Existence of transitive nonpropelinear perfect codes

I.Yu. Mogilnykh, F.I. Solov'eva

Novosibirsk State University Sobolev Institute of Mathematics

Presented at the 14th International Workshop on Algebraic and Combinatorial Coding Theory 07-13.09.2014, Svetlogorsk, Russia

Perfect codes

A code with minimum distance 3 is called *perfect* (sometimes called 1-perfect) if it attains the Hamming bound, i.e.

$$|C|=2^n/(n+1).$$

These codes exist for length $n = 2^r - 1$, size 2^{n-r} and minimum distance 3 for any $r \ge 2$.

A Hamming code is a perfect code which is a linear subspace of F_2^n .

Perfect codes

A code with minimum distance 3 is called *perfect* (sometimes called 1-perfect) if it attains the Hamming bound, i.e.

$$|C|=2^n/(n+1).$$

These codes exist for length $n = 2^r - 1$, size 2^{n-r} and minimum distance 3 for any $r \ge 2$.

A Hamming code is a perfect code which is a linear subspace of F_2^n .

3 N 4 3 N

The automorphism group of the code

An automorphism of F_2^n is an isometry of the Hamming space. Let $\pi \in Sym(n)$ and $x \in F_2^n$. Consider the transformation (x, π) of F_2^n :

$$(x,\pi): y \to x + (y_{\pi^{-1}(1)}, \dots, y_{\pi^{-1}(n)}), y \in F_2^n$$

$$(x,\pi) \cdot (y,\pi') = (x + \pi(y),\pi\pi').$$

Theorem

The group of automorphisms of F_2^n with respect to \cdot is $(\{(x, \pi) : x \in F_2^n, \pi \in Sym(n)\}, \cdot)$

The automorphism group of the code

An automorphism of F_2^n is an isometry of the Hamming space. Let $\pi \in Sym(n)$ and $x \in F_2^n$. Consider the transformation (x, π) of F_2^n :

$$(x,\pi): y \to x + (y_{\pi^{-1}(1)}, \dots, y_{\pi^{-1}(n)}), y \in F_2^n$$

$$(x,\pi) \cdot (y,\pi') = (x + \pi(y),\pi\pi').$$

Theorem

The group of automorphisms of F_2^n with respect to \cdot is $(\{(x,\pi) : x \in F_2^n, \pi \in Sym(n)\}, \cdot)$

The automorphism group of the code

An automorphism of F_2^n is an isometry of the Hamming space. Let $\pi \in Sym(n)$ and $x \in F_2^n$. Consider the transformation (x, π) of F_2^n :

$$(x,\pi): y \to x + (y_{\pi^{-1}(1)}, \ldots, y_{\pi^{-1}(n)}), y \in F_2^n.$$

$$(x,\pi) \cdot (y,\pi') = (x + \pi(y),\pi\pi').$$

Theorem

The group of automorphisms of F_2^n with respect to \cdot is $(\{(x,\pi) : x \in F_2^n, \pi \in Sym(n)\}, \cdot)$

The automorphism group of the code

An automorphism of F_2^n is an isometry of the Hamming space. Let $\pi \in Sym(n)$ and $x \in F_2^n$. Consider the transformation (x, π) of F_2^n :

$$(x,\pi): y \to x + (y_{\pi^{-1}(1)}, \ldots, y_{\pi^{-1}(n)}), y \in F_2^n.$$

$$(x,\pi) \cdot (y,\pi') = (x + \pi(y),\pi\pi').$$

Theorem

The group of automorphisms of F_2^n with respect to \cdot is $(\{(x, \pi) : x \in F_2^n, \pi \in Sym(n)\}, \cdot)$

The automorphism group of the code

An automorphism of F_2^n is an isometry of the Hamming space. Let $\pi \in Sym(n)$ and $x \in F_2^n$. Consider the transformation (x, π) of F_2^n :

$$(x,\pi): y \to x + (y_{\pi^{-1}(1)}, \ldots, y_{\pi^{-1}(n)}), y \in F_2^n.$$

$$(x,\pi) \cdot (y,\pi') = (x + \pi(y),\pi\pi').$$

Theorem

The group of automorphisms of F_2^n with respect to \cdot is $(\{(x, \pi) : x \in F_2^n, \pi \in Sym(n)\}, \cdot)$

