On complete permutation polynomials

Leonid Bassalygo, Victor Zinoviev

Harkevich Institute for Problems of Information Transmission, Moscow, Russia

International Workshop:
Algebraic and Combinatorial Coding Theory (ACCT-2014).
Svetlogorsk, Russia, September 7-13, 2014

Outline

1 Introduction
2 The case of polynomial $x^{q+2}+b x$
■ Fields of even characteristic

- Fields of odd characteristic

3 The case of polynomial
$x^{q^{2}+q+2}+b x$

- Fields of even characteristic
- Fields of odd characteristic

4 References

Introduction

In the recent times the interest to the special case of the permutation polynomials - complete permutation polynomials has appeared again.

Introduction

In the recent times the interest to the special case of the permutation polynomials - complete permutation polynomials has appeared again.
A polynomial $f(x)$ over a finite field \mathbb{F}_{q} of order q is called a complete permutation polynomial, if it is a permutation polynomial and there exists an element $b \in \mathbb{F}_{q}^{*}$, such that $f(x)+b x$ has also this property.

Introduction

Lemma [Niederreiter, Robinson, 1982]
The polynomial

$$
f(x)=x^{1+\frac{q-1}{n}}+b x, \quad n \mid(q-1), \quad n>1
$$

is a permutation polynomial over \mathbb{F}_{q} if and only if:

Introduction

Lemma [Niederreiter, Robinson, 1982]
The polynomial

$$
f(x)=x^{1+\frac{q-1}{n}}+b x, \quad n \mid(q-1), \quad n>1
$$

is a permutation polynomial over \mathbb{F}_{q} if and only if: the element b is such that $(-b)^{n} \neq 1$

Introduction

Lemma [Niederreiter, Robinson, 1982]
The polynomial

$$
f(x)=x^{1+\frac{q-1}{n}}+b x, \quad n \mid(q-1), \quad n>1
$$

is a permutation polynomial over \mathbb{F}_{q} if and only if:
the element b is such that $(-b)^{n} \neq 1$ and the following inequality holds:

$$
\begin{equation*}
\left(\left(b+\omega^{i}\right)\left(b+\omega^{j}\right)^{-1}\right)^{\frac{q-1}{n}} \neq \omega^{j-i} \tag{1}
\end{equation*}
$$

for all i, j, such that $0 \leq i<j<n$, where ω is the fixed primitive root of the nth degree of 1 in the field \mathbb{F}_{q}.

Introduction

Here we use the result of Niederreiter, Robinson for the two first natural cases of polynomials:

$$
\begin{gathered}
\mathbb{F}_{q^{2}}, n=q-1, f(x)=x^{\frac{q^{2}-1}{q-1}+1}+b x=x^{q+2}+b x \\
\mathbb{F}_{q^{3}}, n=q-1, f(x)=x^{\frac{q^{3}-1}{q-1}+1}+b x=x^{q^{2}+q+2}+b x
\end{gathered}
$$

Introduction

Here we use the result of Niederreiter, Robinson for the two first natural cases of polynomials:

$$
\begin{gathered}
\mathbb{F}_{q^{2}}, n=q-1, f(x)=x^{\frac{q^{2}-1}{q-1}+1}+b x=x^{q+2}+b x \\
\mathbb{F}_{q^{3}}, n=q-1, f(x)=x^{\frac{q^{3}-1}{q-1}+1}+b x=x^{q^{2}+q+2}+b x
\end{gathered}
$$

We assume that $q=p^{m}$, where p is the field characteristic and $p^{m}>2$.

The case of polynomial $x^{q+2}+b x$

Consider the field $\mathbb{F}_{q^{2}}$ and set $n=q-1$.

The case of polynomial $x^{q+2}+b x$

Consider the field $\mathbb{F}_{q^{2}}$ and set $n=q-1$. Set $x=\omega^{i}$ and $y=\omega^{j}$. Then Lemma above changes to the following

The case of polynomial $x^{q+2}+b x$

Consider the field $\mathbb{F}_{q^{2}}$ and set $n=q-1$.
Set $x=\omega^{i}$ and $y=\omega^{j}$. Then Lemma above changes to the following
Proposition 1. The polynomial $x^{q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{2}}$ if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and the equation

$$
\begin{equation*}
(x+y)^{2}+(x+y)\left(b+b^{q}\right)+b^{q+1}-x y=0 \tag{2}
\end{equation*}
$$

has no solutions $x, y \in \mathbb{F}_{q}, x \neq 0, y \neq 0, x \neq y$.

