Existence of transitive nonpropelinear perfect codes

I.Yu. Mogilnykh, F.I. Solov’eva

Novosibirsk State University
Sobolev Institute of Mathematics

Presented at the 14th International Workshop on Algebraic and Combinatorial Coding Theory
07-13.09.2014, Svetlogorsk, Russia
A code with minimum distance 3 is called *perfect* (sometimes called 1-perfect) if it attains the Hamming bound, i.e.

$$|C| = 2^n/(n + 1).$$

These codes exist for length $n = 2^r - 1$, size 2^{n-r} and minimum distance 3 for any $r \geq 2$.

A Hamming code is a perfect code which is a linear subspace of F_2^n.
A code with minimum distance 3 is called *perfect* (sometimes called 1-perfect) if it attains the Hamming bound, i.e.

$$|C| = 2^n / (n + 1).$$

These codes exist for length $n = 2^r - 1$, size 2^{n-r} and minimum distance 3 for any $r \geq 2$.

A Hamming code is a perfect code which is a linear subspace of F_2^n.
Introduction

Propelinear perfect codes

Main result

The automorphism group of the code

An automorphism of F_2^n is an isometry of the Hamming space.

Let $\pi \in \text{Sym}(n)$ and $x \in F_2^n$.

Consider the transformation (x, π) of F_2^n:

$$(x, \pi) : y \rightarrow x + (y_{\pi^{-1}(1)}, \ldots, y_{\pi^{-1}(n)}), y \in F_2^n.$$

$$(x, \pi) \cdot (y, \pi') = (x + \pi(y), \pi \pi').$$

Theorem

The group of automorphisms of F_2^n with respect to \cdot is

$$(\{(x, \pi) : x \in F_2^n, \pi \in \text{Sym}(n)\}, \cdot)$$

The automorphism group of a code C is $\text{Stab}_C(\text{Aut}(F_2^n))$, denoted by $\text{Aut}(C)$.
The automorphism group of the code

An automorphism of F_2^n is an isometry of the Hamming space. Let $\pi \in \text{Sym}(n)$ and $x \in F_2^n$. Consider the transformation (x, π) of F_2^n:

$$(x, \pi) : y \rightarrow x + (y_{\pi^{-1}(1)}, \ldots, y_{\pi^{-1}(n)}), y \in F_2^n.$$

$$(x, \pi) \cdot (y, \pi') = (x + \pi(y), \pi \pi').$$

Theorem

The group of automorphisms of F_2^n with respect to \cdot is

$$\{(x, \pi) : x \in F_2^n, \pi \in \text{Sym}(n)\}, \cdot$$

The automorphism group of a code C is $\text{Stab}_C(\text{Aut}(F_2^n))$, denoted by $\text{Aut}(C)$.

I.Yu. Mogilnykh, F.I. Solov'eva

Existence of transitive nonpropelinear perfect codes
An automorphism of F_2^n is an isometry of the Hamming space. Let $\pi \in \text{Sym}(n)$ and $x \in F_2^n$. Consider the transformation (x, π) of F_2^n:

$$(x, \pi) : y \mapsto x + (y_{\pi^{-1}(1)}, \ldots, y_{\pi^{-1}(n)}), y \in F_2^n.$$

$$(x, \pi) \cdot (y, \pi') = (x + \pi(y), \pi\pi').$$

Theorem

The group of automorphisms of F_2^n with respect to \cdot is $(\{(x, \pi) : x \in F_2^n, \pi \in \text{Sym}(n)\}, \cdot)$.

The automorphism group of a code C is $\text{Stab}_C(\text{Aut}(F_2^n))$, denoted by $\text{Aut}(C)$.
The automorphism group of the code

An automorphism of F_2^n is an isometry of the Hamming space. Let $\pi \in \text{Sym}(n)$ and $x \in F_2^n$. Consider the transformation (x, π) of F_2^n:

$$(x, \pi) : y \rightarrow x + (y_{\pi^{-1}(1)}, \ldots, y_{\pi^{-1}(n)}), y \in F_2^n.$$

$$(x, \pi) \cdot (y, \pi') = (x + \pi(y), \pi \pi').$$

Theorem

The group of automorphisms of F_2^n with respect to \cdot is

$$\left\{(x, \pi) : x \in F_2^n, \pi \in \text{Sym}(n)\right\}, \cdot$$

The automorphism group of a code C is $\text{Stab}_C(\text{Aut}(F_2^n))$, denoted by $\text{Aut}(C)$.
The automorphism group of the code

An automorphism of F_2^n is an isometry of the Hamming space.

