D.V. Zinoviev, V.A. Zinoviev

A.A. Kharkevich Institute for Problems of Information Transmission, Moscow, Russia

ACCT-2014 Svetlogorsk, Russia, September 7-13, 2014

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Outline

1 Introduction

2 Preliminary Results

3 New Construction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

4 Main Results

On the Preparata-like codes	3/13
- Introduction	

Let
$$E = \{0, 1\}.$$

On the Preparata-like codes	3/13
Introduction	

Let $E = \{0, 1\}$. As usual, by (n, d, N) denote a binary code $C \subseteq E^n$ of length n, cardinality N and minimum (Hamming) distance d.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Let $E = \{0, 1\}$. As usual, by (n, d, N) denote a binary code $C \subseteq E^n$ of length n, cardinality N and minimum (Hamming) distance d. Let $n = 2^{2m}$, $m = 2, 3, \ldots$.

Let $E = \{0, 1\}$. As usual, by (n, d, N) denote a binary code $C \subseteq E^n$ of length n, cardinality N and minimum (Hamming) distance d. Let $n = 2^{2m}$, m = 2, 3, ...A binary $(n, 6, 2^{n-4m})$ -code is called a **Preparata-like** code and denoted P.

Let $E = \{0, 1\}$. As usual, by (n, d, N) denote a binary code $C \subseteq E^n$ of length n, cardinality N and minimum (Hamming) distance d. Let $n = 2^{2m}$, m = 2, 3, ...A binary $(n, 6, 2^{n-4m})$ -code is called a **Preparata-like** code and denoted P. A binary $(n, 4, 2^{n-m-1})$ -code is called a **Hamming-like** code and denoted H.

Let $E = \{0, 1\}$. As usual, by (n, d, N) denote a binary code $C \subseteq E^n$ of length n, cardinality N and minimum (Hamming) distance d. Let $n = 2^{2m}$, $m = 2, 3, \ldots$ A binary $(n, 6, 2^{n-4m})$ -code is called a **Preparata-like** code and denoted P. A binary $(n, 4, 2^{n-m-1})$ -code is called a **Hamming-like** code and denoted H.

Assume that any Preparata-like code P and any Hamming-like code H contains the zero vector $\mathbf{0} = (0, \dots, 0)$.

For a binary code $C \subset E^n$ and an arbitrary binary vector $\mathbf{x} \in E^n$ define the distance between \mathbf{x} and C

 $d(\mathbf{x}, C) = \min \{ d(\mathbf{x}, \mathbf{c}) : \mathbf{c} \in C \}.$

For a binary code $C \subset E^n$ and an arbitrary binary vector $\mathbf{x} \in E^n$ define the distance between \mathbf{x} and C

$$d(\mathbf{x}, C) = \min \{ d(\mathbf{x}, \mathbf{c}) : \mathbf{c} \in C \}.$$

For a binary code $C \subset E^n$ let C(i) be the set of vectors of E^n , at a distance i from C, i.e.

$$C(i) = \{ \mathbf{x} \in E^n : d(\mathbf{x}, C) = i \}.$$

For a binary code $C \subset E^n$ and an arbitrary binary vector $\mathbf{x} \in E^n$ define the distance between \mathbf{x} and C

$$d(\mathbf{x}, C) = \min \{ d(\mathbf{x}, \mathbf{c}) : \mathbf{c} \in C \}.$$

For a binary code $C \subset E^n$ let C(i) be the set of vectors of E^n , at a distance i from C, i.e.

$$C(i) = \{ \mathbf{x} \in E^n : d(\mathbf{x}, C) = i \}.$$

Define the covering radius of a code C, $\rho = \rho(C)$, the smallest positive integer ρ such that

$$E^n = \bigcup_{i=0}^{\rho} C(i).$$

On the Preparata-like codes	5/13	
- Introduction		

A Steiner system S(v, k, t) is a pair (X, B), X is a v-set (i.e. |X| = v) and B – the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

A Steiner system S(v, k, t) is a pair (X, B), X is a v-set (i.e. |X| = v) and B – the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

A Steiner system S(v, 4, 3) is a Steiner quadruple system SQS(v).

On the Preparata-like codes	5/13
Introduction	

A Steiner system S(v, k, t) is a pair (X, B), X is a v-set (i.e. |X| = v) and B – the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

A Steiner system S(v, 4, 3) is a Steiner quadruple system SQS(v).

A Steiner system S(v, 4, 3) is called 2-resolvable if it can be split into mutually non-overlapping S(v, 4, 2) Steiner systems.

On the Preparata-like codes	6/13
- Introduction	

(日) (日) (日) (日) (日) (日) (日) (日) (日)

It is obtained by the partition of code H into the shifts of P.

