On the Preparata-like codes

D.V. Zinoviev, V.A. Zinoviev

A.A. Kharkevich Institute for Problems of Information Transmission, Moscow, Russia

ACCT-2014 Svetlogorsk, Russia, September 7-13, 2014

Outline

1 Introduction
2 Preliminary Results

3 New Construction
4 Main Results

Let $E=\{0,1\}$.

Let $E=\{0,1\}$. As usual, by (n, d, N) denote a binary code $C \subseteq E^{n}$ of length n, cardinality N and minimum (Hamming) distance d.

Let $E=\{0,1\}$. As usual, by (n, d, N) denote a binary code $C \subseteq E^{n}$ of length n, cardinality N and minimum (Hamming) distance d.
Let $n=2^{2 m}, m=2,3, \ldots$.

Let $E=\{0,1\}$. As usual, by (n, d, N) denote a binary code $C \subseteq E^{n}$ of length n, cardinality N and minimum (Hamming) distance d.
Let $n=2^{2 m}, m=2,3, \ldots$.
A binary $\left(n, 6,2^{n-4 m}\right)$-code is called a Preparata-like code and denoted P.

Let $E=\{0,1\}$. As usual, by (n, d, N) denote a binary code $C \subseteq E^{n}$ of length n, cardinality N and minimum (Hamming) distance d.
Let $n=2^{2 m}, m=2,3, \ldots$.
A binary $\left(n, 6,2^{n-4 m}\right)$-code is called a Preparata-like code and denoted P.
A binary $\left(n, 4,2^{n-m-1}\right)$-code is called a Hamming-like code and denoted H.

Let $E=\{0,1\}$. As usual, by (n, d, N) denote a binary code $C \subseteq E^{n}$ of length n, cardinality N and minimum (Hamming) distance d.
Let $n=2^{2 m}, m=2,3, \ldots$.
A binary $\left(n, 6,2^{n-4 m}\right)$-code is called a Preparata-like code and denoted P.
A binary $\left(n, 4,2^{n-m-1}\right)$-code is called a Hamming-like code and denoted H.

Assume that any Preparata-like code P and any Hamming-like code H contains the zero vector $\mathbf{0}=(0, \ldots, 0)$.

For a binary code $C \subset E^{n}$ and an arbitrary binary vector $\mathbf{x} \in E^{n}$ define the distance between \mathbf{x} and C

$$
d(\mathbf{x}, C)=\min \{d(\mathbf{x}, \mathbf{c}): \mathbf{c} \in C\}
$$

For a binary code $C \subset E^{n}$ and an arbitrary binary vector $\mathbf{x} \in E^{n}$ define the distance between \mathbf{x} and C

$$
d(\mathbf{x}, C)=\min \{d(\mathbf{x}, \mathbf{c}): \mathbf{c} \in C\}
$$

For a binary code $C \subset E^{n}$ let $C(i)$ be the set of vectors of E^{n}, at a distance i from C, i.e.

$$
C(i)=\left\{\mathbf{x} \in E^{n}: d(\mathbf{x}, C)=i\right\}
$$

For a binary code $C \subset E^{n}$ and an arbitrary binary vector $\mathbf{x} \in E^{n}$ define the distance between \mathbf{x} and C

$$
d(\mathbf{x}, C)=\min \{d(\mathbf{x}, \mathbf{c}): \mathbf{c} \in C\}
$$

For a binary code $C \subset E^{n}$ let $C(i)$ be the set of vectors of E^{n}, at a distance i from C, i.e.

$$
C(i)=\left\{\mathbf{x} \in E^{n}: d(\mathbf{x}, C)=i\right\} .
$$

Define the covering radius of a code $C, \rho=\rho(C)$, the smallest positive integer ρ such that

$$
E^{n}=\bigcup_{i=0}^{\rho} C(i)
$$

A Steiner system $S(v, k, t)$ is a pair $(X, B), X$ is a v-set (i.e. $|X|=v)$ and B - the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

A Steiner system $S(v, k, t)$ is a pair $(X, B), X$ is a v-set (i.e. $|X|=v$) and B - the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

A Steiner system $S(v, 4,3)$ is a Steiner quadruple system $\operatorname{SQS}(v)$.