Let $\pi \in \text{Sym}(n)$ and $x \in F_2^n$.

Consider the transformation (x, π) of F_2^n:

$$(x, \pi) : y \mapsto x + (y_{\pi^{-1}(1)}, \ldots, y_{\pi^{-1}(n)}),\ y \in F_2^n.$$

$$(x, \pi) \cdot (y, \pi') = (x + \pi(y), \pi\pi').$$

Theorem

The group of automorphisms of F_2^n with respect to \cdot is

$$(\{(x, \pi) : x \in F_2^n, \pi \in \text{Sym}(n)\}, \cdot).$$

The **automorphism group** of a code C is $\text{Stab}_C(\text{Aut}(F_2^n))$, denoted by $\text{Aut}(C)$.

I.Yu. Mogilnykh, F.I. Solov'eva

Existence of transitive nonpropelinear perfect codes

An automorphism of F_2^n is an isometry of the Hamming space. Let $\pi \in \text{Sym}(n)$ and $x \in F_2^n$. Consider the transformation (x, π) of F_2^n:

$$(x, \pi) : y \rightarrow x + (y_{\pi^{-1}(1)}, \ldots, y_{\pi^{-1}(n)}), y \in F_2^n.$$

$$(x, \pi) \cdot (y, \pi^{'}) = (x + \pi(y), \pi\pi^{'}).$$

Theorem

The group of automorphisms of F_2^n with respect to \cdot is $((x, \pi) : x \in F_2^n, \pi \in \text{Sym}(n)), \cdot$)

The **automorphism group** of a code C is $Stab_{C}(Aut(F_2^n))$, denoted by $Aut(C)$.
A code C is called **transitive** if there is a group $G < \text{Aut}(C)$ transitively acting on the codewords of C, i.e.

$$\forall x, y \in C \exists g \in G : g(x) = y$$

[Rifa, Phelps, 2002], original definition by [Rifa, Huguet, Bassart, 1989]

A code C is called **propelinear** if there is a subgroup $G < \text{Aut}(C)$ acting sharply transitive (regularly) on the codewords, i.e.

$$\forall x, y \in C \exists! g \in G : g(x) = y$$
A code C is called \textit{transitive} if there is a group $G < Aut(C)$ transitively acting on the codewords of C, i.e.

$$\forall x, y \in C \exists g \in G : g(x) = y$$

[Rifa, Phelps, 2002], original definition by [Rifa, Huguet, Bassart, 1989]

A code C is called \textit{propelinear} if there is a subgroup $G < Aut(C)$ acting sharply transitive (regularly) on the codewords, i.e.

$$\forall x, y \in C \exists! g \in G : g(x) = y$$
Propelinear perfect codes: existence

Linear codes [Hamming, 1949]

$Z_2 Z_4$ - linear perfect codes [Rifa, Pujol, 1999], Z_4 - linear perfect codes [Krotov, 2000]

Transitive Malyugin perfect codes of length 15, i.e. 1-step switchings of the Hamming code are propelinear [Borges, Mogilnykh, Rifa, S., 2012]

Vasil’ev and Mollard can be used to construct propelinear perfect codes [Borges, Mogilnykh, Rifa, S., 2012]

Potapov transitive extended perfect codes are propelinear [Borges, Mogilnykh, Rifa, S., 2013]

Propelinear Vasil’ev perfect codes from quadratic functions [Krotov, Potapov, 2013]
Problem statement

Does there exist a transitive nonpropelinear perfect code?
Transitive nonpropelinear perfect code of length 15: algebraic property

Proposition

There is a unique transitive nonpropelinear perfect code \(C \) of length 15.

