A family of semifields of order 729

Stefano Marcugini

joint work with
J. Bierbrauer, D. Bartoli, G. Faina, F. Pambianco

ACCT 2014

Outline

- Semifields
- A family of semifields in odd characteristic
- The case $q=3^{6}$
- The case $q=3^{8}$

Semifields

short

remove associativity, commutativity from field axioms

Definition: F is a semifield

or: division algebra, if

- $(F,+)$ commutative group
$\left(\longrightarrow\right.$ elementary-abelian, order $\left.q=p^{n}\right)$
- $(F, *)$ is a loop (no zero divisors)
- The distributive laws hold
- Unit element (if not: presemifield)
- $0 * y=x * 0=0$
- (commutative if $x * y=y * x$)

The start

[Dickson, 1905]

Semifields first arose in the study of algebras resembling fields.

The start

[Dickson, 1905]

Semifields first arose in the study of algebras resembling fields.

[Veblen and Maclaglan-Wedderburn, 1907]

Use semifields to construct non-desarguesian projective planes.

A geometrical characterization

A non-desarguesian projective plane is a translation plane and also the dual of a translation plane if and only if it can be coordinatized by a proper semifield.

A notion of equivalence: isotopy

p prime, $F=\mathbb{F}_{p^{r}}$.

Definition

Presemifields $(F, *)$ and (F, \circ) are isotopic if $\beta(x \circ y)=\alpha_{1}(x) * \alpha_{2}(y)$ for some $\alpha_{1}, \alpha_{2}, \beta \in G L(r, p)$

short

Twist both input variables x, y and the output $x * y$ by linear mappings.

A notion of equivalence: isotopy

p prime, $F=\mathbb{F}_{p^{r}}$.

Definition

Presemifields $(F, *)$ and (F, \circ) are isotopic if $\beta(x \circ y)=\alpha_{1}(x) * \alpha_{2}(y)$ for some $\alpha_{1}, \alpha_{2}, \beta \in G L(r, p)$

short

Twist both input variables x, y and the output $x * y$ by linear mappings.

This is the right definition

Two semifields coordinatize isomorphic planes if and only if they are isotopic. [Albert, 1960]

The known families of finite commutative semifields in arbitrary odd characteristic

- Finite fields 1893
- Dickson 1906
- Albert 1952
- Zha-Kyureghyan-Wang-Bierbrauer 2009: trans-characteristic construction
- Budaghyan-Helleseth 2008, Zha-Wang 2009
- Pott-Zhou

A family of semifields in odd char [Bierbrauer, preprint]

The parameters

p odd prime, $q=p^{m}, L=\mathbb{F}_{q} \subset F=\mathbb{F}_{q^{2}}$.
Let $\bar{x}=x^{q}$ and $T: F \longrightarrow L$ the trace.
$0<s<2 m, \sigma=p^{s}, l \in L^{*}$ s. t. $-I \notin\left(L^{*}\right)^{\sigma-1}$.
$C_{1}, C_{2} \in F$ s. t. the polynomial

$$
P_{C_{1}, C_{2}, s}(X)=C_{2} X^{\sigma+1}+\overline{C_{1}} X^{\sigma}+C_{1} X+\overline{C_{2}} \in F[X]
$$

has no root z s. t. $z^{q+1}=1$.

A family of semifields in odd char [Bierbrauer, preprint]

The parameters

p odd prime, $q=p^{m}, L=\mathbb{F}_{q} \subset F=\mathbb{F}_{q^{2}}$.
Let $\bar{x}=x^{q}$ and $T: F \longrightarrow L$ the trace.
$0<s<2 m, \sigma=p^{s}, l \in L^{*}$ s. t. $-I \notin\left(L^{*}\right)^{\sigma-1}$.
$C_{1}, C_{2} \in F$ s. t. the polynomial

$$
P_{C_{1}, C_{2}, s}(X)=C_{2} X^{\sigma+1}+\overline{C_{1}} X^{\sigma}+C_{1} X+\overline{C_{2}} \in F[X]
$$

has no root z s. t. $z^{q+1}=1$.

