G(x)=c x^{2}+(a+d) x+$ $b, a d+c d \neq 0, a, b, c, d \in G F\left(2^{m}\right)$ by addition parity check. n is a orbit length of a transformation $\theta(x)=\frac{a x+b}{c x+d}$ in the set $G F\left(2^{m}\right), d^{*}$ is the least odd integer larger than d. If H_{Γ} is a parity-check matrix of $(n, k, d \geq 5)$ Goppa code then the parity-check matrix of the cyclic $\left(n, k-1, d^{*}\right)$ code can be presented in the following form: $H_{C}=\left[\begin{array}{c}H_{\Gamma} \\ I\end{array}\right], I=[11 \ldots . .1]$.

Using group of transformation $\theta(x)=\frac{a x^{2^{l}}+b}{c x^{2^{l}}+d}, l<m-1$ which is considered by O.Moreno for finding symmetry groups of Goppa codes [9], it can prove the following theorem. This theorem defines the cyclicity criterion for the separable $\left(n, k, d \geq 2^{l+1}+4\right)$ Goppa codes with $\operatorname{deg} G(x)=2^{l}+1$ and $L \subseteq G F\left(2^{m}\right)$.
Theorem 3. The sufficient conditions for the cyclicity of separable ($n, k, d \geq$ $\left.2^{l+1}+4\right)$ Goppa codes with the polynomial $G(x)$ of degree $2^{l}+1$ and the numerator set $L \subseteq G F\left(2^{m}\right)$ are the following :

1. n is the orbit length of the transformation $\theta(x)=\frac{a x^{2^{l}}+b}{c x^{2}+d}$ in the set $G F\left(2^{m}\right)$,
2. $L=\left\{\alpha_{0}, \alpha_{2}, \ldots, \alpha_{n-1}\right\}, \alpha_{i} \in G F\left(2^{m}\right), \theta^{-1}\left(\alpha_{i}\right)=\alpha_{i+1(\bmod n)}$,
3. $G(x)=c x^{2^{l}+1}+a x^{2^{l}}+d x+b$, and $G(x)$ is either irreducible polynomial over $G F\left(2^{m}\right)$ or $G\left(\beta_{i}\right)=0, \beta_{i} \in G F\left(2^{m}\right), \theta^{-1}\left(\beta_{i}\right)=\beta_{i}$.
4. $w t(\boldsymbol{a})$ is even for any $\boldsymbol{a}=\left(a_{1} a_{2} \ldots a_{n}\right) \in \Gamma(L, G)$.

It is obvious that Corollaries 2, 3, 4 can be generalized for Theorem 3 also.

3 Code examples

Example 1. (Theorem 1) Let us consider a separable $\Gamma_{1}(L, G)$ code as a cyclic $(21,8,6)$-code with $G(x)=x^{2}+\alpha^{714} x+\alpha^{63}, \alpha$ is a primitive element from $G F\left(2^{12}\right)$,
$L=\left\{\alpha^{i}, i=0,2646,3717,1953,1890,1008,2583,2961,1323,2079,2835\right.$, $1197,1575,3150,2268,2205,441,1512,63,3906,252\}$,
transformation $\theta(x)=\frac{\alpha^{6} x+\alpha^{63}}{x+\alpha^{447}}$.
The cyclic Goppa code $\Gamma_{1}(L, G)$ is the cyclic code with length 21 and generator polynomial

$$
g(x)=(x+1)\left(x^{6}+x^{4}+x^{2}+x+1\right)\left(x^{6}+x^{5}+x^{4}+x^{2}+1\right) .
$$

Example 2. (Corollary 3) Let us consider as example of a separable $\Gamma_{3}(L, G)$ reversible cyclic code $(33,22,6)$ with $G(x)=x^{2}+\alpha^{560} x+\alpha^{31}, \alpha$ is a primitive element from $G F\left(2^{10}\right)$,

$$
L=\left\{\alpha^{i}, i=0,62,93,527,961,992,31,155,682,217,930,744,341,496,465,775,\right.
$$ $403,248,620,868,186,434,806,651,279,589,558,713,310,124,837,372,899\}$,

transformation $\theta(x)=\frac{\alpha^{901} x+\alpha^{31}}{x+\alpha^{219}}$.
The cyclic Goppa code $\Gamma_{3}(L, G)$ is the cyclic code of length 33 and generator polynomial

$$
g(x)=(x+1)\left(x^{10}+x^{7}+x^{5}+x^{3}+1\right) .
$$

Example 3. (Theorem 3) Let us consider a separable $\Gamma_{4}(L, G)$ code as a cyclic $(15,2,10)$-code with $G(x)=x^{3}+\alpha^{96} x^{2}+\alpha^{3} x+1, \alpha$ is a primitive element from $G F\left(2^{10}\right)$,

$$
L=\left\{\alpha^{i}, i=589,713,744,558,992,682,62,651,620,341,806,31,279,217,0\right\}
$$

transformation $\theta(x)=\frac{\alpha^{3} x^{2}+1}{x^{2}+\alpha^{96}}$.
The cyclic Goppa code $\Gamma_{4}(L, G)$ is the cyclic code of length 15 and generator polynomial

$$
g(x)=(x+1)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right) .
$$

4 Conclusion

In the paper the cyclicity criterion for Goppa codes with separable polynomial and numerator set has been formulated. It generalizes the known criterion for extended Goppa codes (with length $n=2^{m}+1$). Our results (Theorems 1 and $3)$ enable to present as cyclic separable Goppa codes with $n \neq 2^{m}-1, n \neq 2^{m+1}$ which are not either extended codes, no primitive BCH -codes. As an addition to examples that were considered above, it can be presented $(89,66,8)$ code with Goppa polynomial of the degree two. It is BCH- code with the generator polynomial $g(x)=(x+1)\left(x^{11}+x^{7}+x^{6}+x+1\right)\left(x^{11}+x^{10}+x^{5}+x^{4}+1\right)$. And finally, the extended Goppa codes $[1-5]$ could be presented as classical Goppa codes.

References

[1] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North-Holland, 1986.
[2] E.R. Berlecamp , O. Moreno , Extended Double-Error-Gorrecting Binary Goppa Codes Are Cyclic, IEEE Trans. Inform. Theory, 1973, v. 19, n. 6, p. 817-818.
[3] K. K.Tzeng , K.Zimmermann, On Extending Goppa Codes to Cyclic Codes, IEEE Trans. Inform. Theory, 1975, v. 21, n. 6, p. 712-716.
[4] K.K. Tzeng , C.Y. Yu , Characterization Theorems for Extending Goppa Codes to Cyclic Codes, IEEE Trans. Inform. Theory, 1979, v. 25, n. 2, p. 246-250.
[5] A.L. Vishnevetskiy, On cyclicity of extended Goppa codes, Probl. Inform. Transm., 1982, v.XVIII, n.3, pp. 14-18.
[6] T.P.Berger, Goppa and Related Codes Invariant Under a Prescribed Permutation, IEEE Trans. Inform. Theory, 2000, v. 46, n.7, p.2628-2633.
[7] T.P. Berger, Quasi-cyclic Goppa codes, in Proc. ISIT2000, Sorrente, Italie, 2000, p. 195.
[8] T.P. Berger ,New Classes of Cyclic Extended Goppa Codes, IEEE Trans. Inform. Theory, 1999, v. 45, n.4, p.1264-1266.
[9] O. Moreno, Symmetries of Binary Goppa Codes, IEEE Trans. Inform. Theory, 1979, v. 25, n. 5, p. 609-612.