On the Preparata-like codes	6/13	
Introduction		

It is obtained by the partition of code H into the shifts of P.

[Dumer (1976)] and [Baker, van Lint, Wilson (1983)]: Same results were obtained for the generalized Preparata codes and for Z_4 -linear Preparata-like codes [Hammons, Kumar, Calderbank, Sloane, Sole (1994)]

On the Preparata-like codes	6/13
Introduction	

It is obtained by the partition of code H into the shifts of P.

[Dumer (1976)] and [Baker, van Lint, Wilson (1983)]: Same results were obtained for the generalized Preparata codes and for Z_4 -linear Preparata-like codes [Hammons, Kumar, Calderbank, Sloane, Sole (1994)]

We consider the group structure of the Preparata-like codes of [*Baker, van Lint, Wilson*] (also considered by [*Rifa, Pujol* (1997)] and [*Ericson* (2009)] presented them in a slightly different form).

Preliminary Results

Let $\mu \geq 3$ be an odd number and consider the functions $z: \mathbb{F}_{2^{\mu}} \to \mathbb{F}_4 = \{0, 1, \omega, \omega^2\}$, where $\omega^2 = \omega + 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

7/13

Preliminary Results

Let $\mu \geq 3$ be an odd number and consider the functions $z: \mathbb{F}_{2^{\mu}} \to \mathbb{F}_4 = \{0, 1, \omega, \omega^2\}$, where $\omega^2 = \omega + 1$.

Let $\operatorname{Tr}(z) = z + z^2$ be a trace function from \mathbb{F}_4 into \mathbb{F}_2 . For $z \in \mathbb{F}_4$ define $x, y \in \mathbb{F}_2$ as follows:

$$x = \operatorname{Tr}(\omega z) = z\omega + z^2\omega^2, \ y = \operatorname{Tr}(\omega^2 z) = z\omega^2 + z^2\omega,$$

Note that $z = x\omega + y\omega^2$ and $z^2 = x\omega^2 + y\omega$.

7/13

Preliminary Results

Let $\mu \geq 3$ be an odd number and consider the functions $z: \mathbb{F}_{2\mu} \to \mathbb{F}_4 = \{0, 1, \omega, \omega^2\}, \text{ where } \omega^2 = \omega + 1.$

Let $Tr(z) = z + z^2$ be a trace function from \mathbb{F}_4 into \mathbb{F}_2 . For $z \in \mathbb{F}_4$ define $x, y \in \mathbb{F}_2$ as follows:

$$x = \operatorname{Tr}(\omega z) = z\omega + z^2\omega^2, \ y = \operatorname{Tr}(\omega^2 z) = z\omega^2 + z^2\omega_z$$

Note that $z = x\omega + y\omega^2$ and $z^2 = x\omega^2 + y\omega$.

7/13

These equalities establish an isomorphism between \mathbb{F}_4 and \mathbb{F}_2^2 . In this case the Hamming metric of \mathbb{F}_2^2 corresponds to the metric ρ of \mathbb{F}_4 , induced by the following weight function wt_4 :

$$wt_4(0) = 0, wt_4(\omega) = wt_4(\omega^2) = 1, wt_4(1) = 2.$$

so that $\rho(a,b) = \operatorname{wt}_4(a+b)$. Since μ is odd, the field \mathbb{F}_4 is not contained in $\mathbb{F}_{2^{\mu}}$ and in particular the elements ω and ω^2 are not contained in $\mathbb{F}_{2^{\mu}}$.

Let \mathcal{F} be the set of functions $z: \mathbb{F}_{2^{\mu}} \to \mathbb{F}_4$ which satisfy the following equalities:

$$\sum_{u} z(u) = 0, \qquad \sum_{u} u(z_1(u) + z_2(u)) = 0, \tag{1}$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

where $z(u)=z_1(u)\omega+z_2(u)\omega^2$ and u runs over the whole field $\mathbb{F}_{2^{\mu}}.$

Let \mathcal{F} be the set of functions $z: \mathbb{F}_{2^{\mu}} \to \mathbb{F}_4$ which satisfy the following equalities:

$$\sum_{u} z(u) = 0, \qquad \sum_{u} u(z_1(u) + z_2(u)) = 0, \tag{1}$$

where $z(u)=z_1(u)\omega+z_2(u)\omega^2$ and u runs over the whole field $\mathbb{F}_{2^{\mu}}.$

Let σ be a power of 2, so that $2 \leq \sigma \leq 2^{\mu-1}$ and $(\sigma \pm 1, 2^{\mu} - 1) = 1$ (*Ericson* considered the case $\sigma = 2$). Let \mathcal{F}_{σ} be the subset of functions of \mathcal{F} , which satisfy the following equality:

$$\sum_{u} u^{\sigma+1}(z_1(u) + z_2(u)) = \left(\sum_{u} uz(u)\right)^{\sigma+1} , \qquad (2)$$

where u runs over the whole field $\mathbb{F}_{2^{\mu}}$.