The presemifield $B\left(p, m, s, l, C_{1}, C_{2}\right)$ of order $p^{2 m}$

$$
\begin{gathered}
x+y:=x+₹ y \\
x * y:=
\end{gathered}
$$

$(1 / 2) T\left(\left(C_{1} y^{\sigma}+C_{2} \bar{y}^{\sigma}\right) x\right)+(I / 2) T\left(\left(\overline{C_{1}} y+C_{2} \bar{y}\right) x^{\sigma}\right)+(x y-\overline{x y}) / 2$

A family of semifields in odd char [Bierbrauer, preprint]

The semifield associated to $B\left(p, m, s, l, C_{1}, C_{2}\right)$

$$
\begin{gathered}
x+y:=x+F y \\
x \circ y:=\beta(\gamma(x) * y)
\end{gathered}
$$

where $\beta, \gamma: F \rightarrow F$ are invertible linear mappings defined by

$$
1 * \beta(x)=x \text { and } \gamma(x) * 1=1 * x
$$

The commutative case

[Budaghyan and Helleseth, 2011]

Constructed two families of commutative semifields These families are contained in the family $B\left(p, m, s, I, C_{1}, C_{2}\right)$, in the special cases Does the family $B\left(p, m, s, l, C_{1}, C_{2}\right)$ contain commutative ovamnloe not icatonic to momhore of the Rirdaghıan-Holleseth families?

The commutative case

[Budaghyan and Helleseth, 2011]

Constructed two families of commutative semifields
These families are contained in the family $B\left(p, m, s, l, C_{1}, C_{2}\right)$, in the special cases:

$$
\left\{C_{1}, C_{2}\right\} \subset L \text { and } C_{1}=0,
$$

The commutative case

[Budaghyan and Helleseth, 2011]

Constructed two families of commutative semifields

These families are contained in the family $B\left(p, m, s, I, C_{1}, C_{2}\right)$, in the special cases:

$$
\left\{C_{1}, C_{2}\right\} \subset L \text { and } C_{1}=0
$$

Open question

Does the family $B\left(p, m, s, l, C_{1}, C_{2}\right)$ contain commutative examples not isotopic to members of the Budaghyan-Helleseth families?

The case $B\left(3,3, s, I, C_{1}, C_{2}\right)$

The notation

$q=3^{6}=729$
L is defined by $\epsilon^{3}=\epsilon^{2}-1$
F is defined by $\omega^{2}=-1$
$x \in F, x=a+\omega b, a, b \in L, x=(\underbrace{a}_{R e}, \underbrace{b}_{I m})$
The field multiplication in F is then

$$
(a, b)(c, d)=(a c-b d, a d+b c)
$$

The case $B\left(3,3, s, I, C_{1}, C_{2}\right)$, isotopism relations

$B\left(3,3, s, l, C_{1}, C_{2}\right)$ is isotopic to $B\left(3,3,3+s, l, C_{2}, C_{1}\right)$ and to $B\left(3,3,3-s, 1 / I, C_{2}, \overline{C_{1}}\right)$.
This shows that we may assume $s=1$.

The case $B\left(3,3, s, I, C_{1}, C_{2}\right)$, isotopism relations

$B\left(3,3, s, l, C_{1}, C_{2}\right)$ is isotopic to $B\left(3,3,3+s, l, C_{2}, C_{1}\right)$ and to $B\left(3,3,3-s, 1 / I, C_{2}, \overline{C_{1}}\right)$.
This shows that we may assume $s=1$.
$I \in L$ is determined only up to its coset $I L^{*(\sigma-1)}$.
This shows that up to isotopy we may choose $I=1$.

The case $B\left(3,3, s, I, C_{1}, C_{2}\right)$, isotopism relations

$B\left(3,3, s, l, C_{1}, C_{2}\right)$ is isotopic to $B\left(3,3,3+s, I, C_{2}, C_{1}\right)$ and to $B\left(3,3,3-s, 1 / I, C_{2}, \overline{C_{1}}\right)$.
This shows that we may assume $s=1$.
$I \in L$ is determined only up to its coset $I L^{*(\sigma-1)}$.
This shows that up to isotopy we may choose $I=1$.
It follows from the theory of projective polynomials that the number of pairs $\left(C_{1}, C_{2}\right)$ satisfying the polynomial condition equals $27 \times 26 \times 13 \times 21=191,646$.