L The case of polynomial $x^{q+2}+b x$

LFields of even characteristic

Fields of even characteristic

Let $q=2^{m}, m>1$.
Using the identity $x y=x^{2}+x(x+y)$ and setting $x+y=z$, from the equation (2) we arrive to the equivalent equation

$$
\begin{equation*}
x^{2}+x z+z^{2}+z\left(b+b^{q}\right)+b^{q+1}=0 . \tag{3}
\end{equation*}
$$

L The case of polynomial $x^{q+2}+b x$

Fields of even characteristic

Let $q=2^{m}, m>1$.
Using the identity $x y=x^{2}+x(x+y)$ and setting $x+y=z$, from the equation (2) we arrive to the equivalent equation

$$
\begin{equation*}
x^{2}+x z+z^{2}+z\left(b+b^{q}\right)+b^{q+1}=0 . \tag{3}
\end{equation*}
$$

Hence from Proposition 1 we obtain

Fields of even characteristic

$$
\text { Let } q=2^{m}, m>1 \text {. }
$$

Using the identity $x y=x^{2}+x(x+y)$ and setting $x+y=z$, from the equation (2) we arrive to the equivalent equation

$$
\begin{equation*}
x^{2}+x z+z^{2}+z\left(b+b^{q}\right)+b^{q+1}=0 . \tag{3}
\end{equation*}
$$

Hence from Proposition 1 we obtain
Proposition 2. Let $q=2^{m}, m>1$. The polynomial $x^{q+2}+b x$ is a permutation over the field $F_{q^{2}}$ if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and the equation

$$
\begin{equation*}
x^{2}+x z+z^{2}+z\left(b+b^{q}\right)+b^{q+1}=0 \tag{4}
\end{equation*}
$$

has no solutions in the field \mathbb{F}_{q} for all $z \in \mathbb{F}_{q}^{*}$.

L The case of polynomial $x^{q+2}+b x$

-Fields of even characteristic

Fields of even characteristic

Proposition 2 allows to solve the permutability problem for the polynomial $x^{q+2}+b x$ over $\mathbb{F}_{q^{2}}$. Although it was already solved in [Charpin, Kyureghyan, 2008] and in [Sarkar, Bhattacharya, Cesmelioglu, 2012], our approach essentially differs from the ones used in the papers above.

On complete permutation polynomials

L The case of polynomial $x^{q+2}+b x$
-Fields of even characteristic

Fields of even characteristic

Fields of even characteristic

Theorem 1 (see also [Charpin, Kyureghyan, 2008], and [Sarkar, Bhattacharya, Cesmelioglu, 2012]) Let $q=2^{m}, m>1$. The polynomial $x^{q+2}+b x$ is a permutation polynomial over $\mathbb{F}_{q^{2}}$, if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$, the number m is odd and $b^{3(q-1)}=1$. The number of such different elements b is equal to $2(q-1)$, all these elements can be written in the following form:

$$
b=\alpha^{(q+1)(3 t+1) / 3} \text { or } b=\alpha^{(q+1)(3 t+2) / 3}, \quad t=0,1, \ldots, 2^{m}-2,
$$

where α is a primitive element of the field $\mathbb{F}_{q^{2}}$.
Corollary 1. Let $q=2^{m}$, where $m>1$. The polynomial $b^{-1} x^{q+2}$ is a complete permutation polynomial over the field $\mathbb{F}_{q^{2}}$, if and only if the number m is odd and b satisfies the condition of Theorem 1.

Fields of odd characteristic

Let $q=p^{m}$, where $p \geq 3$. After changing the variables $x+y=z$ and $x-y=u$, Proposition 1 turns into

Fields of odd characteristic

Let $q=p^{m}$, where $p \geq 3$. After changing the variables $x+y=z$ and $x-y=u$, Proposition 1 turns into
Proposition 3. Let $q=p^{m}$ and $p \geq 3$. The polynomial $x^{q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{2}}$ if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and the equation

$$
\begin{equation*}
3 z^{2}+4 z\left(b+b^{q}\right)+4 b^{q+1}+u^{2}=0 \tag{5}
\end{equation*}
$$

has no solutions $u, z \in \mathbb{F}_{q}, u \neq 0$.

