A family of semifields of order 729

Stefano Marcugini

joint work with J. Bierbrauer, D. Bartoli, G. Faina, F. Pambianco

ACCT 2014

Outline

- Semifields
- A family of semifields in odd characteristic

• The case
$$q = 3^8$$

Semifields

short

remove associativity, commutativity from field axioms

Definition: *F* is a **semifield** or: division algebra, if

- (F, +) commutative group
 - $(\longrightarrow$ elementary-abelian, order $q = p^n$)
- (F,*) is a loop (no zero divisors)
- The distributive laws hold
- Unit element (if not: presemifield)
- 0 * y = x * 0 = 0

• (commutative if x * y = y * x)

The start

[Dickson, 1905]

Semifields first arose in the study of algebras resembling fields.

[Veblen and Maclaglan-Wedderburn, 1907]

Use semifields to construct non-desarguesian projective planes.

A geometrical characterization

A non-desarguesian projective plane is a translation plane and also the dual of a translation plane if and only if it can be coordinatized by a proper semifield.

The start

[Dickson, 1905]

Semifields first arose in the study of algebras resembling fields.

[Veblen and Maclaglan-Wedderburn, 1907]

Use semifields to construct non-desarguesian projective planes.

A geometrical characterization

A non-desarguesian projective plane is a translation plane and also the dual of a translation plane if and only if it can be coordinatized by a proper semifield.

A notion of equivalence: isotopy

$$p$$
 prime, $F = \mathbb{F}_{p^r}$.

Definition

Presemifields (*F*, *) and (*F*, \circ) are isotopic if $\beta(x \circ y) = \alpha_1(x) * \alpha_2(y)$ for some $\alpha_1, \alpha_2, \beta \in GL(r, p)$

short

Twist both input variables x, y and the output x * y by linear mappings.

This is the right definition

Two semifields coordinatize isomorphic planes if and only if they are isotopic. [Albert, 1960]

A notion of equivalence: isotopy

$$p$$
 prime, $F = \mathbb{F}_{p^r}$.

Definition

Presemifields (*F*, *) and (*F*, \circ) are isotopic if $\beta(x \circ y) = \alpha_1(x) * \alpha_2(y)$ for some $\alpha_1, \alpha_2, \beta \in GL(r, p)$

short

Twist both input variables x, y and the output x * y by linear mappings.

This is the right definition

Two semifields coordinatize isomorphic planes if and only if they are isotopic. [Albert, 1960]

The known families of finite commutative semifields in arbitrary odd characteristic

- Finite fields 1893
- Dickson 1906
- Albert 1952
- Zha-Kyureghyan-Wang-Bierbrauer 2009: trans-characteristic construction
- Budaghyan-Helleseth 2008, Zha-Wang 2009
- Pott-Zhou

A family of semifields in odd char [Bierbrauer, preprint]

The parameters

p odd prime, $q = p^m$, $L = \mathbb{F}_q \subset F = \mathbb{F}_{q^2}$. Let $\overline{x} = x^q$ and $T : F \longrightarrow L$ the trace. $0 < s < 2m, \sigma = p^s, l \in L^*$ s. t. $-l \notin (L^*)^{\sigma-1}$. $C_1, C_2 \in F$ s. t. the polynomial

$$P_{\mathcal{C}_1,\mathcal{C}_2,s}(X) = \mathcal{C}_2 X^{\sigma+1} + \overline{\mathcal{C}_1} X^{\sigma} + \mathcal{C}_1 X + \overline{\mathcal{C}_2} \in F[X]$$

has no root z s. t. $z^{q+1} = 1$.

The presemifield $B(ho,m,s,l,C_1,C_2)$ of order ho^{2m} .