The automorphism group of the code

An automorphism of F_2^n is an isometry of the Hamming space. Let $\pi \in Sym(n)$ and $x \in F_2^n$. Consider the transformation (x, π) of F_2^n :

$$(x,\pi): y \to x + (y_{\pi^{-1}(1)}, \ldots, y_{\pi^{-1}(n)}), y \in F_2^n.$$

$$(x,\pi) \cdot (y,\pi') = (x + \pi(y),\pi\pi').$$

Theorem

The group of automorphisms of F_2^n with respect to \cdot is $(\{(x, \pi) : x \in F_2^n, \pi \in Sym(n)\}, \cdot)$

Transitive and propelinear codes

A code C is called *transitive* if there is a group G < Aut(C) transitively acting on the codewords of C, i.e.

$$\forall x, y \in C \exists g \in G : g(x) = y$$

[Rifa, Phelps, 2002], original definition by [Rifa, Huguet, Bassart, 1989]

A code C is called *propelinear* if there is a subgroup G < Aut(C) acting sharply transitive (regularly) on the codewords, i.e.

 $\forall x, y \in C \;\; \exists ! g \in G : g(x) = y$

- 同 ト - ヨ ト - - ヨ ト

Transitive and propelinear codes

A code C is called *transitive* if there is a group G < Aut(C) transitively acting on the codewords of C, i.e.

$$\forall x, y \in C \exists g \in G : g(x) = y$$

[Rifa, Phelps, 2002], original definition by [Rifa, Huguet, Bassart, 1989]

A code C is called *propelinear* if there is a subgroup G < Aut(C) acting sharply transitive (regularly) on the codewords, i.e.

$$\forall x, y \in C \; \exists ! g \in G : g(x) = y$$

Propelinear perfect codes: existence

Linear codes [Hamming, 1949]

 Z_2Z_4 - linear perfect codes [Rifa, Pujol, 1999], Z_4 - linear perfect codes [Krotov, 2000] Transitive Malyugin perfect codes of length 15, i.e. 1-step switchings of the Hamming code are propelinear [Borges, Mogilnykh, Rifa, S., 2012] Vasil'ev and Mollard can be used to construct propelinear perfect codes [Borges, Mogilnykh, Rifa, S., 2012] Potapov transitive extended perfect codes are propelinear [Borges, Mogilnykh, Rifa, S., 2013] Propelinear Vasil'ev perfect codes from quadratic functions [Krotov, Potapov, 2013]

- 4 同 1 4 日 1 4 日

Problem statement

Does there exist a transitive nonpropelinear *perfect* code?

Transitive nonpropelinear perfect code of length 15: algebraic property

Proposition

There is a unique transitive nonpropelinear perfect code C of length 15.

Nonpropelinearity (The main key):

We cannot correctly define g^{-1} for some $g \in G$ (*incorrect inversion*): both g and g^{-1} send a codeword x to a codeword y.

< 同 > < 回 > < 回 >

Transitive nonpropelinear perfect code of length 15: algebraic property

Proposition

There is a unique transitive nonpropelinear perfect code C of length 15.

Nonpropelinearity (The main key):

We cannot correctly define g^{-1} for some $g \in G$ (*incorrect inversion*): both g and g^{-1} send a codeword x to a codeword y.

・ 同 ト ・ ヨ ト ・ ヨ ト

Transitive nonpropelinear perfect code of length 15: algebraic property

Proposition

There is a unique transitive nonpropelinear perfect code C of length 15.

Nonpropelinearity (The main key):

We cannot correctly define g^{-1} for some $g \in G$ (*incorrect inversion*): both g and g^{-1} send a codeword x to a codeword y.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Invariants for transitive perfect codes

$Ker(C) = \{k \in F_2^n : k + C = C\},\$ Rank(C) = dim(< C >).Denote by $\mu_i(C) = |\{Ker(C) \cap \Delta : \Delta \in STS(C), i \in \Delta\}|,\$ $\mu(C) = \{*\mu_i(C) : i \in \{1, ..., n\}*\}.$

Invariants for transitive perfect codes

$Ker(C) = \{k \in F_2^n : k + C = C\},\$ Rank(C) = dim(< C >).Denote by $\mu_i(C) = |\{Ker(C) \cap \Delta : \Delta \in STS(C), i \in \Delta\}|,\$ $\mu(C) = \{*\mu_i(C) : i \in \{1, ..., n\}*\}.$