The case $B\left(3,3,1,1, C_{1}, C_{2}\right)$, isotopism relations

Theorem (scalar isotopy)

The pair (C_{1}, C_{2}) can be replaced by $\left(\lambda C_{1}, \lambda C_{2}\right)$ for $0 \neq \lambda \in L$.

Theorem (Galois isotopy)

Let $C_{i}=\left(v_{i}, h_{i}\right)$
The pair $\left(C_{1}, C_{2}\right)$ can be replaced by $\left(v_{1}^{3},-h_{1}^{3}\right),\left(v_{2}^{3},-h_{2}^{3}\right)$.

The case $B\left(3,3,1,1, C_{1}, C_{2}\right)$, isotopism relations

Theorem (diagonal isotopy)

Let $C_{i}=\left(v_{i}, h_{i}\right)$ and work with parameters

$$
v_{+}=v_{1}+v_{2}, v_{-}=v_{1}-v_{2}, h_{+}=h_{1}+h_{2}, h_{-}=h_{1}-h_{2} .
$$

Then, for arbitrary nonzero $k_{1}, k_{2} \in L$, the following substitutions can be performed without affecting isotopy:

$$
\begin{aligned}
& v_{+} \mapsto k_{1}^{\sigma+1} v_{+}, v_{-} \mapsto k_{2}^{\sigma+1} v_{-}, \\
& h_{+} \mapsto k_{1}^{\sigma} k_{2} h_{+}, h_{-} \mapsto k_{1} k_{2}^{\sigma} h_{-}
\end{aligned}
$$

$B\left(3,3,1,1, C_{1}, C_{2}\right)$ is isotopic to $B\left(3,3,1,1, C_{1}^{\prime}, C_{2}^{\prime}\right)$, where $C_{1}^{\prime}=-\left(\left(k_{1}^{4}+k_{2}^{4}\right) v_{1}+\left(k_{1}^{4}-k_{2}^{4}\right) v_{2},\left(k_{1}^{3} k_{2}+k_{1} k_{2}^{3}\right) h_{1}+\left(k_{1}^{3} k_{2}-k_{1} k_{2}^{3}\right) h_{2}\right)$ $C_{2}^{\prime}=-\left(\left(k_{1}^{4}-k_{2}^{4}\right) v_{1}+\left(k_{1}^{4}+k_{2}^{4}\right) v_{2},\left(k_{1}^{3} k_{2}-k_{1} k_{2}^{3}\right) h_{1}+\left(k_{1}^{3} k_{2}+k_{1} k_{2}^{3}\right) h_{2}\right)$

The case $B\left(3,3,1,1, C_{1}, C_{2}\right)$, isotopism relations

Theorem (1)

$B\left(3,3,1,1, C_{1}, C_{2}\right)$ is isotopic to $B\left(3,3,1,1, \alpha^{82} C_{1}, \alpha^{4} C_{2}\right)$ for all $0 \neq \alpha \in F$.

The case $B\left(3,3,1,1, C_{1}, C_{2}\right)$, isotopism relations

Theorem (1)

$B\left(3,3,1,1, C_{1}, C_{2}\right)$ is isotopic to $B\left(3,3,1,1, \alpha^{82} C_{1}, \alpha^{4} C_{2}\right)$ for all $0 \neq \alpha \in F$.

$$
C_{1}=0
$$

C_{2} can be multiplied by an arbitrary fourth power
$\Rightarrow C_{2} \in\{1, i, 1+i, 1-i\}$.
existence condition $\Rightarrow C_{2} \neq i$.
Galois isotopy $\Rightarrow C_{2}=i-1$ and $C_{2}=i+1$ give isotopic presemifields

The case $B\left(3,3,1,1, C_{1}, C_{2}\right)$, isotopism relations

Theorem (1)

$B\left(3,3,1,1, C_{1}, C_{2}\right)$ is isotopic to $B\left(3,3,1,1, \alpha^{82} C_{1}, \alpha^{4} C_{2}\right)$ for all $0 \neq \alpha \in F$.