 $x + y := x +_F y$

 $(1/2)T((C_1y^{\sigma} + C_2\overline{y}^{\sigma})x) + (1/2)T((\overline{C_1}y + C_2\overline{y})x^{\sigma}) + (xy - \overline{xy})/2$

A family of semifields in odd char [Bierbrauer, preprint]

The parameters

p odd prime, $q = p^m$, $L = \mathbb{F}_q \subset F = \mathbb{F}_{q^2}$. Let $\overline{x} = x^q$ and $T : F \longrightarrow L$ the trace. $0 < s < 2m, \sigma = p^s, l \in L^* \text{ s. t. } -l \notin (L^*)^{\sigma-1}$. $C_1, C_2 \in F \text{ s. t. the polynomial}$

$$P_{\mathcal{C}_1,\mathcal{C}_2,s}(X) = \mathcal{C}_2 X^{\sigma+1} + \overline{\mathcal{C}_1} X^{\sigma} + \mathcal{C}_1 X + \overline{\mathcal{C}_2} \in F[X]$$

has no root z s. t. $z^{q+1} = 1$.

The presemifield $B(p, m, s, l, C_1, C_2)$ of order p^{2m}

 $\begin{array}{l} x + y := x +_F y \\ x * y := \end{array}$

 $(1/2)T((\underline{C_1}y^{\sigma} + \underline{C_2}\overline{y}^{\sigma})x) + (\underline{I/2})T((\overline{C_1}y + \underline{C_2}\overline{y})x^{\sigma}) + (xy - \overline{xy})/2$

A family of semifields in odd char [Bierbrauer, preprint]

The semifield associated to $B(p, m, s, I, C_1, C_2)$

$$\begin{array}{l} \mathbf{x} + \mathbf{y} := \mathbf{x} +_F \mathbf{y} \\ \mathbf{x} \circ \mathbf{y} := \beta \big(\gamma(\mathbf{x}) * \mathbf{y} \big). \end{array}$$

where $\beta, \gamma \colon \mathbf{F} \to \mathbf{F}$ are invertible linear mappings defined by

$$1 * \beta(x) = x$$
 and $\gamma(x) * 1 = 1 * x$.

The commutative case

[Budaghyan and Helleseth, 2011]

Constructed two families of commutative semifields

These families are contained in the family $B(p, m, s, l, C_1, C_2)$, in the special cases:

 $\{C_1, C_2\} \subset L \text{ and } C_1 = 0,$

Open question

Does the family $B(p, m, s, l, C_1, C_2)$ contain commutative examples not isotopic to members of the Budaghyan-Helleseth families?

The commutative case

[Budaghyan and Helleseth, 2011]

Constructed two families of commutative semifields

These families are contained in the family $B(p, m, s, l, C_1, C_2)$, in the special cases:

$$\{C_1, C_2\} \subset L \text{ and } C_1 = 0,$$

Open question

Does the family $B(p, m, s, I, C_1, C_2)$ contain commutative examples not isotopic to members of the Budaghyan-Helleseth families?

The commutative case

[Budaghyan and Helleseth, 2011]

Constructed two families of commutative semifields

These families are contained in the family $B(p, m, s, l, C_1, C_2)$, in the special cases:

$$\{C_1, C_2\} \subset L \text{ and } C_1 = 0,$$

Open question

Does the family $B(p, m, s, l, C_1, C_2)$ contain commutative examples not isotopic to members of the Budaghyan-Helleseth families?

The notation

 $q = 3^6 = 729$

- *L* is defined by $\epsilon^3 = \epsilon^2 1$
- F is defined by $\omega^2 = -1$

$$x \in F, \ x = a + \omega b, \ a, b \in L, \ x = (\underbrace{a}_{Re}, \underbrace{b}_{Im})$$

The field multiplication in F is then

$$(a,b)(c,d) = (ac - bd, ad + bc).$$

 $B(3,3,s,I,C_1,C_2)$ is isotopic to $B(3,3,3+s,I,C_2,C_1)$ and to $B(3,3,3-s,1/I,C_2,\overline{C_1})$. This shows that we may assume s = 1.

 $l \in L$ is determined only up to its coset $lL^{*(\sigma-1)}$. This shows that up to isotopy we may choose l = 1.

It follows from the theory of projective polynomials that the number of pairs (C_1, C_2) satisfying the polynomial condition equals $27 \times 26 \times 13 \times 21 = 191,646$.

 $B(3,3,s,I,C_1,C_2)$ is isotopic to $B(3,3,3+s,I,C_2,C_1)$ and to $B(3,3,3-s,1/I,C_2,\overline{C_1})$. This shows that we may assume s = 1.