Nonpropelinearity (The main key):

We cannot correctly define \(g^{-1} \) for some \(g \in G \) (incorrect inversion): both \(g \) and \(g^{-1} \) send a codeword \(x \) to a codeword \(y \).
Propelinear perfect codes

Main result

Transitive nonpropelinear perfect code of length 15: algebraic property

Proposition

There is a unique transitive nonpropelinear perfect code C of length 15.

Nonpropelinearity (The main key):

We cannot correctly define g^{-1} for some $g \in G$ (incorrect inversion): both g and g^{-1} send a codeword x to a codeword y.
Transitive nonpropelinear perfect code of length 15: algebraic property

Proposition
There is a unique transitive nonpropelinear perfect code C of length 15.

Nonpropelinearity (The main key):
We cannot correctly define g^{-1} for some $g \in G$ (incorrect inversion): both g and g^{-1} send a codeword x to a codeword y.

I.Yu. Mogilnykh, F.I. Solov’eva
Existence of transitive nonpropelinear perfect codes
Invariants for transitive perfect codes

\[\text{Ker}(C) = \{ k \in F_2^n : k + C = C \}, \]
\[\text{Rank}(C) = \dim(< C >). \]

Denote by \(\mu_i(C) = |\{ \text{Ker}(C) \cap \Delta : \Delta \in \text{STS}(C), i \in \Delta \}|, \)
\[\mu(C) = \{ *\mu_i(C) : i \in \{1, \ldots, n\}* \}. \]
Invariants for transitive perfect codes

\[\text{Ker}(C) = \{ k \in F_2^n : k + C = C \}, \]
\[\text{Rank}(C) = \dim(\langle C \rangle). \]

Denote by \(\mu_i(C) = |\{ \text{Ker}(C) \cap \Delta : \Delta \in \text{STS}(C), i \in \Delta \}|, \)
\(\mu(C) = \{ \ast \mu_i(C) : i \in \{1, \ldots, n\} \ast \}. \)
Invariants for transitive perfect codes

\[\text{Ker}(C) = \{ k \in F_2^n : k + C = C \}, \]
\[\text{Rank}(C) = \dim(\langle C \rangle). \]
Denote by \(\mu_i(C) = |\{ \text{Ker}(C) \cap \Delta : \Delta \in STS(C), i \in \Delta \}|, \)
\[\mu(C) = \{ *\mu_i(C) : i \in \{1, \ldots, n\}* \}. \]
Invariants for transitive perfect codes

\[\text{Ker}(C) = \{ k \in F_2^n : k + C = C \}, \]
\[\text{Rank}(C) = \text{dim}(\langle C \rangle). \]

Denote by \(\mu_i(C) = |\{ \text{Ker}(C) \cap \Delta : \Delta \in STS(C), i \in \Delta \}|, \)
\[\mu(C) = \{ \ast \mu_i(C) : i \in \{1, \ldots, n\} \ast \}. \]
Transitive nonpropelinear perfect code of length 15: a characterization via $\mu(C)$

Proposition (PC search)

The transitive nonpropelinear perfect code of length 15 is a unique transitive code with the property that $\mu(C) = 0^{15}$.
Invariants for transitive perfect codes

\[\mu_i(C) = |\{ \text{Ker}(C) \cap \Delta : \Delta \in \text{STS}(C), i \in \Delta \}|, \]
\[\mu(C) = \{* \mu_i(C) : i \in \{1, \ldots, n\}*\}. \]

Some transitive perfect codes of length 15

| Code number in Ostergard and Pottonen classification | Rank(C) | Dim(Ker(C)) | |Sym(C)| | \(\mu(C) \) | |Aut(\text{STS}(C))| |
|---|--------|-------------|------------------|---------|-----------------|-----------------|
| the Hamming code | 11 | 11 | 20160 | 7\(^{15}\) | 20160 |
| 51 | 13 | 7 | 8 | 1\(^{13}3\)15\(^{1}\) | 8 |
| 694 | 13 | 8 | 32 | 1\(^{8}3\)5\(^{2}\) | 32 |
| 724 | 13 | 8 | 32 | 1\(^{13}3\)15\(^{1}\) | 96 |
| 771 | 13 | 8 | 96 | 1\(^{12}3\)\(^{3}\) | 288 |
| 4918 | 14 | 6 | 4 | 0\(^{15}\) | 4 |
Main result

