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Let £ = {0,1}. As usual, by (n,d, N) denote a binary code

C C E" of length n, cardinality N and minimum (Hamming)
distance d.

Let n=22™ m=2,3,....

A binary (n,6,2"*™)-code is called a Preparata-like code and
denoted P.

A binary (n,4,2" ™ 1)-code is called a Hamming-like code and
denoted H.

Assume that any Preparata-like code P and any Hamming-like
code H contains the zero vector 0 = (0, ...,0).
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For a binary code C C E™ and an arbitrary binary vector x € E"
define the distance between x and C

d(x,C) = min{d(x,c): ce€ C}.

For a binary code C' C E" let C(i) be the set of vectors of E", at
a distance i from C, i.e.

C(i) = {xe€e E": d(x,C) =1i}.

Define the covering radius of a code C, p = p(C), the smallest
positive integer p such that

p

E" = | JC@).

1=0
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A Steiner system S(v,k,t) is a pair (X, B), X is a v-set (i.e.

|X| = v ) and B — the collection of k-subsets of X (called blocks)
such that every ¢-subset (of ¢ elements) of X is contained in
exactly one block of B.

A Steiner system S(v,4,3) is a Steiner quadruple system SQS(v).

A Steiner system S(v,4,3) is called 2-resolvable if it can be split
into mutually non-overlapping S(v, 4,2) Steiner systems.
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L introduction

[Zaitsev, Zinoviev, Semakov (1971)] and [Baker (1975)]: the
original Preparata codes P of length n =4, m = 2,3, ... define
a 2-resolvable S(n,4,3)

It is obtained by the partition of code H into the shifts of P.

[Dumer (1976)] and [Baker, van Lint, Wilson (1983)]: Same
results were obtained for the generalized Preparata codes and for
Zy-linear Preparata-like codes [Hammons, Kumar, Calderbank,
Sloane, Sole (1994)]

We consider the group structure of the Preparata-like codes of
[Baker, van Lint, Wilson] (also considered by [Rifa, Pujol (1997)]
and [Ericson (2009)] presented them in a slightly different form).
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Let 1 > 3 be an odd number and consider the functions
z: Fou — Fy ={0,1,w,w?}, where w? = w + 1.

Let Tr(z) = z + 22 be a trace function from F, into Fy. For
z € F4 define z,y € Fy as follows:

r=Tr(wz) = 2w + 22w?, y = Tr(w?2) = 20? + 2w,

Note that z = 2w + yw? and 22 = zw? + yw.

These equalities establish an isomorphism between F, and F3. In
this case the Hamming metric of F3 corresponds to the metric p of
Fy4, induced by the following weight function wty:

Wt4(0) =0, Wt4(w) = wt4(w2) =1, Wt4(1) = 2.

so that p(a,b) = wty(a + b). Since u is odd, the field F4 is not
contained in Fox and in particular the elements w and w? are not
contained in Fou.
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Let F be the set of functions z : Fou — 4 which satisfy the
following equalities:

D aw) =0, > ulzi(u)+ z(u) =0, (1)

u u

where z(u) = 21 (u)w + 22(u)w? and u runs over the whole field
Fopu.

Let o be a power of 2, so that 2 < ¢ < 2*~! and
(0 £1,2# —1) = 1 (Ericson considered the case 0 = 2). Let F, be
the subset of functions of F, which satisfy the following equality:

o+1
Do () + 22 (w) = (Z UZ(U)> ) (2)

where u runs over the whole field Fop.
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L New Construction

For an arbitrary function z € F set

A, = Z uz(u).

UGFQM

Define a binary operation * on the set F, so that for any
a = a1w + asw? and b = byw + bow? from F, we have

c=axb=ciw+ cow?, (3)

where ¢;(u) = ai(u+ Xp) + b1 (u) and ca(u) = az(u) + ba(u).

The set F with this operation * is a non-commutative group and
F5 is a subgroup of F. One can show that [F : F,] is equal to 2/

and we have that
QK

F=JF 1, (4)
i=1

where fi,..., fou € F are coset representatives.
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Note that if ¢ € F, then it is easy to check that multiplication by ¢
on the right (but not on the left) is distance preserving. Thus

plaxc,bxc) = pla,b) = p(0,bxat) =wty(bxa™t). (5)

For a given positive odd number y1 >3, and o0 = 2,...,2*7 1,

(0 £1,2" — 1) = 1 define a non-commutative Preparata-like code
of Ericson-type as a binary code of length n = 2™, (m = p+ 1)
viewed as the set of values z(u) — [z(u), y(u)] of the functions

z € F,.

Equations (1) becomes (u runs over Fhu):

S =Yy =0, Sura(w) =3 u-ylw) = A

Equation (2) becomes:

Zua+1$(u) + Zua—i-ly(u) — )\ot1
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Let P, be a code of length n = 2*t1, given by equations (1)-(2).
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(0 £1,2# — 1) =1 this code has the following parameters
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Ericson (for o = 2)
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Let P, ; be the set of values of functions F, * f;. It follows that
minimum distance of P, ; is 6.

Theorem 2.

The code P, of length n = 2"t is a subcode of the Hamming
code H of length n and induce a partition of H into the cosets of
the code P, i.e. we have

n/2
H=|]JP,:
i=1
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Main Results

According to [Zaitsev, Zinoviev, Semakov (1971)] the set of
codewords of weight 4 of P,;, i=1,...,n/2 — 1, forms a Steiner
system S(n,4,2). Recall that the codeowrds of weight 4 of H
forms S(n,4,3) [Assmuss, Mattson, (1967)]. Hence from the
partition of H into subcodes P, ; of Theorem 2 we obtain

Forany o =2,...,2¢71 (0 £1,2%) = 1, the partition of H into
P,i, i=1,...,n/2, induces the partition of S(n,4,3) into the
Steiner systems S,; = S(n,4,2).
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