Upper bounds on the smallest sizes of a complete arc in $P G(2, q)$ based on computer search

Daniele Bartoli* Alexander A. Davydov ${ }^{\text {® }}$ Giorgio Faina* Alexey A. Kreshchuk ${ }^{\circledR}$ Stefano Marcugini* Fernanda Pambianco* Igor A. Tkachenko \&
© Institute for Information Transmission Problems (Kharkevich Institute),
Russian Academy of Science, Moscow, Russia

* Department of Mathematics and Informatics, Perugia University, Perugia, Italy
\& National Research Centre "Kurchatov Institute", Moscow, Russia

XIV International Workshop on Algebraic and Combinatorial Coding Theory, ACCT-2014, Svetlogorsk, Russia, September 7-13, 2014

Outline

(1) Introduction
(2) Greedy bounds
(3) FOP bound

4 Random bound
(5) Conclusion

INTRODUCTION NOTATION

$P G(2, q) \Leftrightarrow$ projective space of dimension 2 over Galois field F_{q}
n-arc \Leftrightarrow a set of n points no three of which are collinear a line meeting an arc \Leftrightarrow tangent or bisecant
bisecant \Leftrightarrow a line intersecting an arc in two points
a point A of $P G(2, q)$ is covered by an arc \Leftrightarrow A lies on a bisecant of the arc
complete arc \Leftrightarrow all points of $P G(2, q)$ are covered by bisecants of the arc
\Leftrightarrow one may not add a new point to a complete arc

INTRODUCTION NOTATION

$t_{2}(2, q) \Leftrightarrow$ the smallest size of a complete arc in $P G(2, q)$ HARD OPEN CLASSICAL PROBLEM: $1950 \rightarrow$ upper bound on $t_{2}(2, q)$
$\bar{t}_{2}(2, q) \Leftrightarrow$ the smallest known size of a complete $\operatorname{arc} \operatorname{in} P G(2, q)$ including computer search

$$
t_{2}(2, q) \leq \mp_{2}(2, q)
$$

theoretical bound $t_{2}(2, q) \leq d \sqrt{q} \log ^{c} q, \quad c \leq 300$
c, $d \Leftrightarrow$ constants independent of $a \quad$ J.H. Kim, V. Vu 2003

INTRODUCTION NOTATION

$t_{2}(2, q) \Leftrightarrow$ the smallest size of a complete arc in $P G(2, q)$ HARD OPEN CLASSICAL PROBLEM: $1950 \rightarrow$ upper bound on $t_{2}(2, q)$
$\bar{t}_{2}(2, q) \Leftrightarrow$ the smallest known size of a complete arc in $P G(2, q)$ including computer search

$$
t_{2}(2, q) \leq \bar{t}_{2}(2, q)
$$

theoretical bound $t_{2}(2, q) \leq d \sqrt{q} \log ^{c} q, \quad c \leq 300$
$c, d \Leftrightarrow$ constants independent of q J.H. Kim, V. Vu 2003

INTRODUCTION NOTATION

$t_{2}(2, q) \Leftrightarrow$ the smallest size of a complete arc in $P G(2, q)$ HARD OPEN CLASSICAL PROBLEM: $1950 \rightarrow$ upper bound on $t_{2}(2, q)$
$\bar{t}_{2}(2, q) \Leftrightarrow$ the smallest known size of a complete arc in $P G(2, q)$ including computer search

$$
t_{2}(2, q) \leq \bar{t}_{2}(2, q)
$$

theoretical bound $t_{2}(2, q) \leq d \sqrt{q} \log ^{c} q, \quad c \leq 300$
$c, d \Leftrightarrow$ constants independent of $q \quad$ J.H. Kim, V. Vu 2003

Randomized greedy algorithms

A greedy algorithm is an algorithm that makes the locally optimal choice at each stage with the hope of finding a global optimum or, at least, a global "good" solution.

A randomized greedy algorithm executes some stages in a random manner without the local optimum.