Theorem

1. There is exactly one transitive nonpropelinear perfect code among 201 transitive codes of length 15.
2. There is at least 1 transitive nonpropelinear perfect code of length $2^r - 1$, $7 \geq r \geq 5$.
3. There are at least 5 pairwise inequivalent (up to transformation from $Aut(F_2^n)$) codes for length $2^r - 1$, $r \geq 8$.
Main result

Theorem

1. There is exactly one transitive nonpropelinear perfect code among 201 transitive codes of length 15.
2. There is at least 1 transitive nonpropelinear perfect code of length $2^r - 1$, $7 \geq r \geq 5$.
3. There are at least 5 pairwise inequivalent (up to transformation from $Aut(F_2^n)$) codes for length $2^r - 1$, $r \geq 8$.

I.Yu. Mogilnykh, F.I. Solov’eva
Existence of transitive nonpropelinear perfect codes
Introduction

Propelinear perfect codes

Main result

Theorem

1. There is exactly one transitive nonpropelinear perfect code among 201 transitive codes of length 15.
2. There is at least 1 transitive nonpropelinear perfect code of length $2^r - 1$, $7 \geq r \geq 5$.
3. There are at least 5 pairwise inequivalent (up to transformation from $\text{Aut}(F_2^n)$) codes for length $2^r - 1$, $r \geq 8$.

I.Yu. Mogilnykh, F.I. Solov'eva

Existence of transitive nonpropelinear perfect codes
Main result

Theorem

1. There is exactly one transitive nonpropelinear perfect code among 201 transitive codes of length 15.
2. There is at least 1 transitive nonpropelinear perfect code of length $2^r - 1, 7 \geq r \geq 5$.
3. There are at least 5 pairwise inequivalent (up to transformation from $Aut(F_2^n)$) codes for length $2^r - 1, r \geq 8$.
Keys to the proof

S., 2005

If \(C \) and \(D \) are transitive then \(M(C, D) \) is transitive.

Borges, Mogilnykh, Rifa, S., 2012

If \(C \) and \(D \) are propelinear then \(M(C, D) \) is propelinear.

Idea

\(C \) is a unique transitive nonpropelinear code of length 15, \(\mu(C) = 0^{15} \).
Take a transitive code \(D \): \(\mu(D) \) does not contain 0, e.g. \(D \) is the Hamming code.
Then the Mollard code \(M(C, D) \) is transitive and \(\text{Stab}_{D_2}\text{Sym}(M(C, D)) = \text{Sym}(M(C, D)) \). \(M(C, D) \) is a nonpropelinear code, since it fulfills incorrect inversion property.
Keys to the proof

S., 2005
If \(C \) and \(D \) are transitive then \(M(C, D) \) is transitive.

Borges, Mogilnykh, Rifa, S., 2012
If \(C \) and \(D \) are propelinear then \(M(C, D) \) is propelinear.

Idea
\(C \) is a unique transitive nonpropelinear code of length 15, \(\mu(C) = 0^{15} \).
Take a transitive code \(D \): \(\mu(D) \) does not contain 0, e.g. \(D \) is the Hamming code.
Then the Mollard code \(M(C, D) \) is transitive and \(Stab_{D_2}Sym(M(C, D)) = Sym(M(C, D)) \). \(M(C, D) \) is a nonpropelinear code, since it fulfills incorrect inversion property.
Introduction

Propelinear perfect codes

Main result

Keys to the proof

S., 2005

If C and D are transitive then $M(C, D)$ is transitive.

Borges, Mogilnykh, Rifa, S., 2012

If C and D are propelinear then $M(C, D)$ is propelinear.

Idea

C is a unique transitive nonpropelinear code of length 15, $\mu(C) = 0^{15}$.

Take a transitive code D: $\mu(D)$ does not contain 0, e.g. D is the Hamming code.