For an arbitrary function $z \in \mathcal{F}$ set

$$\lambda_z = \sum_{u \in \mathbb{F}_{2^\mu}} uz(u).$$

For an arbitrary function $z \in \mathcal{F}$ set

$$\lambda_z = \sum_{u \in \mathbb{F}_{2^{\mu}}} uz(u).$$

Define a binary operation \star on the set \mathcal{F} , so that for any $a = a_1\omega + a_2\omega^2$ and $b = b_1\omega + b_2\omega^2$ from \mathcal{F} , we have

$$c = a \star b = c_1 \omega + c_2 \omega^2, \tag{3}$$

(日) (日) (日) (日) (日) (日) (日) (日)

where $c_1(u) = a_1(u + \lambda_b) + b_1(u)$ and $c_2(u) = a_2(u) + b_2(u)$.

For an arbitrary function $z \in \mathcal{F}$ set

$$\lambda_z = \sum_{u \in \mathbb{F}_{2^{\mu}}} uz(u).$$

Define a binary operation \star on the set ${\cal F}$, so that for any $a=a_1\omega+a_2\omega^2$ and $b=b_1\omega+b_2\omega^2$ from ${\cal F}$, we have

$$c = a \star b = c_1 \omega + c_2 \omega^2, \tag{3}$$

where $c_1(u) = a_1(u + \lambda_b) + b_1(u)$ and $c_2(u) = a_2(u) + b_2(u)$.

The set \mathcal{F} with this operation \star is a non-commutative group and \mathcal{F}_{σ} is a subgroup of \mathcal{F} . One can show that $[\mathcal{F}:\mathcal{F}_{\sigma}]$ is equal to 2^{μ} and we have that

$$\mathcal{F} = \bigcup_{i=1}^{2^{\mu}} \mathcal{F}_{\sigma} \star f_i, \tag{4}$$

where $f_1, \ldots, f_{2^{\mu}} \in \mathcal{F}$ are coset representatives.

-New Construction

Note that if $c \in \mathcal{F}$, then it is easy to check that multiplication by c on the right (but not on the left) is distance preserving. Thus

$$\rho(a \star c, b \star c) = \rho(a, b) = \rho(\mathbf{0}, b \star a^{-1}) = \text{wt}_4(b \star a^{-1}).$$
 (5)

-New Construction

Note that if $c \in \mathcal{F}$, then it is easy to check that multiplication by c on the right (but not on the left) is distance preserving. Thus

$$\rho(a \star c, b \star c) = \rho(a, b) = \rho(\mathbf{0}, b \star a^{-1}) = \text{wt}_4(b \star a^{-1}).$$
 (5)

For a given positive odd number $\mu \geq 3$, and $\sigma = 2, \ldots, 2^{\mu-1}$, $(\sigma \pm 1, 2^{\mu} - 1) = 1$ define a non-commutative Preparata-like code of **Ericson-type** as a binary code of length $n = 2^m$, $(m = \mu + 1)$ viewed as the set of values $z(u) \rightarrow [x(u), y(u)]$ of the functions $z \in \mathcal{F}_{\sigma}$.

-New Construction

Note that if $c \in \mathcal{F}$, then it is easy to check that multiplication by c on the right (but not on the left) is distance preserving. Thus

$$\rho(a \star c, b \star c) = \rho(a, b) = \rho(\mathbf{0}, b \star a^{-1}) = \text{wt}_4(b \star a^{-1}).$$
 (5)

For a given positive odd number $\mu \geq 3$, and $\sigma = 2, \ldots, 2^{\mu-1}$, $(\sigma \pm 1, 2^{\mu} - 1) = 1$ define a non-commutative Preparata-like code of **Ericson-type** as a binary code of length $n = 2^m$, $(m = \mu + 1)$ viewed as the set of values $z(u) \rightarrow [x(u), y(u)]$ of the functions $z \in \mathcal{F}_{\sigma}$.

Equations (1) becomes (u runs over $F_{2^{\mu}}$):

$$\sum x(u) = \sum y(u) = 0, \qquad \sum u \cdot x(u) = \sum u \cdot y(u) = \lambda$$

-New Construction

Note that if $c \in \mathcal{F}$, then it is easy to check that multiplication by c on the right (but not on the left) is distance preserving. Thus

$$\rho(a \star c, b \star c) = \rho(a, b) = \rho(\mathbf{0}, b \star a^{-1}) = \text{wt}_4(b \star a^{-1}).$$
 (5)

For a given positive odd number $\mu \geq 3$, and $\sigma = 2, \ldots, 2^{\mu-1}$, $(\sigma \pm 1, 2^{\mu} - 1) = 1$ define a non-commutative Preparata-like code of **Ericson-type** as a binary code of length $n = 2^m$, $(m = \mu + 1)$ viewed as the set of values $z(u) \rightarrow [x(u), y(u)]$ of the functions $z \in \mathcal{F}_{\sigma}$.