On complete permutation polynomials

LThe case of polynomial $x^{q+2}+b x$
-Fields of odd characteristic

Fields of odd characteristic

First consider the case $p=3$.

Fields of odd characteristic

First consider the case $p=3$.
Theorem 2. Let $q=3^{m}$. The polynomial $x^{q+2}+b x$ is a permutation polynomial over the field $\mathbb{F}_{q^{2}}$, if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and $b^{q-1}=-1$. The number of such different elements b equals $q-1$, and all these elements can be presented in the following form:

$$
b=\alpha^{\frac{q+1}{2}(2 t+1)}, \quad t=0,1, \ldots, q-2
$$

where α is a primitive element of the field $\mathbb{F}_{q^{2}}$.

Fields of odd characteristic

First consider the case $p=3$.
Theorem 2. Let $q=3^{m}$. The polynomial $x^{q+2}+b x$ is a permutation polynomial over the field $\mathbb{F}_{q^{2}}$, if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and $b^{q-1}=-1$. The number of such different elements b equals $q-1$, and all these elements can be presented in the following form:

$$
b=\alpha^{\frac{q+1}{2}(2 t+1)}, \quad t=0,1, \ldots, q-2
$$

where α is a primitive element of the field $\mathbb{F}_{q^{2}}$.
Corollary 2. Let $q=3^{m}$. The polynomial $b^{-1} x^{q+2}$ is a complete permutation polynomial over the field $\mathbb{F}_{q^{2}}$ if and only if b satisfies the condition of Theorem 2.

Fields of odd characteristic

For the case $p>3$, solving the quadratic equation, Proposition 3 can be equivalently replaced by

Fields of odd characteristic

For the case $p>3$, solving the quadratic equation, Proposition 3 can be equivalently replaced by
Proposition 4. Let $q=p^{m}$ and $p>3$. The polynomial $x^{q+2}+b x$ is a permutation over $\mathbb{F}_{q^{2}}$, if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and the equation

$$
\begin{equation*}
4 b^{2}-4 b^{q+1}+4 b^{2 q}-3 u^{2}=v^{2} \tag{6}
\end{equation*}
$$

has no solutions $u, v \in \mathbb{F}_{q}, u \neq 0$.

Fields of odd characteristic

Since the number of solutions of the equation $3 u^{2}+v^{2}=a \neq 0$ in the field \mathbb{F}_{q} is not less than $q-1$, and the number of solutions which have $u=0$ is not greater than two, then the equation (6) has a solution $u, v \in \mathbb{F}_{q}, u \neq 0$, if and only if the quadratic equation $w^{2}+3=0$ has a solution in the field \mathbb{F}_{q}.

Fields of odd characteristic

Since the number of solutions of the equation $3 u^{2}+v^{2}=a \neq 0$ in the field \mathbb{F}_{q} is not less than $q-1$, and the number of solutions which have $u=0$ is not greater than two, then the equation (6) has a solution $u, v \in \mathbb{F}_{q}, u \neq 0$, if and only if the quadratic equation $w^{2}+3=0$ has a solution in the field \mathbb{F}_{q}.
Theorem 3. Let $q=p^{m}$ and $p>3$. The polynomial $x^{q+2}+b x$ is a permutation over $\mathbb{F}_{q^{2}}$, if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$, $1-b^{q-1}+b^{2(q-1)}=0$ and the equation $w^{2}+3=0$ has no solution in \mathbb{F}_{q}.

Fields of odd characteristic

Theorem 4. Let $q=p^{m}$, and $p>3$. The polynomial $x^{q+2}+b x$ is a permutation polynomial over the field $\mathbb{F}_{q^{2}}$, if and only if $p=6 k-1, m$ is odd and b is as follows:

$$
\begin{equation*}
b=\alpha^{\frac{q+1}{6}(6 t+1)} \text { or } b=\alpha^{\frac{q+1}{6}(6 t+5)}, \quad t=0,1, \ldots, q-2, \tag{7}
\end{equation*}
$$

where α is a primitive element of $\mathbb{F}_{q^{2}}$.

