A projection construction for semifields and APN functions in characteristic 2

Stefano Marcugini

joint work with J. Bierbrauer, D. Bartoli, M. Giulietti, F. Pambianco

ACCT 2014

- A family of semifields in even characteristic
- A link to APN functions

The definition of the fields

Let $q = 2^m$ $L = GF(q) \subset F = GF(q^2)$ $T, N : F \longrightarrow L$ the trace and norm.

Let $\mu \in L$ be of absolute trace = 1 and $z \in F$ s. t. $z^2 + z = \mu$.

Then $z \notin L$ and we use 1, z as a basis of F|L:

x = a + bz = (a, b) where $a, b \in L$

Re(x) := a Im(x) := b.

Definition 1

Let
$$s < 2m, \sigma = 2^s$$
, $0 \neq I \in L$ such that $I \notin L^{\sigma-1}$

 $C_1, C_2 \in F$ such that the following equivalent conditions are satisfied:

- $T(C_1 x \overline{x}^{\sigma} + C_2 x^{\sigma+1}) \neq 0$ for all $0 \neq x \in F$.
- $P_{C_1,C_2,s}(X) = C_2 X^{\sigma+1} + \overline{C_1} X^{\sigma} + C_1 X + \overline{C_2} \in F[X]$ has no root of norm 1.

Define a product on *F* by

$$x * y = T((\underline{C_1}y^{\sigma} + \underline{C_2}\overline{y}^{\sigma})x) + IT((\overline{C_1}y + \underline{C_2}\overline{y})x^{\sigma}) + T(xy)z$$

Theorem

Under the conditions of Definition 1 (F, +, *) is a presemifield $B(2, m, s, l, C_1, C_2)$ on F.

Proof.

Assume $x * y = 0, xy \neq 0$. The imaginary part shows $y = e\overline{x}$ for $e \in L$. The real part factorizes:

$$(e^{\sigma} + le)T(C_1x\overline{x}^{\sigma} + C_2x^{\sigma+1}) = 0.$$

The first factor is nonzero by the condition on I, the non-vanishing of the trace term is the first condition of Definition 1.

Special cases

Let $C_i = (v_i, h_i)$.

$$X=1 \Rightarrow T(C_1)=h_1 \neq h_2=T(C_2).$$

 $x, y \in L \Rightarrow x * y = (h_1 + h_2)(xy^{\sigma} + lx^{\sigma}y)$, a generalized Albert twisted field.

Im(x * y) is isotopic to the imaginary part of field multiplication Re(x * y) is isotopic to the real part of generalized twisted field.

 $B(2, m, s, I, C_1, C_2)$ is not isotopic to the field.

The question of commutativity

Theorem

 $B(2, m, s, l, C_1, C_2)$ for s < m is isotopic to commutative if and only if $C_1C_2 \neq 0$ and there is $0 \neq x \in F$ such that

$$(C_1/\overline{C_2})x + I(\overline{C_1}/\overline{C_2})x^{\sigma} = (C_2/\overline{C_1})x + I(\overline{C_2}/\overline{C_1})\overline{x}^{\sigma} \in L$$

A computer search showed that there is no solution in case $m \leq 6$.

Conjecture

 $B(2, m, s, I, C_1, C_2)$ is never isotopic to commutative.

The question of commutativity

Theorem

 $B(2, m, s, l, C_1, C_2)$ for s < m is isotopic to commutative if and only if $C_1C_2 \neq 0$ and there is $0 \neq x \in F$ such that

$$(C_1/\overline{C_2})x + I(\overline{C_1}/\overline{C_2})x^{\sigma} = (C_2/\overline{C_1})x + I(\overline{C_2}/\overline{C_1})\overline{x}^{\sigma} \in L$$

A computer search showed that there is no solution in case $m \leq 6$.

Conjecture

 $B(2, m, s, I, C_1, C_2)$ is never isotopic to commutative.

Planar functions and a basic equivalence (p odd)

Quadratic polynomial (p odd)

f = f(X) is quadratic if its monomial have exponents $p^i + p^j$

Quadratic form $f \longrightarrow$ bilinear form *

$$x * y = (1/2)(f(x + y) - f(x) - f(y))$$

Bilinear form $* \longrightarrow$ quadratic form f

$$f(X)=X*X.$$

Definition

f is planar if $x * y \neq 0$ for $xy \neq 0$.

The following are equivalent (ρ odd)

- Quadratic planar (PN) functions $f: F \longrightarrow F$
- Commutative presemifields (*F*, *)

Planar functions and a basic equivalence (p odd)

Quadratic polynomial (p odd)

f = f(X) is quadratic if its monomial have exponents $p^i + p^j$

Quadratic form $f \longrightarrow$ bilinear form *

$$x * y = (1/2)(f(x + y) - f(x) - f(y))$$

Bilinear form $* \longrightarrow$ quadratic form f

f(x)=x*x.

