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INTRODUCTION NOTATION

PG (2, q) ⇔ projective space of dimension 2 over Galois field Fq

n-arc ⇔a set of n points no three of which are collinear
a line meeting an arc ⇔ tangent or bisecant

bisecant ⇔ a line intersecting an arc in two points

a point A of PG (2, q) is covered by an arc ⇔
A lies on a bisecant of the arc

complete arc ⇔ all points of PG (2, q) are covered
by bisecants of the arc

⇔ one may not add a new point to a complete arc
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INTRODUCTION NOTATION

t2(2, q) ⇔ the smallest size of a complete arc in PG (2, q)

HARD OPEN CLASSICAL PROBLEM: 1950 →

upper bound on t2(2, q)

exact values of t2(2, q) are only for q ≤ 32
q = 31, 32 D. Bartoli, G. Faina, S. Marcugini, F. Pambianco,

Journal of Geometry 2013

lower bounds t2(2, q) >
√
2q + 1, ∀ q

t2(2, q) >
√
3q + 1

2 , q = ph, h ≤ 3 (p3 O.Polverino 1999)
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KNOWN UPPER BOUNDS on t2(2, q)

theoretical t2(2, q) ≤ d
√
q logc q, c ≤ 300

c , d ⇔ constants independent of q
probabilistic methods J.H. Kim, V. Vu Combinatorica 2003

computer search t2(2, q) <
√
q ln0.7295 q

HUGE region t2(2, q) < 1.745
√
q ln q

ALL q ≤ 150001 WITHOUT GAPS
41 sporadic q’s in [150503 . . . 430009]

D.Bartoli, A.A.Davydov, G.Faina, A.A.Kreshchuk, S.Marcugini, F.Pambianco

J. Geometry, Discrete Mathematics, OC2013, ACCT2014, arXiv 2005-2014
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AIM and APPROACH

AIM ⇒ analytical bound

t2(2, q) < c
√
q ln q. c – small constant

WAY ⇒ analysis of step-by-step greedy algorithms

A greedy algorithm is an algorithm that makes the locally optimal
choice at each stage with the hope of finding a global optimum or,
at least, a global “good” solution.

“From the first day to this, sheer greed was the driving spirit of
civilization” (F. Engels)
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Ensemble of random w -arcs

The w -th step of Algorithm forms a w -arc W .
Uw ⇔ the number of points not covered by W

Sw (Uw ) ⇔ the set of all w -arcs in PG (2, q) each of which does
not cover exactly Uw points.
Starting arc of the (w + 1)-th step ⇔ w -arc Kw randomly chosen
of Sw (Uw ).
For every arc of Sw (Uw ) the probability to be chosen = 1

#Sw (Uw )
.

Sw (Uw ) ⇔ an ensemble of random objects with the uniform
probability distribution.
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Uniform distribution of uncovered points

Lemma
Every point of PG (2, q) may be considered as a random object that
can be uncovered by a randomly chosen w -arc Kw with some
probability pw . The probability pw is the same for all points:

pw =
Uw

#PG (2, q)
=

Uw

q2 + q + 1
.

the proportion of uncovered points =
the probability that a point is uncovered
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One step of a greedy algorithm
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the number of new covered points on the (w + 1)-th step

Ai – point of PG (2, q). #PG (2, q) = q2 + q + 1
arc Kw = {A1,A2, . . . ,Aw}
point Aw+1 will be included in the arc on the (w + 1)-th step

Aw+1 defines a bundle Bw(Aw+1) of w tangents to Kw

w(q − 1) + 1 points of Bw (Aw+1) \ {A1, . . . ,Aw} are
candidates to be new covered points at the (w + 1)-th step

∆w (Aw+1) – the number of new covered points on (w + 1)-th step

Uw uncovered points ⇒ Uw distinct bundles
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the main idea for bounds

if events to be uncovered are independent, the expected value of the
number new covered points among w(q − 1) + 1 random points =

E = pw · (w(q − 1) + 1) =
Uw

q2 + q + 1
(w(q − 1) + 1)

MAIN IDEA ⇒ there exists an uncovered point Aw+1 providing

∆w (Aw+1) ≥ E

RIGOROUS PROOF ≈ 58% of all the steps of the process

CONJECTURE rest of the steps
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Theorem and Conjecture

Theorem

Let Uw >
(q + 2)(q + 2− w)

w
or

q + 3
w

> Uw

Then for any arc Kw of Sw (Uw ), there exists an uncovered point

Aw+1 providing the inequality ∆w (Aw+1) ≥ E

Conjecture

Let
(q + 2)(q + 2− w)

w
> Uw >

q + 3
w

Then for any arc Kw of Sw (Uw ), there exists an uncovered point
Aw+1 providing the inequality ∆w (Aw+1) ≥ E
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tools for rigorous proof

the average value of ∆w (Aw+1) by all Uw uncovered points Aw+1

∆aver
w (Kw ) =

∑
Aw+1

∆w (Aw+1)

Uw
≥ 1

there exists ∆w (Aw+1) ≥ ∆aver
w (Kw )

Lemma

∆aver
w (Kw ) ≥ ∆low

w = max{1, wUw

q + 2− w
− w + 1}

where equality holds if and only if every tangent contains the
same number of uncovered points.
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Conjecture is reasonable

1. The rigorous proof uses the equality ∆aver
w (Kw ) = ∆low

w .
Formally, we have no right to take inequality ∆aver

w (Kw ) > ∆low
w .

The equality is sufficient only for the 1-st 58% steps of Algorithm.
The 2-nd part formally needs in conjecture. But, in this 2-nd part:
the numbers of uncovered points on tangents are essentially distinct
& there is many random factors affecting the process ⇒
the variance of the random value ∆w (Aw+1) increases ⇒
∆w (Aw+1) > E exists

2. In fact: the probability that a point is uncovered > pw ⇒
the expected value of the number new covered points among
w(q − 1) + 1 random points > E
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RIGOROUS proof vs CONJECTURE
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new upper bounds (under Conjecture)

Theorem

Let a constant ξ ≥ 1. Under Conjecture,

t2(2, q) ≤ w + 1 + ξ, w satisfies
w∏

i=1

(
1− i

q + 3

)
≤ ξ

q2 + q
.

t2(2, q) <
√
q
√

3 ln q + ln ln q + ln 3 +

√
q

3 ln q
+ 3.

t2(2, q) < 1.885
√

q ln q
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