Fields of odd characteristic

Theorem 4. Let $q=p^{m}$, and $p>3$. The polynomial $x^{q+2}+b x$ is a permutation polynomial over the field $\mathbb{F}_{q^{2}}$, if and only if $p=6 k-1, m$ is odd and b is as follows:

$$
\begin{equation*}
b=\alpha^{\frac{q+1}{6}(6 t+1)} \text { or } b=\alpha^{\frac{q+1}{6}(6 t+5)}, \quad t=0,1, \ldots, q-2, \tag{7}
\end{equation*}
$$

where α is a primitive element of $\mathbb{F}_{q^{2}}$.
The number of different solutions $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ equals $2(q-1)$.

Fields of odd characteristic

Theorem 4. Let $q=p^{m}$, and $p>3$. The polynomial $x^{q+2}+b x$ is a permutation polynomial over the field $\mathbb{F}_{q^{2}}$, if and only if $p=6 k-1, m$ is odd and b is as follows:

$$
\begin{equation*}
b=\alpha^{\frac{q+1}{6}(6 t+1)} \text { or } b=\alpha^{\frac{q+1}{6}(6 t+5)}, \quad t=0,1, \ldots, q-2, \tag{7}
\end{equation*}
$$

where α is a primitive element of $\mathbb{F}_{q^{2}}$.
The number of different solutions $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ equals $2(q-1)$.
Corollary 3. Let $q=p^{m}$, and $p>3$. The polynomial $b^{-1} x^{q+2}$ is a complete permutation polynomial over the field $\mathbb{F}_{q^{2}}$ if and only if $p=6 k-1, m$ is odd and b satisfies the condition of Theorem 4.

The case of polynomial $x^{q^{2}+q+2}+b x$

Proposition 5. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and the equation

$$
\begin{equation*}
(x+y)^{3}-2(x+y) x y+\left((x+y)^{2}-x y\right) B_{1}+(x+y) B_{2}+B_{3}=0 \tag{8}
\end{equation*}
$$

has no solution $x, y \in \mathbb{F}_{q}, x \neq 0, y \neq 0, x \neq y$, where

$$
B_{1}=b^{q^{2}}+b^{q}+b, \quad B_{2}=b^{q+1}+b^{q^{2}+1}+b^{q^{2}+q}, \quad B_{3}=b^{q^{2}+q+1}
$$

On complete permutation polynomials

ᄂ The case of polynomial $x^{q^{2}+q+2}+b x$
LFields of even characteristic

Fields of even characteristic

Let $q=2^{m}$, and $m>1$.

Fields of even characteristic

Let $q=2^{m}$, and $m>1$. Set $x+y=z, x y=u$. Using the identity $x y=x^{2}+x(x+y)$ from (8) we arrive to the equivalent equation

$$
\begin{equation*}
u B_{1}=z^{3}+z^{2} B_{1}+z B_{2}+B_{3} \tag{9}
\end{equation*}
$$

Fields of even characteristic

Let $q=2^{m}$, and $m>1$. Set $x+y=z, x y=u$. Using the identity $x y=x^{2}+x(x+y)$ from (8) we arrive to the equivalent equation

$$
\begin{equation*}
u B_{1}=z^{3}+z^{2} B_{1}+z B_{2}+B_{3} . \tag{9}
\end{equation*}
$$

By the same argument, when $B_{1}=0$ the equation (9) has no solution in \mathbb{F}_{q} for any $u \in \mathbb{F}_{q}, u \neq 0$, since in this case $z \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$.

Fields of even characteristic

Theorem 5. Let $q=2^{m}$ and $m>1$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$ if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and $b+b^{q}+b^{q^{2}}=0$. The number of such different elements b equals $q^{2}-1$.

Fields of even characteristic

Theorem 5. Let $q=2^{m}$ and $m>1$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$ if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and $b+b^{q}+b^{q^{2}}=0$. The number of such different elements b equals $q^{2}-1$.
Remark. Theorem 5 gives the exhaustive answer to the question on permutability of the polynomial $x^{q^{2}+q+2}+b x$ over $\mathbb{F}_{q^{3}}, q=2^{m}, m>1$.