Definition

f is planar if $x * y \neq 0$ for $xy \neq 0$.

The following are equivalent (ρ odd)

- Quadratic planar (PN) functions $f: F \longrightarrow F$
- Commutative presemifields (*F*,*)

Planar functions and a basic equivalence (p odd)

Quadratic polynomial (p odd)

f = f(X) is quadratic if its monomial have exponents $p^i + p^j$

Quadratic form $f \longrightarrow$ bilinear form *

$$x * y = (1/2)(f(x + y) - f(x) - f(y))$$

Bilinear form $* \longrightarrow$ quadratic form f

f(x)=x*x.

Definition

f is planar if $x * y \neq 0$ for $xy \neq 0$.

The following are equivalent (p odd)

• Quadratic planar (PN) functions $f: F \longrightarrow F$

• Commutative presemifields (*F*, *)

PN and APN functions

Equivalent expressions, different paradigms

 $f: F \longrightarrow F$

$$\delta_{f,a}(x) = x * a = f(x+a) - f(x) - f(a).$$

- Additive directional derivative at $a \in F$
- Product
- Polarization

Definition: *f* is

• PN (or planar) if x * a is one-to-one ($a \neq 0, p$ odd)

• APN if x * a is two-to-one ($a \neq 0, p = 2$)

PN and APN functions

Equivalent expressions, different paradigms

 $f: F \longrightarrow F$

$$\delta_{f,a}(x) = x * a = f(x+a) - f(x) - f(a).$$

- Additive directional derivative at $a \in F$
- Product
- Polarization

Definition: *f* is

- PN (or planar) if x * a is one-to-one ($a \neq 0, p$ odd)
- APN if x * a is two-to-one ($a \neq 0, p = 2$)

Motivations

From cryptography, when p = 2

Destroying linearity: protection against differential attacks (S-boxes) Extremal correlation properties Crooked functions, bent functions, ...

From coding theory

Cyclic codes, codes of Preparata type

Geometric representations, $\rho = 2$

Dual hyperovals, semi-biplanes

Motivations

From cryptography, when p = 2

Destroying linearity: protection against differential attacks (S-boxes) Extremal correlation properties Crooked functions, bent functions, ...

From coding theory

Cyclic codes, codes of Preparata type

Geometric representations, ho=2

Dual hyperovals, semi-biplanes

Motivations

From cryptography, when p = 2

Destroying linearity: protection against differential attacks (S-boxes) Extremal correlation properties Crooked functions, bent functions, ...

From coding theory

Cyclic codes, codes of Preparata type

Geometric representations, p = 2

Dual hyperovals, semi-biplanes

Definition

 $F = \mathbb{F}_{2^r}$

 $f(x) = \sum_{i < j} a_{ij} X^{2^i + 2^j} \in F[X]$ (Dembowski-Ostrom polynomial)

let x * y = f(x + y) + f(x) + f(y) (polarization) of f(x)

f(x) is called a quadratic APN function if

x * y = 0 is equivalent to xy = 0 or x = y.

Theorem

Let

$$f(x) = T(x^{\sigma+1} + C_1 x \overline{x}^{\sigma} + N(x)) + N(x)^{\sigma} z.$$

Then the following are equivalent:

• $f(x): F \longrightarrow F$ is a (quadratic) APN function,

•
$$gcd(s, m) = 1$$
 and
 $P_{C_1,1,s}(X) = X^{\sigma+1} + \overline{C_1}X^{\sigma} + C_1X + 1 \in F[X]$
has no roots $z \in F = \mathbb{F}_{2^{2m}}$ such that $N(z) = 1$.

Proof.

Let x * y be the polarization of f(x). Applying the invertible linear mapping $(a, b) \mapsto (a + b^{1/\sigma}, b)$ we may cancel N(x) in the real part of f(x) obtaining:

$$x * y = T(xy^{\sigma} + x^{\sigma}y + C_1x\overline{y}^{\sigma} + C_1\overline{x}^{\sigma}y) + T((x\overline{y})^{\sigma})z.$$

Assume x * y = 0 where $xy \neq 0$. The imaginary part shows y = ex for $e \in L$. The real part shows $(e^{\sigma} + e)(x^{\sigma+1} + C_1 x \overline{x}^{\sigma}) \in L$. Assume $e \neq 1$. The condition gcd(s, m) = 1 shows $e^{\sigma} + e \neq 0$. It follows that the second factor has to be in *L*. As before write out the trace, divide by $\overline{x}^{\sigma+1}$. This yields the familiar condition on $P_{C_1,1,s}(X)$.

The theorem describes the APN hexanomials as constructed by [Budaghyan, Carlet 2008] which were further studied among others in [Bluher 2013].

THANKS FOR THE ATTENTION!