A Steiner system $S(v, k, t)$ is a pair $(X, B), X$ is a v-set (i.e. $|X|=v)$ and B - the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

A Steiner system $S(v, 4,3)$ is a Steiner quadruple system $\operatorname{SQS}(v)$.
A Steiner system $S(v, 4,3)$ is called 2-resolvable if it can be split into mutually non-overlapping $S(v, 4,2)$ Steiner systems.
[Zaitsev, Zinoviev, Semakov (1971)] and [Baker (1975)]: the original Preparata codes P of length $n=4^{m}, m=2,3, \ldots$ define a 2 -resolvable $S(n, 4,3)$
[Zaitsev, Zinoviev, Semakov (1971)] and [Baker (1975)]: the original Preparata codes P of length $n=4^{m}, m=2,3, \ldots$ define a 2-resolvable $S(n, 4,3)$
It is obtained by the partition of code H into the shifts of P.
[Zaitsev, Zinoviev, Semakov (1971)] and [Baker (1975)]: the original Preparata codes P of length $n=4^{m}, m=2,3, \ldots$ define a 2-resolvable $S(n, 4,3)$
It is obtained by the partition of code H into the shifts of P.
[Dumer (1976)] and [Baker, van Lint, Wilson (1983)]: Same results were obtained for the generalized Preparata codes and for Z_{4}-linear Preparata-like codes [Hammons, Kumar, Calderbank, Sloane, Sole (1994)]
[Zaitsev, Zinoviev, Semakov (1971)] and [Baker (1975)]: the original Preparata codes P of length $n=4^{m}, m=2,3, \ldots$ define a 2 -resolvable $S(n, 4,3)$
It is obtained by the partition of code H into the shifts of P.
[Dumer (1976)] and [Baker, van Lint, Wilson (1983)]: Same results were obtained for the generalized Preparata codes and for Z_{4}-linear Preparata-like codes [Hammons, Kumar, Calderbank, Sloane, Sole (1994)]
We consider the group structure of the Preparata-like codes of [Baker, van Lint, Wilson] (also considered by [Rifa, Pujol (1997)] and [Ericson (2009)] presented them in a slightly different form).

Let $\mu \geq 3$ be an odd number and consider the functions $z: \mathbb{F}_{2^{\mu}} \rightarrow \mathbb{F}_{4}=\left\{0,1, \omega, \omega^{2}\right\}$, where $\omega^{2}=\omega+1$.

Let $\mu \geq 3$ be an odd number and consider the functions
$z: \mathbb{F}_{2^{\mu}} \rightarrow \mathbb{F}_{4}=\left\{0,1, \omega, \omega^{2}\right\}$, where $\omega^{2}=\omega+1$.
Let $\operatorname{Tr}(z)=z+z^{2}$ be a trace function from \mathbb{F}_{4} into \mathbb{F}_{2}. For $z \in \mathbb{F}_{4}$ define $x, y \in \mathbb{F}_{2}$ as follows:

$$
x=\operatorname{Tr}(\omega z)=z \omega+z^{2} \omega^{2}, \quad y=\operatorname{Tr}\left(\omega^{2} z\right)=z \omega^{2}+z^{2} \omega
$$

Note that $z=x \omega+y \omega^{2}$ and $z^{2}=x \omega^{2}+y \omega$.

Let $\mu \geq 3$ be an odd number and consider the functions
$z: \mathbb{F}_{2^{\mu}} \rightarrow \mathbb{F}_{4}=\left\{0,1, \omega, \omega^{2}\right\}$, where $\omega^{2}=\omega+1$.
Let $\operatorname{Tr}(z)=z+z^{2}$ be a trace function from \mathbb{F}_{4} into \mathbb{F}_{2}. For $z \in \mathbb{F}_{4}$ define $x, y \in \mathbb{F}_{2}$ as follows:

$$
x=\operatorname{Tr}(\omega z)=z \omega+z^{2} \omega^{2}, \quad y=\operatorname{Tr}\left(\omega^{2} z\right)=z \omega^{2}+z^{2} \omega
$$

