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Semifields

short
remove associativity, commutativity from field axioms

Definition: F is a semifield
or: division algebra, if

(F ,+) commutative group
(−→ elementary-abelian, order q = pn)
(F , ∗) is a loop (no zero divisors)
The distributive laws hold
Unit element (if not: presemifield)
0 ∗ y = x ∗ 0 = 0
(commutative if x ∗ y = y ∗ x)
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The start

[Dickson, 1905]
Semifields first arose in the study of algebras resembling fields.

[Veblen and Maclaglan-Wedderburn, 1907]
Use semifields to construct non-desarguesian projective
planes.

A geometrical characterization
A non-desarguesian projective plane is a translation plane and
also the dual of a translation plane if and only if it can be
coordinatized by a proper semifield.
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A notion of equivalence: isotopy

p prime, F = Fpr .

Definition
Presemifields (F , ∗) and (F , ◦) are isotopic if
β(x ◦ y) = α1(x) ∗ α2(y) for some α1, α2, β ∈ GL(r ,p)

short
Twist both input variables x , y and the output x ∗ y
by linear mappings.

This is the right definition
Two semifields coordinatize isomorphic planes if and only if
they are isotopic. [Albert, 1960]
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The known families of finite commutative
semifields in arbitrary odd characteristic

Finite fields 1893
Dickson 1906
Albert 1952
Zha-Kyureghyan-Wang-Bierbrauer 2009:
trans-characteristic construction
Budaghyan-Helleseth 2008, Zha-Wang 2009
Pott-Zhou
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A family of semifields in odd char
[Bierbrauer, preprint]

The parameters
p odd prime, q = pm,L = Fq ⊂ F = Fq2 .
Let x = xq and T : F −→ L the trace.
0 < s < 2m, σ = ps, l ∈ L∗ s. t. −l /∈ (L∗)σ−1.
C1,C2 ∈ F s. t. the polynomial

PC1,C2,s(X ) = C2Xσ+1 + C1Xσ + C1X + C2 ∈ F [X ]

has no root z s. t. zq+1 = 1.

The presemifield B(p,m, s, l ,C1,C2) of order p2m

x + y := x +F y
x ∗ y :=

(1/2)T ((C1yσ+C2yσ)x)+(l/2)T ((C1y +C2y)xσ)+(xy−xy)/2
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A family of semifields in odd char
[Bierbrauer, preprint]

The semifield associated to B(p,m, s, l ,C1,C2)

x + y := x +F y
x ◦ y := β

(
γ(x) ∗ y

)
.

where β, γ : F → F are invertible linear mappings defined by

1 ∗ β(x) = x and γ(x) ∗ 1 = 1 ∗ x .
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The commutative case

[Budaghyan and Helleseth, 2011]
Constructed two families of commutative semifields

These families are contained in the family B(p,m, s, l ,C1,C2),
in the special cases:

{C1,C2} ⊂ L and C1 = 0,

Open question
Does the family B(p,m, s, l ,C1,C2) contain commutative
examples not isotopic to members of the Budaghyan-Helleseth
families?
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The case B(3,3, s, l ,C1,C2)

The notation

q = 36 = 729

L is defined by ε3 = ε2 − 1

F is defined by ω2 = −1

x ∈ F , x = a + ωb, a,b ∈ L, x = ( a︸︷︷︸
Re

, b︸︷︷︸
Im

)

The field multiplication in F is then

(a,b)(c,d) = (ac − bd ,ad + bc).
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The case B(3,3, s, l ,C1,C2), isotopism relations

B(3,3, s, l ,C1,C2) is isotopic to B(3,3,3 + s, l ,C2,C1) and to
B(3,3,3− s,1/l ,C2,C1).
This shows that we may assume s = 1.

l ∈ L is determined only up to its coset lL∗(σ−1).
This shows that up to isotopy we may choose l = 1.

It follows from the theory of projective polynomials that the
number of pairs (C1,C2) satisfying the polynomial condition
equals 27× 26× 13× 21 = 191,646.
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The case B(3,3,1,1,C1,C2), isotopism relations

Theorem (scalar isotopy)
The pair (C1,C2) can be replaced by (λC1, λC2) for 0 6= λ ∈ L.

Theorem (Galois isotopy)
Let Ci = (vi ,hi)
The pair (C1,C2) can be replaced by (v3

1 ,−h3
1), (v

3
2 ,−h3

2).
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The case B(3,3,1,1,C1,C2), isotopism relations

Theorem (diagonal isotopy)
Let Ci = (vi ,hi) and work with parameters

v+ = v1 + v2, v− = v1 − v2,h+ = h1 + h2,h− = h1 − h2.