$$
C_{1}=0
$$

C_{2} can be multiplied by an arbitrary fourth power
$\Rightarrow C_{2} \in\{1, i, 1+i, 1-i\}$.
existence condition $\Rightarrow C_{2} \neq i$.
Galois isotopy $\Rightarrow C_{2}=i-1$ and $C_{2}=i+1$ give isotopic presemifields
$B(3,3,1,1,0,1)$ commutative
$B(3,3,1,1,0,1-i)$ non-isotopic to commutative

The case $B\left(3,3,1,1, C_{1}, C_{2}\right)$, isotopism relations

Theorem (2)

$B\left(3,3,1,1, C_{1}, C_{2}\right)$ is isotopic to $B\left(3,3,1,1, \alpha \bar{\alpha}^{\sigma} C_{1}, \alpha^{\sigma+1} C_{2}\right)$ for all $0 \neq \alpha \in F$.

The case $B\left(3,3,1,1, C_{1}, C_{2}\right)$, isotopism relations

Theorem (2)

$B\left(3,3,1,1, C_{1}, C_{2}\right)$ is isotopic to $B\left(3,3,1,1, \alpha \bar{\alpha}^{\sigma} C_{1}, \alpha^{\sigma+1} C_{2}\right)$ for all $0 \neq \alpha \in F$.

$C_{1} \neq 0$,

Theorem (2) $\Rightarrow C_{1}$ can be multiplyed by an arbitrary square \Rightarrow $C_{1}=1$ or $1-i$.
diagonal isotopy $\Rightarrow C_{1}=1$.
Galois isotopy, diagonal isotopy, Theorem (1)
$\Rightarrow B\left(3,3,1,1,1, C_{2}\right)$ come in two isotopy classes.

The case $B\left(3,3,1,1, C_{1}, C_{2}\right)$, isotopism relations

Theorem

Let $A, B \in F^{*}$ such that $A \bar{A} \neq B \bar{B}$. Then $B\left(3,3,1,1,0, C_{2}\right)$ is isotopic to $B\left(3,3,1,1, C_{1}^{\prime}, C_{2}^{\prime}\right)$ where

$$
C_{1}^{\prime}=C_{2} A B^{3}+\overline{C_{2} A^{3} B}, C_{2}^{\prime}=C_{2} A^{4}+\overline{C_{2} B^{4}} .
$$

This Theorem gives isotopies between the two (pre)semifields with $C_{1}=0$ and the two (ore)semifields with C_{1}

The case $B\left(3,3,1,1, C_{1}, C_{2}\right)$, isotopism relations

Theorem

Let $A, B \in F^{*}$ such that $A \bar{A} \neq B \bar{B}$. Then $B\left(3,3,1,1,0, C_{2}\right)$ is isotopic to $B\left(3,3,1,1, C_{1}^{\prime}, C_{2}^{\prime}\right)$ where

$$
C_{1}^{\prime}=C_{2} A B^{3}+\overline{C_{2} A^{3} B}, C_{2}^{\prime}=C_{2} A^{4}+\overline{C_{2} B^{4}}
$$

This Theorem gives isotopies between the two (pre)semifields with $C_{1}=0$ and the two (pre)semifields with $C_{1}=1$

The case $B\left(3,3, s, I, C_{1}, C_{2}\right)$

The classification, $q=3^{6}$

$B(3,3,1,1,0,1)$ commutative
$B(3,3,1,1,0,1-i)$ non isotopic to commutative

The case $B\left(3,3, s, I, C_{1}, C_{2}\right)$

The (pre)semifield $B(3,3,1,1,0,1)$

Commutative, it belongs to the Budaghyan-Helleseth family.
Its autotopism group has order 1248.