Equations (1) becomes (u runs over $F_{2^{\mu}}$):

$$\sum x(u) = \sum y(u) = 0, \qquad \sum u \cdot x(u) = \sum u \cdot y(u) = \lambda$$

Equation (2) becomes:

$$\sum u^{\sigma+1} x(u) + \sum u^{\sigma+1} y(u) = \lambda^{\sigma+1}.$$

└─ Main Results

Theorem 1.

Let \mathcal{P}_{σ} be a code of length $n = 2^{\mu+1}$, given by equations (1)-(2). For any odd number $\mu \geq 3$ and any $\sigma = 2, \ldots, 2^{\mu-1}$, $(\sigma \pm 1, 2^{\mu} - 1) = 1$ this code has the following parameters

$$n = 2^m, N = 2^{n-2m}, d = 6,$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

i.e. is the non-commutative Preparata-like group code.

└─ Main Results

Theorem 1.

Let \mathcal{P}_{σ} be a code of length $n = 2^{\mu+1}$, given by equations (1)-(2). For any odd number $\mu \geq 3$ and any $\sigma = 2, \ldots, 2^{\mu-1}$, $(\sigma \pm 1, 2^{\mu} - 1) = 1$ this code has the following parameters

$$n = 2^m, N = 2^{n-2m}, d = 6,$$

イロト 不得 トイヨト イヨト ヨー ろくで

i.e. is the non-commutative Preparata-like group code.

Ericson (for $\sigma = 2$)

On the Preparata-like codes	12/13
└─ Main Results	

Let $\mathcal{P}_{\sigma,i}$ be the set of values of functions $\mathcal{F}_{\sigma} \star f_i$. It follows that minimum distance of $\mathcal{P}_{\sigma,i}$ is 6.

Let $\mathcal{P}_{\sigma,i}$ be the set of values of functions $\mathcal{F}_{\sigma} \star f_i$. It follows that minimum distance of $\mathcal{P}_{\sigma,i}$ is 6.

Theorem 2.

The code \mathcal{P}_{σ} of length $n = 2^{\mu+1}$ is a subcode of the Hamming code H of length n and induce a partition of H into the cosets of the code \mathcal{P}_{σ} , i.e. we have

$$H = \bigcup_{i=1}^{n/2} \mathcal{P}_{\sigma,i}$$

On the Preparata-like codes	13/13
Main Results	

According to [Zaitsev, Zinoviev, Semakov (1971)] the set of codewords of weight 4 of $P_{\sigma,i}$, $i = 1, \ldots, n/2 - 1$, forms a Steiner system S(n, 4, 2).

On the Preparata-like codes	13/13
Main Results	

According to [Zaitsev, Zinoviev, Semakov (1971)] the set of codewords of weight 4 of $P_{\sigma,i}$, $i = 1, \ldots, n/2 - 1$, forms a Steiner system S(n, 4, 2). Recall that the codeowrds of weight 4 of H forms S(n, 4, 3) [Assmuss, Mattson, (1967)].

On the Preparata-like codes	13/13
Main Results	

According to [Zaitsev, Zinoviev, Semakov (1971)] the set of codewords of weight 4 of $P_{\sigma,i}$, $i = 1, \ldots, n/2 - 1$, forms a Steiner system S(n, 4, 2). Recall that the codeowrds of weight 4 of H forms S(n, 4, 3) [Assmuss, Mattson, (1967)]. Hence from the partition of H into subcodes $P_{\sigma,i}$ of Theorem 2 we obtain

On the Preparata-like codes	13/13
└─ Main Results	

According to [Zaitsev, Zinoviev, Semakov (1971)] the set of codewords of weight 4 of $P_{\sigma,i}$, $i = 1, \ldots, n/2 - 1$, forms a Steiner system S(n, 4, 2). Recall that the codeowrds of weight 4 of H forms S(n, 4, 3) [Assmuss, Mattson, (1967)]. Hence from the partition of H into subcodes $P_{\sigma,i}$ of Theorem 2 we obtain

Theorem 3.

For any $\sigma = 2, ..., 2^{\mu-1}$, $(\sigma \pm 1, 2^{\mu}) = 1$, the partition of H into $P_{\sigma,i}$, i = 1, ..., n/2, induces the partition of S(n, 4, 3) into the Steiner systems $S_{\sigma,i} = S(n, 4, 2)$.