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Introduction

Let E = {0, 1}.

As usual, by (n, d,N) denote a binary code
C ⊆ En of length n, cardinality N and minimum (Hamming)
distance d.
Let n = 22m, m = 2, 3, . . ..
A binary (n, 6, 2n−4m)-code is called a Preparata-like code and
denoted P .
A binary (n, 4, 2n−m−1)-code is called a Hamming-like code and
denoted H.

Assume that any Preparata-like code P and any Hamming-like
code H contains the zero vector 0 = (0, . . . , 0).



On the Preparata-like codes 3/13

Introduction

Let E = {0, 1}. As usual, by (n, d,N) denote a binary code
C ⊆ En of length n, cardinality N and minimum (Hamming)
distance d.

Let n = 22m, m = 2, 3, . . ..
A binary (n, 6, 2n−4m)-code is called a Preparata-like code and
denoted P .
A binary (n, 4, 2n−m−1)-code is called a Hamming-like code and
denoted H.

Assume that any Preparata-like code P and any Hamming-like
code H contains the zero vector 0 = (0, . . . , 0).



On the Preparata-like codes 3/13

Introduction

Let E = {0, 1}. As usual, by (n, d,N) denote a binary code
C ⊆ En of length n, cardinality N and minimum (Hamming)
distance d.
Let n = 22m, m = 2, 3, . . ..

A binary (n, 6, 2n−4m)-code is called a Preparata-like code and
denoted P .
A binary (n, 4, 2n−m−1)-code is called a Hamming-like code and
denoted H.

Assume that any Preparata-like code P and any Hamming-like
code H contains the zero vector 0 = (0, . . . , 0).



On the Preparata-like codes 3/13

Introduction

Let E = {0, 1}. As usual, by (n, d,N) denote a binary code
C ⊆ En of length n, cardinality N and minimum (Hamming)
distance d.
Let n = 22m, m = 2, 3, . . ..
A binary (n, 6, 2n−4m)-code is called a Preparata-like code and
denoted P .

A binary (n, 4, 2n−m−1)-code is called a Hamming-like code and
denoted H.

Assume that any Preparata-like code P and any Hamming-like
code H contains the zero vector 0 = (0, . . . , 0).



On the Preparata-like codes 3/13

Introduction

Let E = {0, 1}. As usual, by (n, d,N) denote a binary code
C ⊆ En of length n, cardinality N and minimum (Hamming)
distance d.
Let n = 22m, m = 2, 3, . . ..
A binary (n, 6, 2n−4m)-code is called a Preparata-like code and
denoted P .
A binary (n, 4, 2n−m−1)-code is called a Hamming-like code and
denoted H.

Assume that any Preparata-like code P and any Hamming-like
code H contains the zero vector 0 = (0, . . . , 0).



On the Preparata-like codes 3/13

Introduction

Let E = {0, 1}. As usual, by (n, d,N) denote a binary code
C ⊆ En of length n, cardinality N and minimum (Hamming)
distance d.
Let n = 22m, m = 2, 3, . . ..
A binary (n, 6, 2n−4m)-code is called a Preparata-like code and
denoted P .
A binary (n, 4, 2n−m−1)-code is called a Hamming-like code and
denoted H.

Assume that any Preparata-like code P and any Hamming-like
code H contains the zero vector 0 = (0, . . . , 0).



On the Preparata-like codes 4/13

Introduction

For a binary code C ⊂ En and an arbitrary binary vector x ∈ En
define the distance between x and C

d(x, C) = min {d(x, c) : c ∈ C}.

For a binary code C ⊂ En let C(i) be the set of vectors of En, at
a distance i from C, i.e.

C(i) = {x ∈ En : d(x, C) = i}.

Define the covering radius of a code C, ρ = ρ(C), the smallest
positive integer ρ such that

En =

ρ⋃
i=0

C(i).
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Introduction

A Steiner system S(v, k, t) is a pair (X,B), X is a v-set (i.e.
|X| = v ) and B – the collection of k-subsets of X (called blocks)
such that every t-subset (of t elements) of X is contained in
exactly one block of B.

A Steiner system S(v, 4, 3) is a Steiner quadruple system SQS(v).

A Steiner system S(v, 4, 3) is called 2-resolvable if it can be split
into mutually non-overlapping S(v, 4, 2) Steiner systems.
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Introduction

[Zaitsev, Zinoviev, Semakov (1971)] and [Baker (1975)]: the
original Preparata codes P of length n = 4m, m = 2, 3, . . . define
a 2-resolvable S(n, 4, 3)

It is obtained by the partition of code H into the shifts of P .