Fields of even characteristic

Theorem 5. Let $q=2^{m}$ and $m>1$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$ if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and $b+b^{q}+b^{q^{2}}=0$. The number of such different elements b equals $q^{2}-1$.
Remark. Theorem 5 gives the exhaustive answer to the question on permutability of the polynomial $x^{q^{2}+q+2}+b x$ over $\mathbb{F}_{q^{3}}, q=2^{m}, m>1$. In [Tu, Zeng, Hu, 2014] and in [Wu-Li-Helleseth-Zhang, 2014-2015] partial answers were obtained:

Fields of even characteristic

Theorem 5. Let $q=2^{m}$ and $m>1$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$ if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and $b+b^{q}+b^{q^{2}}=0$. The number of such different elements b equals $q^{2}-1$.
Remark. Theorem 5 gives the exhaustive answer to the question on permutability of the polynomial $x^{q^{2}+q+2}+b x$ over $\mathbb{F}_{q^{3}}, q=2^{m}, m>1$. In [Tu, Zeng, Hu, 2014] and in [Wu-Li-Helleseth-Zhang, 2014-2015] partial answers were obtained: in [Tu, Zeng, Hu, 2014] for the case $m \equiv 1(\bmod 3)$

Fields of even characteristic

Theorem 5. Let $q=2^{m}$ and $m>1$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$ if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and $b+b^{q}+b^{q^{2}}=0$. The number of such different elements b equals $q^{2}-1$.
Remark. Theorem 5 gives the exhaustive answer to the question on permutability of the polynomial $x^{q^{2}+q+2}+b x$ over $\mathbb{F}_{q^{3}}, q=2^{m}, m>1$. In [Tu, Zeng, Hu, 2014] and in
[Wu-Li-Helleseth-Zhang, 2014-2015] partial answers were obtained:
in [Tu, Zeng, Hu, 2014] for the case $m \equiv 1(\bmod 3)$
and in [Wu, Li, Helleseth, Zhang, 2014-2015] for the case $m \equiv 3$ $(\bmod 9)$, the elements $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ were given for which the polynomial $x^{q^{2}+q+2}+b x$ is a permutation. However, it was not stated that other such elements did not exist.

Fields of even characteristic

Corollary 4. Let $q=2^{m}$ and $m>1$. Then the polynomial $b^{-1} x^{q^{2}+q+2}$ is a complete permutation polynomial over the field $\mathbb{F}_{q^{3}}$ if and only if b satisfies the condition of the Theorem 5.

Fields of odd characteristic

Proposition 6. Let $q=p^{m}$, and $p \geq 3$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and the equation
$(x-y)^{2}\left(2(x+y)+B_{1}\right)+2(x+y)^{3}+3(x+y)^{2} B_{1}+4(x+y) B_{2}+4 B_{3}=0$
has no solution $x, y \in \mathbb{F}_{q}, x \neq 0, y \neq 0, x \neq y$.

Fields of odd characteristic

Proposition 6. Let $q=p^{m}$, and $p \geq 3$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and the equation
$(x-y)^{2}\left(2(x+y)+B_{1}\right)+2(x+y)^{3}+3(x+y)^{2} B_{1}+4(x+y) B_{2}+4 B_{3}=0$
has no solution $x, y \in \mathbb{F}_{q}, x \neq 0, y \neq 0, x \neq y$.
Set $x+y=z$ and $x-y=u$. Then Proposition 6 turns to

Fields of odd characteristic

Proposition 6. Let $q=p^{m}$, and $p \geq 3$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and the equation
$(x-y)^{2}\left(2(x+y)+B_{1}\right)+2(x+y)^{3}+3(x+y)^{2} B_{1}+4(x+y) B_{2}+4 B_{3}=0$
has no solution $x, y \in \mathbb{F}_{q}, x \neq 0, y \neq 0, x \neq y$.
Set $x+y=z$ and $x-y=u$. Then Proposition 6 turns to Proposition 7. Let $q=p^{m}$, and $p \geq 3$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and the equation

$$
\begin{equation*}
u^{2}\left(2 z+B_{1}\right)+2 z^{3}+3 z^{2} B_{1}+4 z B_{2}+4 B_{3}=0 \tag{10}
\end{equation*}
$$

has no solution $u \in \mathbb{F}_{q}^{*}, z \in \mathbb{F}_{q}$.