Note that $z=x \omega+y \omega^{2}$ and $z^{2}=x \omega^{2}+y \omega$.
These equalities establish an isomorphism between \mathbb{F}_{4} and \mathbb{F}_{2}^{2}. In this case the Hamming metric of \mathbb{F}_{2}^{2} corresponds to the metric ρ of \mathbb{F}_{4}, induced by the following weight function wt_{4} :

$$
\mathrm{wt}_{4}(0)=0, \quad \mathrm{wt}_{4}(\omega)=\mathrm{wt}_{4}\left(\omega^{2}\right)=1, \quad \mathrm{wt}_{4}(1)=2 .
$$

so that $\rho(a, b)=\mathrm{wt}_{4}(a+b)$. Since μ is odd, the field \mathbb{F}_{4} is not contained in $\mathbb{F}_{2^{\mu}}$ and in particular the elements ω and ω^{2} are not contained in $\mathbb{F}_{2^{\mu}}$.

Let \mathcal{F} be the set of functions $z: \mathbb{F}_{2^{\mu}} \rightarrow \mathbb{F}_{4}$ which satisfy the following equalities:

$$
\begin{equation*}
\sum_{u} z(u)=0, \quad \sum_{u} u\left(z_{1}(u)+z_{2}(u)\right)=0 \tag{1}
\end{equation*}
$$

where $z(u)=z_{1}(u) \omega+z_{2}(u) \omega^{2}$ and u runs over the whole field $\mathbb{F}_{2^{\mu}}$.

Let \mathcal{F} be the set of functions $z: \mathbb{F}_{2^{\mu}} \rightarrow \mathbb{F}_{4}$ which satisfy the following equalities:

$$
\begin{equation*}
\sum_{u} z(u)=0, \quad \sum_{u} u\left(z_{1}(u)+z_{2}(u)\right)=0 \tag{1}
\end{equation*}
$$

where $z(u)=z_{1}(u) \omega+z_{2}(u) \omega^{2}$ and u runs over the whole field $\mathbb{F}_{2^{\mu}}$.

Let σ be a power of 2 , so that $2 \leq \sigma \leq 2^{\mu-1}$ and $\left(\sigma \pm 1,2^{\mu}-1\right)=1$ (Ericson considered the case $\sigma=2$). Let \mathcal{F}_{σ} be the subset of functions of \mathcal{F}, which satisfy the following equality:

$$
\begin{equation*}
\sum_{u} u^{\sigma+1}\left(z_{1}(u)+z_{2}(u)\right)=\left(\sum_{u} u z(u)\right)^{\sigma+1} \tag{2}
\end{equation*}
$$

where u runs over the whole field $\mathbb{F}_{2^{\mu}}$.

For an arbitrary function $z \in \mathcal{F}$ set

$$
\lambda_{z}=\sum_{u \in \mathbb{F}_{2^{\mu}}} u z(u)
$$

For an arbitrary function $z \in \mathcal{F}$ set

$$
\lambda_{z}=\sum_{u \in \mathbb{F}_{2^{\mu}}} u z(u)
$$

Define a binary operation \star on the set \mathcal{F}, so that for any $a=a_{1} \omega+a_{2} \omega^{2}$ and $b=b_{1} \omega+b_{2} \omega^{2}$ from \mathcal{F}, we have

$$
\begin{equation*}
c=a \star b=c_{1} \omega+c_{2} \omega^{2}, \tag{3}
\end{equation*}
$$

where $c_{1}(u)=a_{1}\left(u+\lambda_{b}\right)+b_{1}(u)$ and $c_{2}(u)=a_{2}(u)+b_{2}(u)$.