 $l \in L$ is determined only up to its coset $lL^{*(\sigma-1)}$. This shows that up to isotopy we may choose l = 1.

It follows from the theory of projective polynomials that the number of pairs (C_1, C_2) satisfying the polynomial condition equals $27 \times 26 \times 13 \times 21 = 191,646$.

 $B(3,3,s,I,C_1,C_2)$ is isotopic to $B(3,3,3+s,I,C_2,C_1)$ and to $B(3,3,3-s,1/I,C_2,\overline{C_1})$. This shows that we may assume s = 1.

 $I \in L$ is determined only up to its coset $IL^{*(\sigma-1)}$. This shows that up to isotopy we may choose I = 1.

It follows from the theory of projective polynomials that the number of pairs (C_1, C_2) satisfying the polynomial condition equals $27 \times 26 \times 13 \times 21 = 191,646$.

Theorem (scalar isotopy)

The pair (C_1, C_2) can be replaced by $(\lambda C_1, \lambda C_2)$ for $0 \neq \lambda \in L$.

Theorem (Galois isotopy)

Let $C_i = (v_i, h_i)$ The pair (C_1, C_2) can be replaced by $(v_1^3, -h_1^3), (v_2^3, -h_2^3)$.

Theorem (diagonal isotopy)

Let $C_i = (v_i, h_i)$ and work with parameters

$$v_+ = v_1 + v_2, v_- = v_1 - v_2, h_+ = h_1 + h_2, h_- = h_1 - h_2.$$

Then, for arbitrary nonzero $k_1, k_2 \in L$, the following substitutions can be performed without affecting isotopy:

$$\mathbf{v}_+\mapsto k_1^{\sigma+1}\mathbf{v}_+, \mathbf{v}_-\mapsto k_2^{\sigma+1}\mathbf{v}_-,$$

$$h_+ \mapsto k_1^{\sigma} k_2 h_+, h_- \mapsto k_1 k_2^{\sigma} h_-$$

 $B(3,3,1,1,C_1,C_2)$ is isotopic to $B(3,3,1,1,C_1',C_2')$, where

$$C_1' = -((k_1^4 + k_2^4)v_1 + (k_1^4 - k_2^4)v_2, (k_1^3k_2 + k_1k_2^3)h_1 + (k_1^3k_2 - k_1k_2^3)h_2)$$

$$C_{2}' = -((k_{1}^{4} - k_{2}^{4})v_{1} + (k_{1}^{4} + k_{2}^{4})v_{2}, (k_{1}^{3}k_{2} - k_{1}k_{2}^{3})h_{1} + (k_{1}^{3}k_{2} + k_{1}k_{2}^{3})h_{2})$$

Theorem (1)

 $B(3,3,1,1,C_1,C_2)$ is isotopic to $B(3,3,1,1,\alpha^{82}C_1,\alpha^4C_2)$ for all $0 \neq \alpha \in F$.

$C_{1} = 0$

 C_2 can be multiplied by an arbitrary fourth power $\Rightarrow C_2 \in \{1, i, 1 + i, 1 - i\}.$ existence condition $\Rightarrow C_2 \neq i.$ Galois isotopy $\Rightarrow C_2 = i - 1$ and $C_2 = i + 1$ give isotopic presemifields

B(3,3,1,1,0,1) commutative B(3,3,1,1,0,1-i) non-isotopic to commutative

Theorem (1)

 $B(3,3,1,1,C_1,C_2)$ is isotopic to $B(3,3,1,1,\alpha^{82}C_1,\alpha^4C_2)$ for all $0 \neq \alpha \in F$.

$C_{1} = 0$

 C_2 can be multiplied by an arbitrary fourth power $\Rightarrow C_2 \in \{1, i, 1 + i, 1 - i\}.$ existence condition $\Rightarrow C_2 \neq i.$ Galois isotopy $\Rightarrow C_2 = i - 1$ and $C_2 = i + 1$ give isotopic presemifields

B(3,3,1,1,0,1) commutative B(3,3,1,1,0,1-i) non-isotopic to commutative

Theorem (1)

 $B(3,3,1,1,C_1,C_2)$ is isotopic to $B(3,3,1,1,\alpha^{82}C_1,\alpha^4C_2)$ for all $0 \neq \alpha \in F$.

