Conjectural upper bounds on the smallest size of a complete arc in PG(2, q) based on an analysis of step-by-step greedy algorithms

Daniele Bartoli* Alexander A. Davydov[@] Giorgio Faina* Alexey A. Kreshchuk[@] Stefano Marcugini* Fernanda Pambianco*

- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Science, Moscow, Russia
 - * Department of Mathematics and Informatics, Perugia University, Perugia, Italy

XIV International Workshop on Algebraic and Combinatorial Coding Theory, ACCT-2014, Svetlogorsk, Russia, September 7-13, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

2 Upper bounds under some conjecture

③ illustrations of the effectiveness of new bounds

INTRODUCTION NOTATION

 $PG(2, q) \Leftrightarrow$ projective space of dimension 2 over Galois field F_q

n-arc \Leftrightarrow a set of n points no three of which are collinear a line meeting an arc \Leftrightarrow tangent or bisecant

bisecant \Leftrightarrow a line intersecting an arc in two points

a **point** A of PG(2, q) is **covered** by an arc \Leftrightarrow A lies on a **bisecant** of the arc

complete arc \Leftrightarrow all points of PG(2, q) are covered by bisecants of the arc \Leftrightarrow one may not add a new point to a complete arc

INTRODUCTION NOTATION

 $PG(2, q) \Leftrightarrow$ projective space of dimension 2 over Galois field F_q

n-arc \Leftrightarrow a set of n points no three of which are collinear a line meeting an arc \Leftrightarrow tangent or bisecant

bisecant \Leftrightarrow a line intersecting an arc in two points

a **point** A of PG(2, q) is **covered** by an arc \Leftrightarrow A lies on a **bisecant** of the arc

complete arc \Leftrightarrow all points of PG(2, q) are covered by bisecants of the arc \Leftrightarrow one may not add a new point to a complete arc

INTRODUCTION NOTATION

 $t_2(2, q) \Leftrightarrow$ the smallest size of a complete arc in PG(2, q)HARD OPEN CLASSICAL PROBLEM: $1950 \rightarrow$ upper bound on $t_2(2,q)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

うして ふゆう ふほう ふほう うらつ

INTRODUCTION NOTATION

 $t_2(2, q) \Leftrightarrow$ the smallest size of a complete arc in PG(2, q)HARD OPEN CLASSICAL PROBLEM: $1950 \rightarrow$ upper bound on $t_2(2,q)$ exact values of $t_2(2, q)$ are only for $q \leq 32$ q = 31, 32D. Bartoli, G. Faina, S. Marcugini, F. Pambianco, Journal of Geometry 2013

うして ふゆう ふほう ふほう うらつ

INTRODUCTION NOTATION

 $t_2(2, q) \Leftrightarrow$ the smallest size of a complete arc in PG(2, q)HARD OPEN CLASSICAL PROBLEM: $1950 \rightarrow$ upper bound on $t_2(2,q)$ exact values of $t_2(2, q)$ are only for $q \leq 32$ q = 31, 32D. Bartoli, G. Faina, S. Marcugini, F. Pambianco, Journal of Geometry 2013 lower bounds $t_2(2,q) > \sqrt{2q} + 1, \quad \forall q$ $t_2(2,q) > \sqrt{3q} + \frac{1}{2}, \ q = p^h, \ h \leq 3 \ (p^3 \text{ O.Polverino 1999})$

KNOWN UPPER BOUNDS on $t_2(2, q)$

theoretical
$$t_2(2, q) \leq d\sqrt{q} \log^c q, c \leq 300$$
 $c, d \Leftrightarrow$ constants independent of q probabilistic methodsJ.H. Kim, V. VuComputer search $t_2(2, q) < \sqrt{q} \ln^{0.7295} q$ HUGE region $t_2(2, q) < \sqrt{q} \ln^{0.7295} q$ ALL $q \leq 150001$ WITHOUT GAPS41 sporadic q's in [150503...430009]D.Bartoli, A.A.Davydov, G.Faina, A.A.Kreshchuk, S.Marcugini, F.PambiancoJ. Geometry, Discrete Mathematics, OC2013, ACCT2014, arXiv 2005-2014