Then, for arbitrary nonzero k1, k2 ∈ L, the following substitutions
can be performed without affecting isotopy:

v+ 7→ kσ+1
1 v+, v− 7→ kσ+1

2 v−,

h+ 7→ kσ1 k2h+,h− 7→ k1kσ2 h−

B(3,3,1,1,C1,C2) is isotopic to B(3,3,1,1,C′1,C
′
2), where

C′1 = −((k4
1+k4

2 )v1+(k4
1−k4

2 )v2, (k3
1 k2+k1k3

2 )h1+(k3
1 k2−k1k3

2 )h2)

C′2 = −((k4
1−k4

2 )v1+(k4
1+k4

2 )v2, (k3
1 k2−k1k3

2 )h1+(k3
1 k2+k1k3

2 )h2)
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The case B(3,3,1,1,C1,C2), isotopism relations

Theorem (1)

B(3,3,1,1,C1,C2) is isotopic to B(3,3,1,1, α82C1, α
4C2)

for all 0 6= α ∈ F .

C1 = 0
C2 can be multiplied by an arbitrary fourth power
⇒ C2 ∈ {1, i ,1 + i ,1− i}.
existence condition⇒ C2 6= i .
Galois isotopy⇒ C2 = i − 1 and C2 = i + 1 give isotopic
presemifields

B(3,3,1,1,0,1) commutative
B(3,3,1,1,0,1− i) non-isotopic to commutative
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The case B(3,3,1,1,C1,C2), isotopism relations

Theorem (2)

B(3,3,1,1,C1,C2) is isotopic to B(3,3,1,1, αασC1, α
σ+1C2)

for all 0 6= α ∈ F .

C1 6= 0,
Theorem (2)⇒ C1 can be multiplyed by an arbitrary square⇒
C1 = 1 or 1− i .
diagonal isotopy⇒ C1 = 1.
Galois isotopy, diagonal isotopy, Theorem (1)
⇒ B(3,3,1,1,1,C2) come in two isotopy classes.
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The case B(3,3,1,1,C1,C2), isotopism relations

Theorem

Let A,B ∈ F ∗ such that AA 6= BB. Then B(3,3,1,1,0,C2) is
isotopic to B(3,3,1,1,C′1,C

′
2) where

C′1 = C2AB3 + C2A3B,C′2 = C2A4 + C2B4.

This Theorem gives isotopies between the two (pre)semifields
with C1 = 0 and the two (pre)semifields with C1 = 1
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The case B(3,3, s, l ,C1,C2)

The classification, q = 36

B(3,3,1,1,0,1) commutative

B(3,3,1,1,0,1− i) non isotopic to commutative
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The case B(3,3, s, l ,C1,C2)

The (pre)semifield B(3,3,1,1,0,1)

Commutative, it belongs to the Budaghyan-Helleseth family.

Its autotopism group has order 1248.
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The case B(3,3, s, l ,C1,C2)

The (pre)semifield B(3,3,1,1,0,1)

The autotopism group has order at least 1248 :

x ∗ y = −T (xy3 + x3y) + xy − xy .

When will α1(x) = Ax , α2(y) = By define an autotopism?

The imaginary part⇒ AB ∈ L, equivalently B = cA for c ∈ L.
The real part⇒ the condition c3A4 = cA4 ∈ L.
This shows c = ±1 and there are 4× 26 choices for A.

Together with the field automorphisms (generated by
α1(x) = x3, α2(y) = y3, β(z) = z35

) this yields an autotopism
group of order 26× 4× 2× 6 = 1248.
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The case B(3,3, s, l ,C1,C2)

The (pre)semifield B(3,3,1,1,0,1− i)

Non isotopic to commutative.

Its autotopism group has order 624.



Definition of semifields Semifields in odd char The case q = 729 The case q = 6561

The case B(3,3, s, l ,C1,C2)

The two semifields are not isotopic to twisted fields
[Albert, 1961]

A generalized twisted field of order 36 with left and right nucleus
of order 3 is isotopic to a presemifield

x ∗ y = xy + lxσyτ

Let σ = 3s, τ = 3t . The nuclei show that s, t are coprime to 6.
Consider autotopisms of the form

α1(x) = Ax , α2(y) = By , β(z) = z/(AB).

A,B ∈ F ∗ defines an autotopism if and only if Aσ−1Bτ−1 = 1.
We can choose B arbitrarily and have then two choices for A
⇒ the twisted field has at least 2× (36− 1) = 1456 autotopisms
and is therefore more symmetric than our semifields.
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The case B(3,3, s, l ,C1,C2)
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The case B(3,4, s, l ,C1,C2)

The notation

q = 38 = 6561

L is defined by ε4 = ε+ 1

Let µ = ε5, order(µ = 16)

F is defined by ω2 = µ

s=2

It gives isotopes of Dickson semifields.
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The case B(3,4, s, l ,C1,C2)

The notation

q = 38 = 6561

L is defined by ε4 = ε+ 1
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The case B(3,4, s, l ,C1,C2) s = 1

l = −µ

The classification, q = 38

B(3,4,1,−µ,0,1) commutative, isotopic to the unique
Budaghyan-Helleseth semifield of order 38

B(3,4,1,−µ,1 + ε/µ2,1 + ε/µ2) non isotopic to commutative
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THANKS FOR THE ATTENTION!
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