Fields of odd characteristic

Since for the case $z=-B_{1} / 2$, the equation above reduces to the condition

$$
\begin{equation*}
B_{1}^{3}-4 B_{1} B_{2}+8 B_{3}=0 \tag{11}
\end{equation*}
$$

for the element b, the polynomial $x^{q^{2}+q+2}+b x$ is not permutation over $\mathbb{F}_{q^{3}}$, if the element b satisfies (11), because for any $u \in \mathbb{F}_{q}^{*}$ the equation (10) has the solution $z=-B_{1} / 2$.

Fields of odd characteristic

Now let $B_{1}^{3}-4 B_{1} B_{2}+8 B_{3} \neq 0$ and, therefore, $z \neq-B_{1} / 2$. Then we arrive to the result.

Fields of odd characteristic

Now let $B_{1}^{3}-4 B_{1} B_{2}+8 B_{3} \neq 0$ and, therefore, $z \neq-B_{1} / 2$. Then we arrive to the result.
Proposition 8. Let $q=p^{m}, p \geq 3$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}, D \neq 0$ and the equation

$$
\begin{equation*}
Y^{2}=X^{3}+\frac{C}{D^{2}} X^{2}-\frac{1}{D^{4}} \tag{12}
\end{equation*}
$$

has no solutions $Y, X \in \mathbb{F}_{q}^{*}$.

Fields of odd characteristic

For the case $q \geq 11$ the permutation polynomials over $\mathbb{F}_{q^{3}}$ of type $x^{q^{2}+q+2}+b x$ do not exist (by the Hasse Theorem for the number of solutions of the equation above).

Fields of odd characteristic

For the case $q \geq 11$ the permutation polynomials over $\mathbb{F}_{q^{3}}$ of type $x^{q^{2}+q+2}+b x$ do not exist (by the Hasse Theorem for the number of solutions of the equation above). It remains to consider only the cases $q=3,5,7,9$.

Fields of odd characteristic

For the case $q \geq 11$ the permutation polynomials over $\mathbb{F}_{q^{3}}$ of type $x^{q^{2}+q+2}+b x$ do not exist (by the Hasse Theorem for the number of solutions of the equation above). It remains to consider only the cases $q=3,5,7,9$.
Theorem 6. Let $q=p^{m}$, and $p \geq 3$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation polynomial over the field $\mathbb{F}_{q^{3}}$ if and only if $q=3$ or $q=7$.

Fields of odd characteristic

For the case $q \geq 11$ the permutation polynomials over $\mathbb{F}_{q^{3}}$ of type $x^{q^{2}+q+2}+b x$ do not exist (by the Hasse Theorem for the number of solutions of the equation above). It remains to consider only the cases $q=3,5,7,9$.
Theorem 6. Let $q=p^{m}$, and $p \geq 3$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation polynomial over the field $\mathbb{F}_{q^{3}}$ if and only if $q=3$ or $q=7$.
Because x^{14} (respectively x^{58}) is not a permutation polynomial over the field $\mathbb{F}_{3^{3}}$ (respectively over the field $\mathbb{F}_{7^{3}}$) then the following result holds.

Fields of odd characteristic

For the case $q \geq 11$ the permutation polynomials over $\mathbb{F}_{q^{3}}$ of type $x^{q^{2}+q+2}+b x$ do not exist (by the Hasse Theorem for the number of solutions of the equation above). It remains to consider only the cases $q=3,5,7,9$.
Theorem 6. Let $q=p^{m}$, and $p \geq 3$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation polynomial over the field $\mathbb{F}_{q^{3}}$ if and only if $q=3$ or $q=7$.
Because x^{14} (respectively x^{58}) is not a permutation polynomial over the field $\mathbb{F}_{3^{3}}$ (respectively over the field $\mathbb{F}_{7^{3}}$) then the following result holds.
Corollary 6. Let $q=p^{m}$ and $p \geq 3$. Then the polynomial $b^{-1} x^{q^{2}+q+2}$ is not a complete permutation polynomial over the field $\mathbb{F}_{q^{3}}$ for any $b \in \mathbb{F}_{q^{3}}{ }^{3}$.