[Dumer (1976)] and [Baker, van Lint, Wilson (1983)]: Same
results were obtained for the generalized Preparata codes and for
Z4-linear Preparata-like codes [Hammons, Kumar, Calderbank,
Sloane, Sole (1994)]
We consider the group structure of the Preparata-like codes of
[Baker, van Lint, Wilson] (also considered by [Rifa, Pujol (1997)]
and [Ericson (2009)] presented them in a slightly different form).
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Preliminary Results

Let µ ≥ 3 be an odd number and consider the functions
z : F2µ → F4 = {0, 1, ω, ω2}, where ω2 = ω + 1.

Let Tr(z) = z + z2 be a trace function from F4 into F2. For
z ∈ F4 define x, y ∈ F2 as follows:

x = Tr(ωz) = zω + z2ω2, y = Tr(ω2z) = zω2 + z2ω,

Note that z = xω + yω2 and z2 = xω2 + yω.

These equalities establish an isomorphism between F4 and F2
2. In

this case the Hamming metric of F2
2 corresponds to the metric ρ of

F4, induced by the following weight function wt4:

wt4(0) = 0, wt4(ω) = wt4(ω
2) = 1, wt4(1) = 2.

so that ρ(a, b) = wt4(a+ b). Since µ is odd, the field F4 is not
contained in F2µ and in particular the elements ω and ω2 are not
contained in F2µ .
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New Construction

Let F be the set of functions z : F2µ → F4 which satisfy the
following equalities:∑

u

z(u) = 0,
∑
u

u(z1(u) + z2(u)) = 0, (1)

where z(u) = z1(u)ω + z2(u)ω
2 and u runs over the whole field

F2µ .

Let σ be a power of 2, so that 2 ≤ σ ≤ 2µ−1 and
(σ± 1, 2µ− 1) = 1 (Ericson considered the case σ = 2). Let Fσ be
the subset of functions of F , which satisfy the following equality:

∑
u

uσ+1(z1(u) + z2(u)) =

(∑
u

uz(u)

)σ+1

, (2)

where u runs over the whole field F2µ .
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New Construction

For an arbitrary function z ∈ F set

λz =
∑
u∈F2µ

uz(u).

Define a binary operation ? on the set F , so that for any
a = a1ω + a2ω

2 and b = b1ω + b2ω
2 from F , we have

c = a ? b = c1ω + c2ω
2, (3)

where c1(u) = a1(u+ λb) + b1(u) and c2(u) = a2(u) + b2(u).

The set F with this operation ? is a non-commutative group and
Fσ is a subgroup of F . One can show that [F : Fσ] is equal to 2µ

and we have that

F =
2µ⋃
i=1

Fσ ? fi, (4)

where f1, . . . , f2µ ∈ F are coset representatives.
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New Construction

Note that if c ∈ F , then it is easy to check that multiplication by c
on the right (but not on the left) is distance preserving. Thus

ρ(a ? c, b ? c) = ρ(a, b) = ρ(0, b ? a−1) = wt4(b ? a
−1). (5)

For a given positive odd number µ ≥ 3, and σ = 2, . . . , 2µ−1,
(σ ± 1, 2µ − 1) = 1 define a non-commutative Preparata-like code
of Ericson-type as a binary code of length n = 2m, (m = µ+ 1)
viewed as the set of values z(u)→ [x(u), y(u)] of the functions
z ∈ Fσ.

Equations (1) becomes (u runs over F2µ):∑
x(u) =

∑
y(u) = 0,

∑
u · x(u) =

∑
u · y(u) = λ

Equation (2) becomes:∑
uσ+1x(u) +

∑
uσ+1y(u) = λσ+1.
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Main Results

Theorem 1.

Let Pσ be a code of length n = 2µ+1, given by equations (1)-(2).
For any odd number µ ≥ 3 and any σ = 2, . . . , 2µ−1,
(σ ± 1, 2µ − 1) = 1 this code has the following parameters

n = 2m, N = 2n−2m, d = 6,

i.e. is the non-commutative Preparata-like group code.

Ericson (for σ = 2)
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Main Results

Let Pσ,i be the set of values of functions Fσ ? fi. It follows that
minimum distance of Pσ,i is 6.

Theorem 2.

The code Pσ of length n = 2µ+1 is a subcode of the Hamming
code H of length n and induce a partition of H into the cosets of
the code Pσ, i.e. we have

H =

n/2⋃
i=1

Pσ,i.
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Main Results

Main Results

According to [Zaitsev, Zinoviev, Semakov (1971)] the set of
codewords of weight 4 of Pσ,i, i = 1, . . . , n/2− 1, forms a Steiner
system S(n, 4, 2).

Recall that the codeowrds of weight 4 of H
forms S(n, 4, 3) [Assmuss, Mattson, (1967)]. Hence from the
partition of H into subcodes Pσ,i of Theorem 2 we obtain

Theorem 3.

For any σ = 2, . . . , 2µ−1, (σ ± 1, 2µ) = 1, the partition of H into
Pσ,i, i = 1, . . . , n/2, induces the partition of S(n, 4, 3) into the
Steiner systems Sσ,i = S(n, 4, 2).
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