KNOWN UPPER BOUNDS on $t_2(2, q)$

theoretical
$$t_2(2, q) \leq d\sqrt{q} \log^c q, c \leq 300$$
 $c, d \Leftrightarrow$ constants independent of q probabilistic methodsJ.H. Kim, V. VuComputer search $t_2(2, q) < \sqrt{q} \ln^{0.7295} q$ HUGE region $t_2(2, q) < \sqrt{q} \ln^{0.7295} q$ ALL $q \leq 150001$ WITHOUT GAPS41 sporadic q's in [150503...430009]D.Bartoli, A.A.Davydov, G.Faina, A.A.Kreshchuk, S.Marcugini, F.PambiancoJ. Geometry, Discrete Mathematics, OC2013, ACCT2014, arXiv 2005-2014

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

AIM and APPROACH

$AIM \Rightarrow \text{ analytical bound}$

 $t_2(2,q) < c\sqrt{q \ln q}$. c – small constant

WAY \Rightarrow analysis of step-by-step greedy algorithms

A greedy algorithm is an algorithm that makes the *locally optimal choice* at each stage with the hope of finding a global optimum or, at least, a global "good" solution.

"From the first day to this, sheer greed was the driving spirit of civilization" (F. Engels)

うして ふゆう ふほう ふほう うらつ

AIM and APPROACH

 $AIM \Rightarrow \text{ analytical bound}$

 $t_2(2,q) < c\sqrt{q \ln q}$. c – small constant

WAY \Rightarrow analysis of step-by-step greedy algorithms

A greedy algorithm is an algorithm that makes the *locally optimal choice* at each stage with the hope of finding a global optimum or, at least, a global "good" solution.

"From the first day to this, sheer greed was the driving spirit of civilization" (F. Engels)

ション ふゆ アメリア メリア しょうくの

Ensemble of random *w*-arcs

The w-th step of Algorithm forms a w-arc W.

 $U_w \Leftrightarrow$ the number of points not covered by W

 $S_w(U_w) \Leftrightarrow$ the set of all *w*-arcs in PG(2, q) each of which does not cover exactly U_w points.

Starting arc of the (w + 1)-th step \Leftrightarrow w-arc \mathcal{K}_w randomly chosen of $\mathbf{S}_w(U_w)$.

For every arc of $S_w(U_w)$ the probability to be chosen $= \frac{1}{\#S_w(U_w)}$. $S_w(U_w) \Leftrightarrow$ an ensemble of random objects with the uniform probability distribution. Introduction

うして ふゆう ふほう ふほう うらう

Uniform distribution of uncovered points

Lemma

Every point of PG(2, q) may be considered as a random object that can be uncovered by a randomly chosen w-arc \mathcal{K}_w with some probability p_w . The probability p_w is the same for all points:

$$p_w = rac{U_w}{\# PG(2,q)} = rac{U_w}{q^2 + q + 1}.$$

the **proportion** of uncovered points = the **probability** that a point is uncovered

illustrations of the effectiveness of new bounds

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

One step of a greedy algorithm

the number of new covered points on the (w + 1)-th step

 A_i - point of PG(2, q). $\#PG(2, q) = q^2 + q + 1$ arc $\mathcal{K}_{w} = \{A_{1}, A_{2}, \dots, A_{w}\}$ point A_{w+1} will be included in the arc on the (w+1)-th step A_{w+1} defines a bundle $\mathcal{B}_w(A_{w+1})$ of w tangents to \mathcal{K}_w w(q-1)+1 points of $\mathcal{B}_w(A_{w+1})\setminus\{A_1,\ldots,A_w\}$ are candidates to be new covered points at the (w + 1)-th step $\Delta_w(A_{w+1})$ – the number of new covered points on (w + 1)-th step U_w uncovered points $\Rightarrow U_w$ distinct bundles

ション ふゆ く 山 マ チャット しょうくしゃ

the main idea for bounds

if events to be uncovered are independent, the expected value of the number new covered points among w(q-1) + 1 random points =

$$\mathsf{E} = p_w \cdot (w(q-1)+1) = \frac{U_w}{q^2+q+1}(w(q-1)+1)$$

MAIN IDEA \Rightarrow there exists an uncovered point A_{w+1} providing

$\Delta_w(A_{w+1}) \geq \mathsf{E}$

RIGOROUS PROOF \approx 58% of all the steps of the processCONJECTURErest of the steps