HUGE region $T=\{$ all $q \leq 150001$ without gaps $\} \cup$ \{41 sporadic $q^{\prime} s$ in [150503 . . 430007] $\}$
D.Bartoli, A.A.Davydov, G.Faina, A.A.Kreshchuk, S.Marcugini, F.Pambianco J. of Geometry, Discrete Mathematics, OC2013, arXiv 2005-2014

Many arcs have been obtained using resources of Multipurpose Computing Complex of National Research Centre "Kurchatov Institute"

Theorem

$$
\begin{aligned}
& t_{2}(2, q)<\min \left\{\sqrt{q} \ln ^{0.7295} q, 0.6 \sqrt{q} \ln ^{\varphi(q)} q, 1.745 \sqrt{q \ln q}\right\} \\
& q \in T, \quad \varphi(q)=\frac{1.5}{\ln q}+0.802 \\
& \min =\left\{\begin{array}{ccc}
\sqrt{q} \ln ^{0.7295} q & \text { if } & q<9500 \\
0.6 \sqrt{q} \ln ^{\varphi(q)} q & \text { if } & 9500<q<310000 \\
1.745 \sqrt{q \ln q} & \text { if } & 310000<q
\end{array}\right.
\end{aligned}
$$

$\varphi(q)$ - decreasing function of q an exotic form of the bound "good" for $q<310000$

Algorithm FOP - fixed order of points

Algorithm FOP. We fix a particular order of points of $P G(2, q)$.

$$
P G(2, q)=\left\{A_{1}, A_{2}, \ldots, A_{q^{2}+q+1}\right\}
$$

Algorithm FOP builds a complete arc iteratively, step-by-step $K^{(i-1)} \Leftrightarrow$ the arc obtained on the $(i-1)$-th step.
On the next i-th step, the first uncovered point in the fixed order is added to $K^{(i-1)}$ that gives $K^{(i)}$

Lexicographical order of points. q - prime The elements of the field $\mathbb{F}_{q}=\{0,1, \ldots, q-1\}$ are integers modulo q
The homogenous coordinates of a point A_{i} are treated as its number i written in the q-ary scale of notation:
$A_{i}=\left(x_{0}^{(i)}, x_{1}^{(i)}, x_{2}^{(i)}\right), \quad x_{j}^{(i)} \in \mathbb{F}_{q}, \quad i=x_{0}^{(i)} q^{2}+x_{1}^{(i)} q+x_{2}^{(i)}$
D.Bartoli, A.A.Davydov, G.Faina, S.Marcugini, F.Pambianco Journal of Geometry, ENDM, ACCT2012, OC2013, arXiv 2012-2014

FOP vs lexicographical codes (greedy codes, lexicodes)

A (rare and insufficiently studied) variant of the lexicodes: a parity check matrix (PCM) of an $[n, n-r, d]_{q}$ code is created step-by-step. All q-ary column r-vectors are written in a list in some order. On every step we include to PCM the 1-st column from the list which cannot be represented as a linear combination of $d-2$ or smaller columns already included to PCM.

A point of $P G(2, q) \Leftrightarrow$ a column 3 -vector. FOP algorithm creates a PCM of $[n, n-3,4]_{q}$ lexicode.

But in Coding Theory, for given r, d the aim is to get a long code while our goal is to obtain a short complete arc.

For $r=3, d=4$, FOP algorithm gives "bad" codes that are essentially shorter than "good" codes corresponding to ovals.

Region for computer search

FOP-arcs
all prime $q \leq 70001$ without gaps 82 sporadic q's in [71001...330017]

Random arcs
all prime $q \leq 46337$ without gaps

Conclusion

1. Lexicographical order is a random order in the geometrical sense. Graphics for FOP-arcs and random arcs are very similar
2. Mystery: Graphics $\frac{t_{2}^{L}(2, q)}{\sqrt{q \ln q}}$ and $\frac{t_{2}^{R}(2, q)}{\sqrt{q \ln q}}$ oscillate around line $y=1.803$ parallel to the axis of abscissas
3. Greedy bound

FOP bound $=$ random bound $1.830 \sqrt{q \ln q}$
FOP - exact construction without random components; computer time for FOP essentially smaller than for Greedy; FOP bound is only slightly worse than Greedy bound; computer search for very big q should use FOP

Thank you Spasibo Mille grazie
Premnogo blagodarya
!'Muchas gracias
Toda raba
Merci beaucoup
Dankeschön
Dank u wel
Domo arigato

