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Perfect codes

A code with minimum distance 3 is called perfect (sometimes
called 1-perfect) if it attains the Hamming bound, i.e.

|C | = 2n/(n + 1).

These codes exist for length n = 2r − 1, size 2n−r and minimum
distance 3 for any r ≥ 2.

A Hamming code is a perfect code which is a linear subspace of F n
2 .
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The automorphism group of the code

An automorphism of F n
2 is an isometry of the Hamming space.

Let π ∈ Sym(n) and x ∈ F n
2 .

Consider the transformation (x , π) of F n
2 :

(x , π) : y → x + (yπ−1(1), . . . , yπ−1(n)), y ∈ F n
2 .

(x , π) · (y , π′) = (x + π(y), ππ′).

Theorem

The group of automorphisms of F n
2 with respect to · is

({(x , π) : x ∈ F n
2 , π ∈ Sym(n)}, ·)

The automorphism group of a code C is StabC (Aut(F n
2 )), denoted

by Aut(C ).
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Transitive and propelinear codes

A code C is called transitive if there is a group G < Aut(C )
transitively acting on the codewords of C , i.e.

∀x , y ∈ C∃g ∈ G : g(x) = y

[Rifa, Phelps, 2002], original definition by [Rifa, Huguet, Bassart,
1989]

A code C is called propelinear if there is a subgroup G < Aut(C )
acting sharply transitive (regularly) on the codewords, i.e.

∀x , y ∈ C ∃!g ∈ G : g(x) = y
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Propelinear perfect codes: existence

Linear codes [Hamming, 1949]
Z2Z4 - linear perfect codes [Rifa, Pujol, 1999], Z4 - linear perfect
codes [Krotov, 2000]
Transitive Malyugin perfect codes of length 15, i.e. 1-step
switchings of the Hamming code are propelinear [Borges,
Mogilnykh, Rifa, S., 2012]
Vasil’ev and Mollard can be used to construct propelinear perfect
codes [Borges, Mogilnykh, Rifa, S., 2012]
Potapov transitive extended perfect codes are propelinear [Borges,
Mogilnykh, Rifa, S., 2013]
Propelinear Vasil’ev perfect codes from quadratic functions
[Krotov, Potapov, 2013]
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Problem statement

Does there exist a transitive nonpropelinear perfect code?
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Transitive nonpropelinear perfect code of length 15:
algebraic property

Proposition

There is a unique transitive nonpropelinear perfect code C of
length 15.

Nonpropelinearity (The main key):

We cannot correctly define g−1 for some g ∈ G (incorrect
inversion): both g and g−1 send a codeword x to a codeword y .
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Invariants for transitive perfect codes

Ker(C ) = {k ∈ F n
2 : k + C = C},

Rank(C ) = dim(< C >).
Denote by µi (C ) = |{Ker(C ) ∩∆ : ∆ ∈ STS(C ), i ∈ ∆}|,
µ(C ) = {∗µi (C ) : i ∈ {1, . . . , n}∗}.
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Transitive nonpropelinear perfect code of length 15: a
characterization via µ(C )

Proposition(PC search)

The transitive nonpropelinear perfect code of length 15 is a unique
transitive code with the property that µ(C ) = 015.
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Invariants for transitive perfect codes

µi (C ) = |{Ker(C ) ∩∆ : ∆ ∈ STS(C ), i ∈ ∆}|,
µ(C ) = {∗µi (C ) : i ∈ {1, . . . , n}∗}.

Some transitive perfect codes of length 15

Code number Rank(C) Dim(Ker(C)) |Sym(C)| µ(C) |Aut(STS(C))|

in Ostergard

and Pottonen

classification

the Hamming code 11 11 20160 715 20160
51 13 7 8 1133151 8

694 13 8 32 183552 32
724 13 8 32 1133151 96
771 13 8 96 11233 288

4918 14 6 4 015 4
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Main result

Theorem

1. There is exactly one transitive nonpropelinear perfect code
among 201 transitive codes of length 15.
2. There is at least 1 transitive nonpropelinear perfect code of
length 2r − 1, 7 ≥ r ≥ 5.
3. There are at least 5 pairwise inequivalent (up to transformation
from Aut(F n

2 )) codes for length 2r − 1, r ≥ 8.
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Keys to the proof

S., 2005

If C and D are transitive then M(C ,D) is transitive.

Borges, Mogilnykh, Rifa, S., 2012

If C and D are propelinear then M(C ,D) is propelinear.

Idea

C is a unique transitive nonpropelinear code of length 15,
µ(C ) = 015.
Take a transitive code D: µ(D) does not contain 0, e.g. D is the
Hamming code.
Then the Mollard code M(C ,D) is transitive and
StabD2Sym(M(C ,D)) = Sym(M(C ,D)). M(C ,D) is a
nonpropelinear code, since it fulfills incorrect inversion property.
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