For an arbitrary function $z \in \mathcal{F}$ set

$$
\lambda_{z}=\sum_{u \in \mathbb{F}_{2} \mu} u z(u)
$$

Define a binary operation \star on the set \mathcal{F}, so that for any $a=a_{1} \omega+a_{2} \omega^{2}$ and $b=b_{1} \omega+b_{2} \omega^{2}$ from \mathcal{F}, we have

$$
\begin{equation*}
c=a \star b=c_{1} \omega+c_{2} \omega^{2}, \tag{3}
\end{equation*}
$$

where $c_{1}(u)=a_{1}\left(u+\lambda_{b}\right)+b_{1}(u)$ and $c_{2}(u)=a_{2}(u)+b_{2}(u)$.
The set \mathcal{F} with this operation \star is a non-commutative group and \mathcal{F}_{σ} is a subgroup of \mathcal{F}. One can show that $\left[\mathcal{F}: \mathcal{F}_{\sigma}\right]$ is equal to 2^{μ} and we have that

$$
\begin{equation*}
\mathcal{F}=\bigcup_{i=1}^{2^{\mu}} \mathcal{F}_{\sigma} \star f_{i} \tag{4}
\end{equation*}
$$

where $f_{1}, \ldots, f_{2^{\mu}} \in \mathcal{F}$ are coset representatives.

Note that if $c \in \mathcal{F}$, then it is easy to check that multiplication by c on the right (but not on the left) is distance preserving. Thus

$$
\begin{equation*}
\rho(a \star c, b \star c)=\rho(a, b)=\rho\left(\mathbf{0}, b \star a^{-1}\right)=\mathrm{wt}_{4}\left(b \star a^{-1}\right) . \tag{5}
\end{equation*}
$$

Note that if $c \in \mathcal{F}$, then it is easy to check that multiplication by c on the right (but not on the left) is distance preserving. Thus

$$
\begin{equation*}
\rho(a \star c, b \star c)=\rho(a, b)=\rho\left(\mathbf{0}, b \star a^{-1}\right)=\mathrm{wt}_{4}\left(b \star a^{-1}\right) . \tag{5}
\end{equation*}
$$

For a given positive odd number $\mu \geq 3$, and $\sigma=2, \ldots, 2^{\mu-1}$, $\left(\sigma \pm 1,2^{\mu}-1\right)=1$ define a non-commutative Preparata-like code of Ericson-type as a binary code of length $n=2^{m},(m=\mu+1)$ viewed as the set of values $z(u) \rightarrow[x(u), y(u)]$ of the functions $z \in \mathcal{F}_{\sigma}$.

Note that if $c \in \mathcal{F}$, then it is easy to check that multiplication by c on the right (but not on the left) is distance preserving. Thus

$$
\begin{equation*}
\rho(a \star c, b \star c)=\rho(a, b)=\rho\left(\mathbf{0}, b \star a^{-1}\right)=\mathrm{wt}_{4}\left(b \star a^{-1}\right) \tag{5}
\end{equation*}
$$

For a given positive odd number $\mu \geq 3$, and $\sigma=2, \ldots, 2^{\mu-1}$, $\left(\sigma \pm 1,2^{\mu}-1\right)=1$ define a non-commutative Preparata-like code of Ericson-type as a binary code of length $n=2^{m}$, $(m=\mu+1)$ viewed as the set of values $z(u) \rightarrow[x(u), y(u)]$ of the functions $z \in \mathcal{F}_{\sigma}$.
Equations (1) becomes (u runs over $F_{2^{\mu}}$):

$$
\sum x(u)=\sum y(u)=0, \quad \sum u \cdot x(u)=\sum u \cdot y(u)=\lambda
$$

Note that if $c \in \mathcal{F}$, then it is easy to check that multiplication by c on the right (but not on the left) is distance preserving. Thus

$$
\begin{equation*}
\rho(a \star c, b \star c)=\rho(a, b)=\rho\left(\mathbf{0}, b \star a^{-1}\right)=\mathrm{wt}_{4}\left(b \star a^{-1}\right) \tag{5}
\end{equation*}
$$

For a given positive odd number $\mu \geq 3$, and $\sigma=2, \ldots, 2^{\mu-1}$, $\left(\sigma \pm 1,2^{\mu}-1\right)=1$ define a non-commutative Preparata-like code of Ericson-type as a binary code of length $n=2^{m}$, $(m=\mu+1)$ viewed as the set of values $z(u) \rightarrow[x(u), y(u)]$ of the functions $z \in \mathcal{F}_{\sigma}$.
Equations (1) becomes (u runs over $F_{2^{\mu}}$):

$$
\sum x(u)=\sum y(u)=0, \quad \sum u \cdot x(u)=\sum u \cdot y(u)=\lambda
$$

Equation (2) becomes:

$$
\sum u^{\sigma+1} x(u)+\sum u^{\sigma+1} y(u)=\lambda^{\sigma+1}
$$

Theorem 1.