Invariants for transitive perfect codes

$$Ker(C) = \{k \in F_2^n : k + C = C\},\$$

$$Rank(C) = dim(< C >).$$

Denote by $\mu_i(C) = |\{Ker(C) \cap \Delta : \Delta \in STS(C), i \in \Delta\}|,\$

$$\mu(C) = \{*\mu_i(C) : i \in \{1, ..., n\}*\}.$$

∃ >

Invariants for transitive perfect codes

$$Ker(C) = \{k \in F_2^n : k + C = C\},\$$

$$Rank(C) = dim(< C >).$$

Denote by $\mu_i(C) = |\{Ker(C) \cap \Delta : \Delta \in STS(C), i \in \Delta\}|,\$
 $\mu(C) = \{*\mu_i(C) : i \in \{1, ..., n\}*\}.$

∃ >

Transitive nonpropelinear perfect code of length 15: a characterization via $\mu(C)$

Proposition(PC search)

The transitive nonpropelinear perfect code of length 15 is a unique transitive code with the property that $\mu(C) = 0^{15}$.

Invariants for transitive perfect codes

$$\mu_i(C) = |\{Ker(C) \cap \Delta : \Delta \in STS(C), i \in \Delta\}|, \\ \mu(C) = \{*\mu_i(C) : i \in \{1, \ldots, n\}*\}.$$

Some transitive perfect codes of length 15

Code number	Rank(C)	Dim(Ker(C))	$ \operatorname{Sym}(\mathcal{C}) $	μ(C)	$ \operatorname{Aut}(\operatorname{STS}(\mathcal{C})) $
in Ostergard					
and Pottonen					
classification					
the Hamming code	11	11	20160	7 ¹⁵	20160
51	13	7	8	$1^{13}3^{1}5^{1}$	8
694	13	8	32	1 ⁸ 3 ⁵ 5 ²	32
724	13	8	32	$1^{13}3^{1}5^{1}$	96
771	13	8	96	$1^{12}3^{3}$	288
4918	14	6	4	0 ¹⁵	4

Main result

Theorem

1. There is exactly one transitive nonpropelinear perfect code among 201 transitive codes of length 15.

2. There is at least 1 transitive nonpropelinear perfect code of length $2^r - 1, 7 \ge r \ge 5$.

3. There are at least 5 pairwise inequivalent (up to transformation from $Aut(F_2^n)$) codes for length $2^r - 1, r \ge 8$.

(*) *) *) *)

Main result

Theorem

1. There is exactly one transitive nonpropelinear perfect code among 201 transitive codes of length 15.

2. There is at least 1 transitive nonpropelinear perfect code of length $2^r - 1, 7 \ge r \ge 5$.

3. There are at least 5 pairwise inequivalent (up to transformation from $Aut(F_2^n)$) codes for length $2^r - 1, r \ge 8$.

伺 と く ヨ と く ヨ と

Main result

Theorem

1. There is exactly one transitive nonpropelinear perfect code among 201 transitive codes of length 15.

2. There is at least 1 transitive nonpropelinear perfect code of length $2^r - 1, 7 \ge r \ge 5$.

3. There are at least 5 pairwise inequivalent (up to transformation from $Aut(F_2^n)$) codes for length $2^r - 1, r \ge 8$.

伺 と く ヨ と く ヨ と

Main result

Theorem

1. There is exactly one transitive nonpropelinear perfect code among 201 transitive codes of length 15.

2. There is at least 1 transitive nonpropelinear perfect code of length $2^r - 1, 7 \ge r \ge 5$.

3. There are at least 5 pairwise inequivalent (up to transformation from $Aut(F_2^n)$) codes for length $2^r - 1, r \ge 8$.

伺 と く ヨ と く ヨ と

Keys to the proof

S., 2005

If C and D are transitive then M(C, D) is transitive.

Borges, Mogilnykh, Rifa, S., 2012

If C and D are propelinear then M(C, D) is propelinear.

Idea

C is a unique transitive nonpropelinear code of length 15, $\mu(C) = 0^{15}$. Take a transitive code D: $\mu(D)$ does not contain 0, e.g. D is the Hamming code. Then the Mollard code M(C, D) is *transitive* and $Stab_{D_2}Sym(M(C, D)) = Sym(M(C, D))$. M(C, D) is a

nonpropelinear code, since it fulfills incorrect inversion property.

