On cardinality of network subspace codes

Alexander Shishkin, Ernst Gabidulin, Nina Pilipchuk

Moscow Institute of Physics and Technology

ACCT-2014, Kaliningrad, 07-13.09.2014

Outline

- 2 Subspace codes constructions
- 3 Efficiency of subspace network codes

Introduction

Subspace codes constructions Efficiency of subspace network codes Conclusion

Subspace distance

- \mathbb{K}_q^n *n*-dimensional vector space over GF(q).
- $\mathcal{A}(n)$ the set of all subspaces in \mathbb{K}_q^n .
- For $\mathcal{U}, \mathcal{V} \in \mathcal{A}(n)$ Grassmanian distance is defined as:

$$d_{sub}(\mathcal{U},\mathcal{V}) = \dim(\mathcal{U} \cup \mathcal{V}) - \dim(\mathcal{U} \cap \mathcal{V}).$$

• • = • • = •

Subspace codes

Subspace $[n, M, d_{sub}, k]$ -code is the set of k-dimensional subspaces in $\mathcal{A}(n)$, which cardinality equals M and the Grassmanian distance between any pair of subspaces is not less than d_{sub} .

There is an upper bound for subspace codes cardinality (Wang, 2003):

$$M_{max} = rac{(q^n-1)(q^{n-1}-1)\dots(q^{n-k+\delta}-1)}{(q^k-1)(q^{k-1}-1)\dots(q^{\delta}-1)},$$
 where $\delta = rac{d_{sub}}{2}.$

Introduction

Subspace codes constructions Efficiency of subspace network codes Conclusion

Upper bound as a function of code length

Alexander Shishkin, Ernst Gabidulin, Nina Pilipchuk

On cardinality of network subspace codes

Silva-Koetter-Kschishang codes

SKK-code is a set of $k \times n$ matrices over the base field GF(q):

$$\mathcal{C} = \left\{ \begin{bmatrix} I_k & M \end{bmatrix} \right\},\,$$

where I_k is the identity matrix of order k, submatrix M is the $k \times (n - k)$ rank code matrix over the field GF(q). Notice that $d_{sub}(\mathcal{C}) = 2d_r$, where d_r is the rank distance of this subcode.

Cardinality of this code equals:

$$M_{SKK} = \begin{cases} q^{(n-k)(k-\delta+1)}, n \geq 2k; \\ q^{k(n-k-\delta+1)}, n < 2k. \end{cases}$$

Multicomponent codes with zero prefix

Multicomponent codes with zero prefix (Gabidulin-Bossert, 2008) consist of several components:

$$\mathcal{C}_0 = \left\{ \begin{bmatrix} I_k & M_0 \end{bmatrix} \right\},$$
$$\mathcal{C}_1 = \left\{ \begin{bmatrix} O_k^\delta & I_k & M_1 \end{bmatrix} \right\},$$
$$\mathcal{C}_2 = \left\{ \begin{bmatrix} O_k^\delta & O_k^\delta & I_k & M_2 \end{bmatrix} \right\},$$

$$\mathcal{C}_r = \left\{ \begin{bmatrix} O_k^\delta & \dots & O_k^\delta & I_k & M_r \end{bmatrix} \right\},\,$$

. . .

where I_k is the identity matrix of order k, M_i denotes rank code submatrices, O_k^{δ} is $k \times \delta$ zero matrix.

Multicomponent codes with zero prefix

Cardinality of multicomponent codes with zero prefix can be found as:

$$M_0 = M_{SKK} + S_1 + S_2 + 1,$$

where

$$S_1 = \sum_{i=1}^{s1} 2^{k(n-m-i\delta)},$$

 $S_2 = \sum_{i=1}^{s2} 2^{k_i m}.$

きょうきょう

Multicomponent codes based on greedy search algorithm

- On the first step for the set of all binary vectors-indices of length *n* and Hamming weight *k* the cardinality of corresponding rank subcodes is defined.
- Lexicographically the first vector-index corresponds to the SKK-code and it is used as the first code component.
- Then greedy search starts for the code component with the biggest cardinality among the remaining.
- If its subspace distance to all already added to code subspaces is not less than d_{sub} it is included into the code, and so on.

Disadvantage: there is no equation for M_{greedy} .

Definition of efficiency

The code efficiency is defined as the ratio of its actual cardinality to the upper bound for fixed parameters:

$$\eta = \frac{M}{M_{max}}.$$

We investigate η_{SKK} , η_0 and η_{greedy} for different code parameters.

Efficiency dependence on code length

Mgreedy/Mmax

Alexander Shishkin, Ernst Gabidulin, Nina Pilipchuk

On cardinality of network subspace codes

Examples of codes efficiency

$$n = 16, \delta = 5$$

k	2	3	4	5	6	7	8
η_{skk}	-	-	-	0,969	0,954	0,946	0,942
η_0	-	-	-	0,999	0,954	0,946	0,942
η_{greedy}	-	-	-	0,999	0,954	0,946	0,942

 $n = 16, \delta = 4$

k	2	3	4	5	6	7	8
η_{skk}	-	-	0,938	0,908	0,894	0,887	0,884
η_0	-	-	1	0,912	0,894	0,887	0,884
η_{greedy}	-	-	1	0,912	0,894	0,887	0,884

Alexander Shishkin, Ernst Gabidulin, Nina Pilipchuk

Examples of codes efficiency

$$n = 16, \delta = 3$$

k	2	3	4	5	6	7	8
η_{skk}	-	0,875	0,82	0,794	0,782	0,777	0,774
η_0	-	1	0,823	0,796	0,782	0,777	0,774
η_{greedy}	-	1	0,835	0,798	0,785	0,778	0,775

 $n = 16, \delta = 2$

k	2	3	4	5	6	7	8
η_{skk}	0,75	0,656	0,615	0,596	0,587	0,583	0,581
η_0	1	0,7	0,625	0,598	0,587	0,583	0,581
η_{greedy}	1	0,746	0,699	0,665	0,655	0,650	0,648

Alexander Shishkin, Ernst Gabidulin, Nina Pilipchuk

Efficiency comparison

n=16, δ=2

Alexander Shishkin, Ernst Gabidulin, Nina Pilipchuk

On cardinality of network subspace codes

Conclusion

- Upper bound for codes cardinality rises as a power of code length.
- Code efficiency weakly depends on code length.
- For all the considered codes efficiency clearly depends on the subspace distance: it rises with the growth of the subspace distance at the fixed values of other parameters.
- For codes with zero prefix the upper bound of cardinality attains in the case of maximum code distance. Thus the cardinality of codes with zero prefix can be used as a lower bound for subspace codes cardinality.

A (1) < A (1) < A (1) < A (1) </p>

Conclusion

Thank you!

Alexander Shishkin, Ernst Gabidulin, Nina Pilipchuk On cardinality of network subspace codes

글 🕨 🛛 글