Then the Mollard code $M(C, D)$ is transitive and $\text{Stab}_{D_2} \text{Sym}(M(C, D)) = \text{Sym}(M(C, D))$. $M(C, D)$ is a nonpropelinear code, since it fulfills incorrect inversion property.
Keys to the proof

S., 2005
If C and D are transitive then $M(C, D)$ is transitive.

Borges, Mogilnykh, Rifa, S., 2012
If C and D are propelinear then $M(C, D)$ is propelinear.

Idea
C is a unique transitive nonpropelinear code of length 15, $\mu(C) = 0^{15}$.
Take a transitive code D: $\mu(D)$ does not contain 0, e.g. D is the Hamming code.
Then the Mollard code $M(C, D)$ is transitive and $Stab_{D_2} Sym(M(C, D)) = Sym(M(C, D))$. $M(C, D)$ is a nonpropelinear code, since it fulfills incorrect inversion property.
Introduction
Propelinear perfect codes
Main result

Keys to the proof

S., 2005
If C and D are transitive then $M(C, D)$ is transitive.

Borges, Mogilnykh, Rifa, S., 2012
If C and D are propelinear then $M(C, D)$ is propelinear.

Idea
C is a unique transitive nonpropelinear code of length 15, $\mu(C) = 0^{15}$.
Take a transitive code D: $\mu(D)$ does not contain 0, e.g. D is the Hamming code.
Then the Mollard code $M(C, D)$ is transitive and $Stab_{D_2}Sym(M(C, D)) = Sym(M(C, D))$. $M(C, D)$ is a nonpropelinear code, since it fulfills incorrect inversion property.
Keys to the proof

<table>
<thead>
<tr>
<th>S., 2005</th>
<th>If C and D are transitive then $M(C, D)$ is transitive.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borges, Mogilnykh, Rifa, S., 2012</td>
<td>If C and D are propelinear then $M(C, D)$ is propelinear.</td>
</tr>
</tbody>
</table>

Idea

C is a unique transitive nonpropelinear code of length 15, $\mu(C) = 0^{15}$.
Take a transitive code D: $\mu(D)$ does not contain 0, e.g. D is the Hamming code.
Then the Mollard code $M(C, D)$ is transitive and $\text{Stab}_{D_2} \text{Sym}(M(C, D)) = \text{Sym}(M(C, D))$. $M(C, D)$ is a nonpropelinear code, since it fulfills incorrect inversion property.
Keys to the proof

S., 2005

If C and D are transitive then $M(C, D)$ is transitive.

Borges, Mogilnykh, Rifa, S., 2012

If C and D are propelinear then $M(C, D)$ is propelinear.

Idea

C is a unique transitive nonpropelinear code of length 15, $\mu(C) = 0^{15}$.

Take a transitive code D: $\mu(D)$ does not contain 0, e.g. D is the Hamming code.

Then the Mollard code $M(C, D)$ is **transitive** and $Stab_{D_2} Sym(M(C, D)) = Sym(M(C, D))$. $M(C, D)$ is a **nonpropelinear code**, since it fulfills **incorrect inversion property**.
Keys to the proof

<table>
<thead>
<tr>
<th>Source</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>S., 2005</td>
<td>If (C) and (D) are transitive then (M(C, D)) is transitive.</td>
</tr>
<tr>
<td>Borges, Mogilnykh, Rifa, S., 2012</td>
<td>If (C) and (D) are propelinear then (M(C, D)) is propelinear.</td>
</tr>
</tbody>
</table>

Idea

\(C \) is a unique transitive nonpropelinear code of length 15, \(\mu(C) = 0^{15} \).

Take a transitive code \(D \): \(\mu(D) \) does not contain 0, e.g. \(D \) is the Hamming code.

Then the Mollard code \(M(C, D) \) is **transitive** and
\[
\text{Stab}_{D_2} \text{Sym}(M(C, D)) = \text{Sym}(M(C, D))
\]

\(M(C, D) \) is a **nonpropelinear code**, since it fulfills **incorrect inversion property**.
THANK YOU FOR YOUR ATTENTION