$C_{1} = 0$

 C_2 can be multiplied by an arbitrary fourth power $\Rightarrow C_2 \in \{1, i, 1 + i, 1 - i\}.$ existence condition $\Rightarrow C_2 \neq i.$ Galois isotopy $\Rightarrow C_2 = i - 1$ and $C_2 = i + 1$ give isotopic presemifields

B(3, 3, 1, 1, 0, 1) commutative B(3, 3, 1, 1, 0, 1 - i) non-isotopic to commutative

Theorem (2)

 $B(3,3,1,1,C_1,C_2)$ is isotopic to $B(3,3,1,1,\alpha\overline{\alpha}^{\sigma}C_1,\alpha^{\sigma+1}C_2)$ for all $0 \neq \alpha \in F$.

$C_1 \neq 0$,

Theorem (2) $\Rightarrow C_1$ can be multiplyed by an arbitrary square $\Rightarrow C_1 = 1$ or 1 - i. diagonal isotopy $\Rightarrow C_1 = 1$. Galois isotopy, diagonal isotopy, Theorem (1) $\Rightarrow B(3,3,1,1,1,C_2)$ come in two isotopy classes.

Theorem (2)

 $B(3,3,1,1,C_1,C_2)$ is isotopic to $B(3,3,1,1,\alpha\overline{\alpha}^{\sigma}C_1,\alpha^{\sigma+1}C_2)$ for all $0 \neq \alpha \in F$.

$C_1 \neq 0$,

Theorem (2) $\Rightarrow C_1$ can be multiplyed by an arbitrary square $\Rightarrow C_1 = 1 \text{ or } 1 - i$. diagonal isotopy $\Rightarrow C_1 = 1$. Galois isotopy, diagonal isotopy, Theorem (1) $\Rightarrow B(3,3,1,1,1,C_2)$ come in two isotopy classes.

Theorem

Let $A, B \in F^*$ such that $A\overline{A} \neq B\overline{B}$. Then $B(3, 3, 1, 1, 0, C_2)$ is isotopic to $B(3, 3, 1, 1, C'_1, C'_2)$ where

$$C_1' = C_2 A B^3 + \overline{C_2 A^3 B}, C_2' = C_2 A^4 + \overline{C_2 B^4}.$$

This Theorem gives isotopies between the two (pre)semifields with $C_1 = 0$ and the two (pre)semifields with $C_1 = 1$

Theorem

Let $A, B \in F^*$ such that $A\overline{A} \neq B\overline{B}$. Then $B(3, 3, 1, 1, 0, C_2)$ is isotopic to $B(3, 3, 1, 1, C'_1, C'_2)$ where

$$C_1' = C_2 A B^3 + \overline{C_2 A^3 B}, C_2' = C_2 A^4 + \overline{C_2 B^4}.$$

This Theorem gives isotopies between the two (pre)semifields with $C_1 = 0$ and the two (pre)semifields with $C_1 = 1$

The classification, $q = 3^6$

B(3, 3, 1, 1, 0, 1) commutative

B(3,3,1,1,0,1-i) non isotopic to commutative

The case $B(3,3,s,I,\overline{C_1,C_2})$

The (pre)semifield B(3, 3, 1, 1, 0, 1)

Commutative, it belongs to the Budaghyan-Helleseth family.

Its autotopism group has order 1248.

The case $B(3,3,s,l,\overline{C_1,C_2})$

The (pre)semifield B(3,3,1,1,0,1)

The autotopism group has order at least 1248 :

$$x * y = -T(x\overline{y}^3 + x^3\overline{y}) + \overline{xy} - xy.$$

When will $\alpha_1(x) = Ax, \alpha_2(y) = By$ define an autotopism?

The imaginary part $\Rightarrow AB \in L$, equivalently $B = c\overline{A}$ for $c \in L$. The real part \Rightarrow the condition $c^3A^4 = cA^4 \in L$. This shows $c = \pm 1$ and there are 4×26 choices for A.