References

1. Niederreiter H., Robinson K.H. Complete mappings of finite fields// J. Austral. Math. Soc. (Series A). 1982. V. 33. P. 197-212.
2. Charpin P., Kyureghyan G. M. Cubic monomial bent functions: a subclass of $\mathcal{M}^{*} / /$ SIAM J. Discrete Math. 2003. V.
3. N° 2. P. 650-665.
4. Wu G., Li N., Helleseth T., Zhang Y. Some classes of monomial complete permutation polynomials over finite fields of characteristic two// Finite Fields Appl. 2014, to appear.
5. Tu Z., Zeng X., Hu L. Several calsses of complete permutation polynomials. Finite Fields Appl. 2014. V. 25. N ${ }^{\circ}$ 2. P. 182-193.
6. Lidl R., Niederreiter H. Finite Fields. Encyclopedia of Mathematics and Its Applications. V. 20. Addison-Wesley Publishng Company. London. 1983.
7. Vinogradov I.M. Basics of number theory. VIII Publishing. Moscow: Nauka. 1972.
8. Vladüt S.G., Nogin D. Yu., Tsfasman M.A. Algebraic-geometric Codes. Moscow, Independent Moscow University. 2003.

Fields of odd characteristic

It is known, that the equation $w^{2}+3=0$ has a solution in \mathbb{F}_{p}, if and only if $p=6 k+1$.

Fields of odd characteristic

It is known, that the equation $w^{2}+3=0$ has a solution in \mathbb{F}_{p}, if and only if $p=6 k+1$.
Hence when m is odd and $p=6 k+1$ the equation $w^{2}+3=0$ has a solution in \mathbb{F}_{q}, but when m is odd and $p=6 k-1$ has no solution in \mathbb{F}_{q}. For the even m and $p>3$ the equation $w^{2}+3=0$ has a solution in \mathbb{F}_{q}, since when $m=2 k$ the equation $w^{2}+c=0$, for $c \in F_{p^{k}}$, has always a solution in the quadratic extension $\mathbb{F}_{p^{2 k}}$.

Fields of even characteristic

If $B_{1} \neq 0$, then the polynomial $x^{q^{2}+q+2}+b x$ is a permutation over $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and the equation over x

$$
\begin{equation*}
x^{2}+x z+u=x^{2}+x z+\frac{z^{3}+z^{2} B_{1}+z B_{2}+B_{3}}{B_{1}}=0 \tag{13}
\end{equation*}
$$

has no solution in \mathbb{F}_{q} for any $z \in \mathbb{F}_{q}^{*}$.

Fields of even characteristic

If $B_{1} \neq 0$, then the polynomial $x^{q^{2}+q+2}+b x$ is a permutation over $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and the equation over x

$$
\begin{equation*}
x^{2}+x z+u=x^{2}+x z+\frac{z^{3}+z^{2} B_{1}+z B_{2}+B_{3}}{B_{1}}=0 \tag{13}
\end{equation*}
$$

has no solution in \mathbb{F}_{q} for any $z \in \mathbb{F}_{q}^{*}$.
It can be shown, that there exists $z \in \mathbb{F}_{q}^{*}$, such that (13) has a solution in \mathbb{F}_{q}.

Fields of even characteristic

If $B_{1} \neq 0$, then the polynomial $x^{q^{2}+q+2}+b x$ is a permutation over $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and the equation over x

$$
\begin{equation*}
x^{2}+x z+u=x^{2}+x z+\frac{z^{3}+z^{2} B_{1}+z B_{2}+B_{3}}{B_{1}}=0 \tag{13}
\end{equation*}
$$

has no solution in \mathbb{F}_{q} for any $z \in \mathbb{F}_{q}^{*}$.
It can be shown, that there exists $z \in \mathbb{F}_{q}^{*}$, such that (13) has a solution in \mathbb{F}_{q}. Using that B_{1} is the relative trace function form $\mathbb{F}_{q^{3}}$ into \mathbb{F}_{q}, i.e.
$B_{1}=T r_{q^{3} \rightarrow q}(b)=b+b^{q}+b^{q^{2}}$, we conclude, that the number of different elements $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ for which $B_{1}=0$ equals $q^{2}-1$.

