(ロ) (型) (E) (E) (E) (O)

Upper bounds on the smallest sizes of a complete arc in PG(2, q) based on computer search

Daniele Bartoli^{*} Alexander A. Davydov[®] Giorgio Faina^{*} Alexey A. Kreshchuk[®] Stefano Marcugini^{*} Fernanda Pambianco^{*} Igor A. Tkachenko[&]

- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Science, Moscow, Russia
 - * Department of Mathematics and Informatics, Perugia University, Perugia, Italy
 - & National Research Centre "Kurchatov Institute", Moscow, Russia

XIV International Workshop on Algebraic and Combinatorial Coding Theory, ACCT-2014, Svetlogorsk, Russia, September 7-13, 2014

Introduction	Greedy bounds	FOP bound	Random bound	Conclusion
Outline				

 $PG(2, q) \Leftrightarrow$ projective space of dimension 2 over Galois field F_q

n-arc \Leftrightarrow a set of n points no three of which are collinear a line meeting an arc \Leftrightarrow tangent or bisecant

bisecant \Leftrightarrow a line intersecting an arc in two points

a **point** A of PG(2, q) is **covered** by an arc \Leftrightarrow A lies on a **bisecant** of the arc

complete arc \Leftrightarrow all points of PG(2, q) are covered by bisecants of the arc \Leftrightarrow one may not add a new point to a complete arc

うして ふゆう ふほう ふほう うらつ

INTRODUCTION NOTATION

$t_2(2, q) \Leftrightarrow$ the smallest size of a complete arc in PG(2, q)HARD OPEN CLASSICAL PROBLEM: 1950 \rightarrow upper bound on $t_2(2, q)$

 $\overline{t}_2(2, q) \Leftrightarrow$ the smallest known size of a complete arc in PG(2, q) including computer search

 $t_2(2,q) \leq \overline{t}_2(2,q)$

 $\begin{array}{ll} \text{theoretical bound} & t_2(2,q) \leq d\sqrt{q} \log^c q, \quad c \leq 300\\ c,d \Leftrightarrow \text{constants independent of } q & J.H. \text{Kim, V. Vu 2003} \end{array}$

うして ふゆう ふほう ふほう うらつ

INTRODUCTION NOTATION

 $t_2(2, q) \Leftrightarrow$ the smallest size of a complete arc in PG(2, q)HARD OPEN CLASSICAL PROBLEM: 1950 \rightarrow upper bound on $t_2(2, q)$

 $\overline{t}_2(2, q) \Leftrightarrow$ the smallest known size of a complete arc in PG(2, q) including computer search

 $t_2(2,q) \leq \overline{t}_2(2,q)$

 $\begin{array}{ll} \text{theoretical bound} & t_2(2,q) \leq d\sqrt{q} \log^c q, \quad c \leq 300\\ c,d \Leftrightarrow \text{constants independent of } q & J.H. \text{Kim, V. Vu 2003} \end{array}$

INTRODUCTION NOTATION

 $t_2(2, q) \Leftrightarrow$ the smallest size of a complete arc in PG(2, q)HARD OPEN CLASSICAL PROBLEM: 1950 \rightarrow upper bound on $t_2(2, q)$

 $\overline{t}_2(2, q) \Leftrightarrow$ the smallest known size of a complete arc in PG(2, q) including computer search

 $t_2(2,q) \leq \overline{t}_2(2,q)$

theoretical bound $t_2(2, q) \le d\sqrt{q} \log^c q$, $c \le 300$ $c, d \Leftrightarrow$ constants independent of q J.H. Kim, V. Vu 2003

Randomized greedy algorithms

A greedy algorithm is an algorithm that makes the *locally optimal choice* at each stage with the hope of finding a global optimum or, at least, a global "good" solution.

A randomized greedy algorithm executes some stages in a random manner without the local optimum.