ション ふゆ アメリア メリア しょうくの

Theorem and Conjecture

Theorem

Let
$$U_w > rac{(q+2)(q+2-w)}{w}$$
 or $rac{q+3}{w} > U_w$

Then for any arc \mathcal{K}_w of $S_w(U_w)$, there exists an uncovered point

 A_{w+1} providing the inequality $\Delta_w(A_{w+1}) \geq \mathsf{E}$

Conjecture

Let
$$\frac{(q+2)(q+2-w)}{w} > U_w > \frac{q+3}{w}$$

Then for any arc \mathcal{K}_w of $S_w(U_w)$, there exists an uncovered point A_{w+1} providing the inequality $\Delta_w(A_{w+1}) \ge E$

Theorem and Conjecture

Theorem

Let
$$U_w > rac{(q+2)(q+2-w)}{w}$$
 or $rac{q+3}{w} > U_w$

Then for any arc \mathcal{K}_w of $S_w(U_w)$, there exists an uncovered point

 A_{w+1} providing the inequality $\Delta_w(A_{w+1}) \geq \mathsf{E}$

Conjecture

Let
$$\frac{(q+2)(q+2-w)}{w} > U_w > \frac{q+3}{w}$$

Then for any arc \mathcal{K}_w of $\mathbf{S}_w(U_w)$, there exists an uncovered point A_{w+1} providing the inequality $\Delta_w(A_{w+1}) \geq \mathbf{E}$

ション ふゆ く 山 マ チャット しょうくしゃ

tools for rigorous proof

the average value of $\Delta_w(A_{w+1})$ by all U_w uncovered points A_{w+1}

$$\Delta^{\mathsf{aver}}_w(\mathcal{K}_w) = rac{\sum\limits_{A_{w+1}} \Delta_w(A_{w+1})}{U_w} \geq 1$$

there exists $\Delta_w(A_{w+1}) \geq \Delta_w^{aver}(\mathcal{K}_w)$

Lemma

$$\Delta_w^{aver}(\mathcal{K}_w) \geq \Delta_w^{low} = \max\{1, \frac{wU_w}{q+2-w} - w + 1\}$$

where equality holds if and only if every tangent contains the same number of uncovered points.

(日) (伊) (日) (日) (日) (0) (0)

Conjecture is reasonable

1. The rigorous proof uses the equality $\Delta_w^{aver}(\mathcal{K}_w) = \Delta_w^{low}$. Formally, we have no right to take inequality $\Delta_w^{aver}(\mathcal{K}_w) > \Delta_w^{low}$. The equality is sufficient only for the 1-st 58% steps of Algorithm. The 2-nd part formally needs in conjecture. But, in this 2-nd part: the numbers of uncovered points on tangents are essentially distinct & there is many random factors affecting the process \Rightarrow the variance of the random value $\Delta_w(A_{w+1})$ increases \Rightarrow $\Delta_w(A_{w+1}) > \mathbf{E}$ exists

2. In fact: the probability that a point is uncovered > $p_w \Rightarrow$ the expected value of the number new covered points among w(q-1) + 1 random points > **E**

Introduction

RIGOROUS proof vs CONJECTURE

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

new upper bounds (under Conjecture)

Theorem

Let a constant $\xi \ge 1$. Under Conjecture,

$$t_2(2,q) \leq w+1+\xi, \quad w \text{ satisfies } \prod_{i=1}^w \left(1-rac{i}{q+3}
ight) \leq rac{\xi}{q^2+q}$$

$$t_2(2,q) < \sqrt{q}\sqrt{3\ln q} + \ln \ln q + \ln 3 + \sqrt{\frac{q}{3\ln q}} + 3.$$

 $t_2(2,q) < 1.885\sqrt{q\ln q}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

(ロ) (型) (E) (E) (E) (O)

Thank you Spasibo Mille grazie Premnogo blagodarya !'Muchas gracias Toda raba Merci beaucoup Dankeschön Dank u wel Domo arigato