Let \mathcal{P}_{σ} be a code of length $n=2^{\mu+1}$, given by equations (1)-(2). For any odd number $\mu \geq 3$ and any $\sigma=2, \ldots, 2^{\mu-1}$, $\left(\sigma \pm 1,2^{\mu}-1\right)=1$ this code has the following parameters

$$
n=2^{m}, \quad N=2^{n-2 m}, \quad d=6
$$

i.e. is the non-commutative Preparata-like group code.

Theorem 1.

Let \mathcal{P}_{σ} be a code of length $n=2^{\mu+1}$, given by equations (1)-(2). For any odd number $\mu \geq 3$ and any $\sigma=2, \ldots, 2^{\mu-1}$, $\left(\sigma \pm 1,2^{\mu}-1\right)=1$ this code has the following parameters

$$
n=2^{m}, \quad N=2^{n-2 m}, \quad d=6
$$

i.e. is the non-commutative Preparata-like group code.

Ericson (for $\sigma=2$)

Let $\mathcal{P}_{\sigma, i}$ be the set of values of functions $\mathcal{F}_{\sigma} \star f_{i}$. It follows that minimum distance of $\mathcal{P}_{\sigma, i}$ is 6 .

Let $\mathcal{P}_{\sigma, i}$ be the set of values of functions $\mathcal{F}_{\sigma} \star f_{i}$. It follows that minimum distance of $\mathcal{P}_{\sigma, i}$ is 6 .

Theorem 2.

The code \mathcal{P}_{σ} of length $n=2^{\mu+1}$ is a subcode of the Hamming code H of length n and induce a partition of H into the cosets of the code \mathcal{P}_{σ}, i.e. we have

$$
H=\bigcup_{i=1}^{n / 2} \mathcal{P}_{\sigma, i}
$$

Main Results

According to [Zaitsev, Zinoviev, Semakov (1971)] the set of codewords of weight 4 of $P_{\sigma, i}, \quad i=1, \ldots, n / 2-1$, forms a Steiner system $S(n, 4,2)$.

Main Results

According to [Zaitsev, Zinoviev, Semakov (1971)] the set of codewords of weight 4 of $P_{\sigma, i}, \quad i=1, \ldots, n / 2-1$, forms a Steiner system $S(n, 4,2)$. Recall that the codeowrds of weight 4 of H forms $S(n, 4,3)$ [Assmuss, Mattson, (1967)].

Main Results

According to [Zaitsev, Zinoviev, Semakov (1971)] the set of codewords of weight 4 of $P_{\sigma, i}, \quad i=1, \ldots, n / 2-1$, forms a Steiner system $S(n, 4,2)$. Recall that the codeowrds of weight 4 of H forms $S(n, 4,3)$ [Assmuss, Mattson, (1967)]. Hence from the partition of H into subcodes $P_{\sigma, i}$ of Theorem 2 we obtain

Main Results

According to [Zaitsev, Zinoviev, Semakov (1971)] the set of codewords of weight 4 of $P_{\sigma, i}, \quad i=1, \ldots, n / 2-1$, forms a Steiner system $S(n, 4,2)$. Recall that the codeowrds of weight 4 of H forms $S(n, 4,3)$ [Assmuss, Mattson, (1967)]. Hence from the partition of H into subcodes $P_{\sigma, i}$ of Theorem 2 we obtain

Theorem 3.

For any $\sigma=2, \ldots, 2^{\mu-1},\left(\sigma \pm 1,2^{\mu}\right)=1$, the partition of H into $P_{\sigma, i}, i=1, \ldots, n / 2$, induces the partition of $S(n, 4,3)$ into the Steiner systems $S_{\sigma, i}=S(n, 4,2)$.