Keys to the proof

S., 2005

If C and D are transitive then M(C, D) is transitive.

Borges, Mogilnykh, Rifa, S., 2012

If C and D are propelinear then M(C, D) is propelinear.

Idea

C is a unique transitive nonpropelinear code of length 15, $\mu(C) = 0^{15}$. Take a transitive code D: $\mu(D)$ does not contain 0, e.g. D is the

Hamming code.

Then the Mollard code M(C, D) is *transitive* and $Stab_{D_2}Sym(M(C, D)) = Sym(M(C, D))$. M(C, D) is a *nonpropelinear code*, since it fulfills *incorrect inversion properties*.

Keys to the proof

S., 2005

If C and D are transitive then M(C, D) is transitive.

Borges, Mogilnykh, Rifa, S., 2012

If C and D are propelinear then M(C, D) is propelinear.

Idea

C is a unique transitive nonpropelinear code of length 15, $\mu(C) = 0^{15}$. Take a transitive code D: $\mu(D)$ does not contain 0, e.g. D is the Hamming code. Then the Mollard code M(C, D) is transitive and $Stab_{D_2}Sym(M(C, D)) = Sym(M(C, D))$. M(C, D) is a nonpropelinear code, since it fulfills incorrect inversion property.

Keys to the proof

S., 2005

If C and D are transitive then M(C, D) is transitive.

Borges, Mogilnykh, Rifa, S., 2012

If C and D are propelinear then M(C, D) is propelinear.

Idea

C is a unique transitive nonpropelinear code of length 15, $\mu(C) = 0^{15}$.

Take a transitive code D: $\mu(D)$ does not contain 0, e.g. D is the Hamming code.

Then the Mollard code M(C, D) is *transitive* and $Stab_{D_2}Sym(M(C, D)) = Sym(M(C, D))$. M(C, D) is a

Keys to the proof

S., 2005

If C and D are transitive then M(C, D) is transitive.

Borges, Mogilnykh, Rifa, S., 2012

If C and D are propelinear then M(C, D) is propelinear.

Idea

C is a unique transitive nonpropelinear code of length 15, $\mu(C) = 0^{15}$. Take a transitive code D: $\mu(D)$ does not contain 0, e.g. D is the Hamming code. Then the Mollard code M(C, D) is transitive and $Stab_{D_2}Sym(M(C, D)) = Sym(M(C, D))$. M(C, D) is a nonpropelinear code, since it fulfills incorrect inversion property.

Keys to the proof

S., 2005

If C and D are transitive then M(C, D) is transitive.

Borges, Mogilnykh, Rifa, S., 2012

If C and D are propelinear then M(C, D) is propelinear.

Idea

C is a unique transitive nonpropelinear code of length 15, $\mu(C) = 0^{15}$. Take a transitive code D: $\mu(D)$ does not contain 0, e.g. D is the Hamming code.

Then the Mollard code M(C, D) is *transitive* and $Stab_{D_2}Sym(M(C, D)) = Sym(M(C, D))$. M(C, D) is a *nonpropelinear code*, since it fulfills *incorrect inversion prope*

Keys to the proof

S., 2005

If C and D are transitive then M(C, D) is transitive.

Borges, Mogilnykh, Rifa, S., 2012

If C and D are propelinear then M(C, D) is propelinear.

Idea

C is a unique transitive nonpropelinear code of length 15, $\mu(C) = 0^{15}$. Take a transitive code *D*: $\mu(D)$ does not contain 0, e.g. *D* is the Hamming code. Then the Mollard code M(C, D) is *transitive* and $Stab_{D_2}Sym(M(C, D)) = Sym(M(C, D))$. M(C, D) is a nonpropelinear code, since it fulfills incorrect inversion property.

Keys to the proof

S., 2005

If C and D are transitive then M(C, D) is transitive.

Borges, Mogilnykh, Rifa, S., 2012

If C and D are propelinear then M(C, D) is propelinear.

Idea

C is a unique transitive nonpropelinear code of length 15, $\mu(C) = 0^{15}$. Take a transitive code D: $\mu(D)$ does not contain 0, e.g. D is the Hamming code. Then the Mollard code M(C, D) is *transitive* and $Stab_{D_2}Sym(M(C, D)) = Sym(M(C, D))$. M(C, D) is a

nonpropelinear code, since it fulfills incorrect inversion property.

THANK YOU FOR YOUR ATTENTION

э

A B M A B M