A projection construction for semifields and APN functions in characteristic 2

Stefano Marcugini

joint work with
J. Bierbrauer, D. Bartoli, M. Giulietti, F. Pambianco

ACCT 2014
Outline

- A family of semifields in even characteristic
- A link to APN functions
The definition of the fields

Let $q = 2^m$

$L = GF(q) \subset F = GF(q^2)$

$T, N : F \rightarrow L$ the trace and norm.

Let $\mu \in L$ be of absolute trace $= 1$ and $z \in F$ s. t. $z^2 + z = \mu$.

Then $z \notin L$ and we use $1, z$ as a basis of $F|L$:

$$x = a + bz = (a, b) \text{ where } a, b \in L$$

$Re(x) := a \quad Im(x) := b$.
p=2, the case $B(2, m, s, l, C_1, C_2)$

Definition 1

Let $s < 2m$, $\sigma = 2^s$, $0 \neq l \in L$ such that $l \notin L^{\sigma-1}$.

$C_1, C_2 \in F$ such that the following equivalent conditions are satisfied:

- $T(C_1 x^x + C_2 x^{\sigma+1}) \neq 0$ for all $0 \neq x \in F$.
- $P_{C_1, C_2, s}(X) = C_2 X^{\sigma+1} + \overline{C_1} X^\sigma + C_1 X + \overline{C_2} \in F[X]$ has no root of norm 1.

Define a product on F by

$$x \ast y = T((C_1 y^\sigma + C_2 \overline{y}^\sigma)x) + lT((\overline{C_1} y + C_2 \overline{y})x^\sigma) + T(xy)z$$
p=2, the case $B(2, m, s, l, C_1, C_2)$

Theorem

*Under the conditions of Definition 1 $(F, +, *)$ is a presemifield $B(2, m, s, l, C_1, C_2)$ on F.*

Proof.

Assume $x * y = 0$, $xy \neq 0$.

The imaginary part shows $y = e\bar{x}$ for $e \in L$.

The real part factorizes:

$$(e^\sigma + le)T(C_1x\bar{x}^\sigma + C_2x^{\sigma+1}) = 0.$$

The first factor is nonzero by the condition on l, the non-vanishing of the trace term is the first condition of Definition 1.
p=2, the case \(B(2, m, s, l, C_1, C_2) \)

Special cases

Let \(C_i = (v_i, h_i) \).

\[X = 1 \Rightarrow T(C_1) = h_1 \neq h_2 = T(C_2). \]

\[x, y \in L \Rightarrow x \star y = (h_1 + h_2)(xy^\sigma + lx^\sigma y), \text{ a generalized Albert twisted field.} \]

\(Im(x \star y) \) is isotopic to the imaginary part of field multiplication \(Re(x \star y) \) is isotopic to the real part of generalized twisted field.

\(B(2, m, s, l, C_1, C_2) \) is not isotopic to the field.
p=2, the case $B(2, m, s, l, C_1, C_2)$

The question of **commutativity**

Theorem

$B(2, m, s, l, C_1, C_2)$ for $s < m$ is isotopic to commutative if and only if $C_1 C_2 \neq 0$ and there is $0 \neq x \in F$ such that

$$(C_1 / C_2)x + l(C_1 / C_2)x^\sigma = (C_2 / C_1)x + l(C_2 / C_1)x^\sigma \in L$$

A computer search showed that there is no solution in case $m \leq 6$.

Conjecture

$B(2, m, s, l, C_1, C_2)$ is never isotopic to commutative.
p=2, the case $B(2, m, s, l, C_1, C_2)$

The question of **commutativity**

Theorem

$B(2, m, s, l, C_1, C_2)$ for $s < m$ is isotopic to commutative if and only if $C_1 C_2 \neq 0$ and there is $0 \neq x \in F$ such that

$$(C_1/C_2)x + l(C_1/C_2)x^\sigma = (C_2/C_1)x + l(C_2/C_1)x^\sigma \in L$$

A computer search showed that there is no solution in case $m \leq 6$.

Conjecture

$B(2, m, s, l, C_1, C_2)$ is never isotopic to commutative.
Planar functions and a basic equivalence (p odd)

Quadratic polynomial (p odd)

$f = f(X)$ is **quadratic** if its monomial have exponents $p^i + p^j$

Quadratic form f \longrightarrow bilinear form $*$

$x * y = (1/2)(f(x + y) - f(x) - f(y))$

Bilinear form $*$ \longrightarrow quadratic form f

$f(x) = x * x$.

Definition

f is **planar** if $x * y \neq 0$ for $xy \neq 0$.

The following are equivalent (p odd)

- Quadratic planar (PN) functions $f : F \rightarrow F$
- Commutative presemifields $(F, *)$
Planar functions and a basic equivalence (p odd)

Quadratic polynomial (p odd)

$f = f(X)$ is quadratic if its monomial have exponents $p^i + p^j$

Quadratic form f \longrightarrow bilinear form $*$

$x * y = (1/2)(f(x + y) - f(x) - f(y))$

Bilinear form $*$ \longrightarrow quadratic form f

$f(x) = x * x$.

Definition

f is planar if $x * y \neq 0$ for $xy \neq 0$.