Together with the field automorphisms (generated by $\alpha_1(x) = x^3, \alpha_2(y) = y^3, \beta(z) = z^{3^5}$) this yields an autotopism group of order $26 \times 4 \times 2 \times 6 = 1248$.

The (pre)semifield B(3, 3, 1, 1, 0, 1 - i)

Non isotopic to commutative.

Its autotopism group has order 624.

The two semifields are **not isotopic** to twisted fields [Albert, 1961]

A generalized twisted field of order 3⁶ with left and right nucleus of order 3 is isotopic to a presemifield

 $x * y = xy + lx^{\sigma}y^{\tau}$

Let $\sigma = 3^s$, $\tau = 3^t$. The nuclei show that *s*, *t* are coprime to 6. Consider autotopisms of the form

 $\alpha_1(x) = Ax, \alpha_2(y) = By, \beta(z) = z/(AB).$

 $A, B \in F^*$ defines an autotopism if and only if $A^{\sigma-1}B^{\tau-1} = 1$. We can choose *B* arbitrarily and have then two choices for *A* \Rightarrow the twisted field has at least $2 \times (3^6 - 1) = 1456$ autotopisms and is therefore more symmetric than our semifields.

The two semifields are **not isotopic** to twisted fields [Albert, 1961]

A generalized twisted field of order 3⁶ with left and right nucleus of order 3 is isotopic to a presemifield

$$\mathbf{x} * \mathbf{y} = \mathbf{x}\mathbf{y} + \mathbf{I}\mathbf{x}^{\sigma}\mathbf{y}^{\tau}$$

Let $\sigma = 3^s$, $\tau = 3^t$. The nuclei show that *s*, *t* are coprime to 6. Consider autotopisms of the form

$$\alpha_1(x) = Ax, \alpha_2(y) = By, \beta(z) = z/(AB).$$

 $A, B \in F^*$ defines an autotopism if and only if $A^{\sigma-1}B^{\tau-1} = 1$. We can choose *B* arbitrarily and have then two choices for *A* \Rightarrow the twisted field has at least $2 \times (3^6 - 1) = 1456$ autotopisms and is therefore more symmetric than our semifields.

The two semifields are **not isotopic** to twisted fields [Albert, 1961]

A generalized twisted field of order 3⁶ with left and right nucleus of order 3 is isotopic to a presemifield

$$\mathbf{x} * \mathbf{y} = \mathbf{x}\mathbf{y} + \mathbf{x}^{\sigma}\mathbf{y}^{\tau}$$

Let $\sigma = 3^s$, $\tau = 3^t$. The nuclei show that *s*, *t* are coprime to 6. Consider autotopisms of the form

$$\alpha_1(x) = Ax, \alpha_2(y) = By, \beta(z) = z/(AB).$$

 $A, B \in F^*$ defines an autotopism if and only if $A^{\sigma-1}B^{\tau-1} = 1$. We can choose *B* arbitrarily and have then two choices for *A* \Rightarrow the twisted field has at least $2 \times (3^6 - 1) = 1456$ autotopisms and is therefore more symmetric than our semifields.

The notation

$$q = 3^8 = 6561$$

L is defined by
$$\epsilon^4 = \epsilon + 1$$

Let
$$\mu = \epsilon^5$$
, order($\mu = 16$)

F is defined by
$$\omega^2 = \mu$$

s=2

It gives isotopes of Dickson semifields.

The notation

$$q = 3^8 = 6561$$

L is defined by
$$\epsilon^4 = \epsilon + 1$$

Let
$$\mu = \epsilon^5$$
, order($\mu = 16$)

F is defined by
$$\omega^2 = \mu$$

s=2

It gives isotopes of Dickson semifields.

$$I = -\mu$$

The classification, $q = 3^8$

 $B(3,4,1,-\mu,0,1)$ commutative, isotopic to the unique Budaghyan-Helleseth semifield of order 3^8

 $B(3,4,1,-\mu,1+\epsilon/\mu^2,1+\epsilon/\mu^2)$ non isotopic to commutative

THANKS FOR THE ATTENTION!