The case $B\left(3,3, s, I, C_{1}, C_{2}\right)$

The (pre)semifield $B(3,3,1,1,0,1)$

The autotopism group has order at least 1248 :

$$
x * y=-T\left(x \bar{y}^{3}+x^{3} \bar{y}\right)+\overline{x y}-x y .
$$

When will $\alpha_{1}(x)=A x, \alpha_{2}(y)=B y$ define an autotopism?
The imaginary part $\Rightarrow A B \in L$, equivalently $B=c \bar{A}$ for $c \in L$. The real part \Rightarrow the condition $c^{3} A^{4}=c A^{4} \in L$. This shows $c= \pm 1$ and there are 4×26 choices for A.

Together with the field automorphisms (generated by $\alpha_{1}(x)=x^{3}, \alpha_{2}(y)=y^{3}, \beta(z)=z^{3^{5}}$) this yields an autotopism group of order $26 \times 4 \times 2 \times 6=1248$.

The case $B\left(3,3, s, I, C_{1}, C_{2}\right)$

The (pre)semifield $B(3,3,1,1,0,1-i)$

Non isotopic to commutative.
Its autotopism group has order 624.

The case $B\left(3,3, s, I, C_{1}, C_{2}\right)$

The two semifields are not isotopic to twisted fields [Albert, 1961]

A generalized twisted field of order 3^{6} with left and right nucleus of order 3 is isotopic to a presemifield

$$
x * y=x y+I x^{\sigma} y^{\tau}
$$

Let $\sigma=3^{s}, \tau=3^{t}$. The nuclei show that s, t are coprime to 6 .

The case $B\left(3,3, s, I, C_{1}, C_{2}\right)$

The two semifields are not isotopic to twisted fields [Albert, 1961]

A generalized twisted field of order 3^{6} with left and right nucleus of order 3 is isotopic to a presemifield

$$
x * y=x y+I x^{\sigma} y^{\tau}
$$

Let $\sigma=3^{s}, \tau=3^{t}$. The nuclei show that s, t are coprime to 6 .
Consider autotopisms of the form

$$
\alpha_{1}(x)=A x, \alpha_{2}(y)=B y, \beta(z)=z /(A B) .
$$

$A, B \in F^{*}$ defines an autotopism if and only if $A^{\sigma-1} B^{\tau-1}=1$.

The case $B\left(3,3, s, I, C_{1}, C_{2}\right)$

The two semifields are not isotopic to twisted fields [Albert, 1961]

A generalized twisted field of order 3^{6} with left and right nucleus of order 3 is isotopic to a presemifield

$$
x * y=x y+I x^{\sigma} y^{\tau}
$$

Let $\sigma=3^{s}, \tau=3^{t}$. The nuclei show that s, t are coprime to 6 .
Consider autotopisms of the form

$$
\alpha_{1}(x)=A x, \alpha_{2}(y)=B y, \beta(z)=z /(A B) .
$$

$A, B \in F^{*}$ defines an autotopism if and only if $A^{\sigma-1} B^{\tau-1}=1$. We can choose B arbitrarily and have then two choices for A \Rightarrow the twisted field has at least $2 \times\left(3^{6}-1\right)=1456$ autotopisms and is therefore more symmetric than our semifields.

The case $B\left(3,4, s, I, C_{1}, C_{2}\right)$

The notation

$q=3^{8}=6561$
L is defined by $\epsilon^{4}=\epsilon+1$
Let $\mu=\epsilon^{5}, \operatorname{order}(\mu=16)$
F is defined by $\omega^{2}=\mu$

The case $B\left(3,4, s, I, C_{1}, C_{2}\right)$

The notation

$q=3^{8}=6561$
L is defined by $\epsilon^{4}=\epsilon+1$
Let $\mu=\epsilon^{5}, \operatorname{order}(\mu=16)$
F is defined by $\omega^{2}=\mu$

$\mathrm{S}=2$

It gives isotopes of Dickson semifields.

The case $B\left(3,4, s, I, C_{1}, C_{2}\right) s=1$

$$
I=-\mu
$$

The classification, $q=3^{8}$

$B(3,4,1,-\mu, 0,1)$ commutative, isotopic to the unique Budaghyan-Helleseth semifield of order 3^{8}
$B\left(3,4,1,-\mu, 1+\epsilon / \mu^{2}, 1+\epsilon / \mu^{2}\right)$ non isotopic to commutative

THANKS FOR THE ATTENTION!