The following are equivalent (p odd)

- Quadratic planar (PN) functions $f : F \longrightarrow F$
- Commutative presemifields $(F, *)$
Planar functions and a basic equivalence (p odd)

Quadratic polynomial (p odd)

$f = f(X)$ is quadratic if its monomial have exponents $p^i + p^j$

Quadratic form $f \rightarrow$ bilinear form \ast

$x \ast y = (1/2)(f(x + y) - f(x) - f(y))$

Bilinear form $\ast \rightarrow$ quadratic form f

$f(x) = x \ast x$.

Definition

f is planar if $x \ast y \neq 0$ for $xy \neq 0$.

The following are equivalent (p odd)

- Quadratic planar (PN) functions $f : F \rightarrow F$
- Commutative presemifields (F, \ast)
PN and APN functions

Equivalent expressions, different paradigms

\[f : F \rightarrow F \]
\[\delta_{f,a}(x) = x \ast a = f(x + a) - f(x) - f(a). \]

- Additive directional derivative at \(a \in F \)
- Product
- Polarization

Definition: \(f \) is

- PN (or planar) if \(x \ast a \) is one-to-one (\(a \neq 0, p \) odd)
- APN if \(x \ast a \) is two-to-one (\(a \neq 0, p = 2 \))
PN and APN functions

Equivalent expressions, different paradigms

- **Function**
 \[f : F \rightarrow F \]

- **Additive directional derivative** at \(a \in F \)
 \[\delta_{f,a}(x) = x \ast a = f(x + a) - f(x) - f(a) \]

- **Additive directional derivative** at \(a \in F \)
- **Product**
- **Polarization**

Definition: \(f \) is

- **PN** (or planar) if \(x \ast a \) is one-to-one \((a \neq 0, p \text{ odd}) \)

- **APN** if \(x \ast a \) is two-to-one \((a \neq 0, p = 2) \)
Motivations

From cryptography, when $p = 2$
- Destroying linearity: protection against differential attacks (S-boxes)
- Extremal correlation properties
- Crooked functions, bent functions, ...

From coding theory
- Cyclic codes, codes of Preparata type

Geometric representations, $p = 2$
- Dual hyperovals, semi-biplanes
Motivations

From cryptography, when \(p = 2 \)

Destroying linearity: protection against differential attacks (S-boxes)
Extremal correlation properties
Crooked functions, bent functions, ...

From coding theory

Cyclic codes, codes of Preparata type

Geometric representations, \(p = 2 \)
Dual hyperovals, semi-biplanes
Motivations

From cryptography, when $p = 2$
- Destroying linearity: protection against differential attacks (S-boxes)
- Extremal correlation properties
- Crooked functions, bent functions, ...

From coding theory
- Cyclic codes, codes of Preparata type

Geometric representations, $p = 2$
- Dual hyperovals, semi-biplanes
Definition

\[F = \mathbb{F}_{2^r} \]

\[f(x) = \sum_{i<j} a_{ij} X^{2i+2j} \in F[X] \text{ (Dembowski-Ostrom polynomial)} \]

Let \(x \ast y = f(x + y) + f(x) + f(y) \) (polarization) of \(f(x) \)

\(f(x) \) is called a **quadratic** APN function if

\[x \ast y = 0 \text{ is equivalent to } xy = 0 \text{ or } x = y. \]
APN functions

Theorem

Let

\[f(x) = T(x^{\sigma+1} + C_1 x \overline{x}^\sigma + N(x)) + N(x) \sigma z. \]

Then the following are equivalent:

- \(f(x) : F \rightarrow F \) is a (quadratic) APN function,
- \(\gcd(s, m) = 1 \) and
- \(P_{C_1,1,s}(X) = X^{\sigma+1} + \overline{C_1} X^\sigma + C_1 X + 1 \in F[X] \)

has no roots \(z \in F = \mathbb{F}_{2^{2m}} \) such that \(N(z) = 1 \).
Proof.

Let \(x \ast y \) be the polarization of \(f(x) \).
Applying the invertible linear mapping \((a, b) \mapsto (a + b^{1/\sigma}, b)\) we may cancel \(N(x) \) in the real part of \(f(x) \) obtaining:

\[
x \ast y = T(xy^\sigma + x^\sigma y + C_1x\bar{y}^\sigma + C_1\bar{x}^\sigma y) + T((xy)^\sigma)z.
\]

Assume \(x \ast y = 0 \) where \(xy \neq 0 \).
The imaginary part shows \(y = ex \) for \(e \in L \).
The real part shows \((e^\sigma + e)(x^\sigma + 1 + C_1x\bar{x}^\sigma) \in L \).
Assume \(e \neq 1 \). The condition \(\gcd(s, m) = 1 \) shows \(e^\sigma + e \neq 0 \). It follows that the second factor has to be in \(L \). As before write out the trace, divide by \(\bar{x}^\sigma + 1 \). This yields the familiar condition on \(P_{C_1,1,s}(X) \).
The theorem describes the **APN hexanomials** as constructed by [Budaghyan, Carlet 2008] which were further studied among others in [Bluher 2013].
THANKS FOR THE ATTENTION!