HUGE region $T = \{all \ q \le 150001 \text{ without gaps}\} \cup \{41 \text{ sporadic } q's \text{ in } [150503...430007]} \}$

D.Bartoli, A.A.Davydov, G.Faina, A.A.Kreshchuk, S.Marcugini, F.Pambianco J. of Geometry, Discrete Mathematics, OC2013, arXiv 2005-2014

Many arcs have been obtained using resources of Multipurpose Computing Complex of National Research Centre "Kurchatov Institute"

Introduction Greedy bounds FOP bound Random bound Conclusion
Theorem

$$t_2(2, q) < \min\{\sqrt{q} \ln^{0.7295} q, 0.6\sqrt{q} \ln^{\varphi(q)} q, 1.745\sqrt{q \ln q}\} \\ q \in T, \quad \varphi(q) = \frac{1.5}{\ln q} + 0.802$$

$$\min = \begin{cases} \sqrt{q} \ln^{0.7295} q & if \quad q < 9500 \\ 0.6\sqrt{q} \ln^{\varphi(q)} q & if \quad 9500 < q < 310000 \\ 1.745\sqrt{q \ln q} & if \quad 310000 < q \end{cases}$$

$$\varphi(q) - \text{decreasing function of } q \quad \text{an exotic form of the bound}$$

$$"good" \text{ for } q < 310000$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

・ロト ・個ト ・モト ・モト æ

イロト イポト イヨト イ э

Algorithm FOP – fixed order of points

Algorithm FOP. We fix a particular order of points of PG(2, q). $PG(2, q) = \{A_1, A_2, \dots, A_{q^2+q+1}\}$ Algorithm FOP builds a complete arc *iteratively*, step-by-step $K^{(i-1)} \Leftrightarrow$ the arc obtained on the (i - 1)-th step. On the next *i*-th step, the first uncovered point in the fixed order is added to $K^{(i-1)}$ that gives $K^{(i)}$

Lexicographical order of points. q – prime The elements of the field $\mathbb{F}_q = \{0, 1, \dots, q-1\}$ are integers modulo qThe homogenous coordinates of a point A_i are treated as its number i written in the q-ary scale of notation:

$$A_i = (x_0^{(i)}, x_1^{(i)}, x_2^{(i)}), \quad x_j^{(i)} \in \mathbb{F}_q, \quad i = x_0^{(i)}q^2 + x_1^{(i)}q + x_2^{(i)}$$

D.Bartoli, A.A.Davydov, G.Faina, S.Marcugini, F.Pambianco Journal of Geometry, ENDM, ACCT2012, OC2013, arXiv 2012-2014

FOP vs lexicographical codes (greedy codes, lexicodes)

A (rare and insufficiently studied) variant of the lexicodes: a parity check matrix (PCM) of an $[n, n - r, d]_q$ code is created step-by-step. All q-ary column r-vectors are written in a list in some order. On every step we include to PCM the 1-st column from the list which cannot be represented as a linear combination of d - 2 or smaller columns already included to PCM.

A point of $PG(2, q) \Leftrightarrow$ a column 3-vector. FOP algorithm creates a PCM of $[n, n-3, 4]_q$ lexicode.

But in Coding Theory, for given r, d the aim is to get a long code while our goal is to obtain a short complete arc.

For r = 3, d = 4, FOP algorithm gives "bad" codes that are essentially shorter than "good" codes corresponding to ovals.

Introduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Region for computer search

FOP-arcs

all prime $q \le 70001$ without gaps 82 sporadic q's in [71001...330017]

Random arcs

all prime $q \le 46337$ without gaps

< □ > < 同 > < 回 > .

イロト イポト イヨト イヨト э

Introduction	Greedy bounds	FOP bound	Random bound	Conclusion
(Conclusion			

1. Lexicographical order is a random order in the geometrical sense. Graphics for FOP-arcs and random arcs are very similar

2. Mystery: Graphics
$$\frac{t_2^L(2,q)}{\sqrt{q \ln q}}$$
 and $\frac{t_2^R(2,q)}{\sqrt{q \ln q}}$ oscillate around line $y = 1.803$ parallel to the axis of abscissas

3. Greedy bound $1.745\sqrt{q \ln q}$ FOP bound = random bound $1.830\sqrt{q \ln q}$ FOP – exact construction without random components; computer time for FOP essentially smaller than for Greedy; FOP bound is only slightly worse than Greedy bound; computer search for very big *q* should use FOP

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Thank you Spasibo Mille grazie Premnogo blagodarya !'Muchas gracias Toda raba Merci beaucoup Dankeschön Dank u wel Domo arigato