Conjectural upper bounds on the smallest size of a complete arc in $P G(2, q)$ based on an analysis of step-by-step greedy algorithms

Daniele Bartoli* Alexander A. Davydov ${ }^{@}$ Giorgio Faina* Alexey A. Kreshchuk ${ }^{\circledR}$ Stefano Marcugini* Fernanda Pambianco*
© Institute for Information Transmission Problems (Kharkevich Institute),
Russian Academy of Science, Moscow, Russia

* Department of Mathematics and Informatics, Perugia University, Perugia, Italy

XIV International Workshop on Algebraic and Combinatorial Coding Theory, ACCT-2014, Svetlogorsk, Russia, September 7-13, 2014

Outline

(1) Introduction
(2) Upper bounds under some conjecture
(3) illustrations of the effectiveness of new bounds

INTRODUCTION NOTATION

$P G(2, q) \Leftrightarrow$ projective space of dimension 2 over Galois field F_{q}
n-arc \Leftrightarrow a set of n points no three of which are collinear a line meeting an arc \Leftrightarrow tangent or bisecant
bisecant \Leftrightarrow a line intersecting an arc in two points
a point A of $P G(2, q)$ is covered by an $\operatorname{arc} \Leftrightarrow$ A lies on a bisecant of the arc
complete $\operatorname{arc} \Leftrightarrow$ all points of $P G(2, q)$ are covered by bisecants of the arc
\Leftrightarrow one may not add a new point to a complete arc

INTRODUCTION NOTATION

$P G(2, q) \Leftrightarrow$ projective space of dimension 2 over Galois field F_{q}
n-arc \Leftrightarrow a set of n points no three of which are collinear a line meeting an arc \Leftrightarrow tangent or bisecant
bisecant \Leftrightarrow a line intersecting an arc in two points
a point A of $P G(2, q)$ is covered by an arc \Leftrightarrow A lies on a bisecant of the arc
complete arc \Leftrightarrow all points of $P G(2, q)$ are covered by bisecants of the arc
\Leftrightarrow one may not add a new point to a complete arc

INTRODUCTION NOTATION

$t_{2}(2, q) \Leftrightarrow$ the smallest size of a complete arc in $P G(2, q)$ HARD OPEN CLASSICAL PROBLEM: $1950 \rightarrow$ upper bound on $t_{2}(2, q)$
exact values of $t_{2}(2, q)$ are only for $q \leq 32$
$q=31,32$
D. Bartoli, G. Faina, S. Marcugini, F. Pambianco,

Journal of Geometry 2013

INTRODUCTION NOTATION

$t_{2}(2, q) \Leftrightarrow$ the smallest size of a complete arc in $P G(2, q)$ HARD OPEN CLASSICAL PROBLEM: $1950 \rightarrow$ upper bound on $t_{2}(2, q)$
exact values of $t_{2}(2, q)$ are only for $q \leq 32$
$q=31,32 \quad$ D. Bartoli, G. Faina, S. Marcugini, F. Pambianco, Journal of Geometry 2013

INTRODUCTION NOTATION

$t_{2}(2, q) \Leftrightarrow$ the smallest size of a complete arc in $P G(2, q)$ HARD OPEN CLASSICAL PROBLEM: $1950 \rightarrow$ upper bound on $t_{2}(2, q)$
exact values of $t_{2}(2, q)$ are only for $q \leq 32$
$q=31,32 \quad$ D. Bartoli, G. Faina, S. Marcugini, F. Pambianco, Journal of Geometry 2013
lower bounds $\quad t_{2}(2, q)>\sqrt{2 q}+1, \quad \forall q$
$t_{2}(2, q)>\sqrt{3 q}+\frac{1}{2}, q=p^{h}, h \leq 3$ (p^{3} O.Polverino 1999)

KNOWN UPPER BOUNDS on $t_{2}(2, q)$

theoretical $\quad t_{2}(2, q) \leq d \sqrt{q} \log ^{c} q, \quad c \leq 300$
$c, d \Leftrightarrow$ constants independent of q
probabilistic methods J.H. Kim, V. Vu Combinatorica 2003

D.Bartoli, A.A.Davydov, G.Faina, A.A.Kreshchuk, S.Marcugini, F.Pambianco
f. Geometry, Discrete Mathematics, OC2013, ACCT2014, arXiv 2005-2014

KNOWN UPPER BOUNDS on $t_{2}(2, q)$

theoretical $\quad t_{2}(2, q) \leq d \sqrt{q} \log ^{c} q, \quad c \leq 300$
$c, d \Leftrightarrow$ constants independent of q
probabilistic methods J.H. Kim, V. Vu Combinatorica 2003

computer search	$t_{2}(2, q)<\sqrt{q} \ln ^{0.7295} q$
HUGE region	$t_{2}(2, q)<1.745 \sqrt{q \ln q}$

ALL $\quad q \leq 150001 \quad$ WITHOUT GAPS
41 sporadic q 's in [150503 . . 430009]
D.Bartoli, A.A.Davydov, G.Faina, A.A.Kreshchuk, S.Marcugini, F.Pambianco
J. Geometry, Discrete Mathematics, OC2013, ACCT2014, arXiv 2005-2014

AIM and APPROACH

AIM \Rightarrow analytical bound
$t_{2}(2, q)<c \sqrt{q \ln q}$.
c - small constant

WAY \Rightarrow analysis of step-by-step greedy algorithms
A greedy algorithm is an algorithm that makes the locally optimal choice at each stage with the hope of finding a global optimum or, at least, a global "good"' solution.

AIM and APPROACH

AIM \Rightarrow analytical bound

$$
t_{2}(2, q)<c \sqrt{q \ln q} . \quad c-\text { small constant }
$$

WAY \Rightarrow analysis of step-by-step greedy algorithms
A greedy algorithm is an algorithm that makes the locally optimal choice at each stage with the hope of finding a global optimum or, at least, a global "good" solution.
"From the first day to this, sheer greed was the driving spirit of civilization" (F. Engels)

Ensemble of random w-arcs

The w-th step of Algorithm forms a w-arc W.
$U_{w} \Leftrightarrow$ the number of points not covered by W
$\mathrm{S}_{w}\left(U_{w}\right) \Leftrightarrow$ the set of all w-arcs in $P G(2, q)$ each of which does not cover exactly U_{w} points.
Starting arc of the $(w+1)$-th step $\Leftrightarrow w$-arc \mathcal{K}_{w} randomly chosen of $\mathbf{S}_{w}\left(U_{w}\right)$.
For every arc of $\mathbf{S}_{w}\left(U_{w}\right)$ the probability to be chosen $=\frac{1}{\# \mathbf{S}_{w}\left(U_{w}\right)}$. $\mathbf{S}_{w}\left(U_{w}\right) \Leftrightarrow$ an ensemble of random objects with the uniform probability distribution.

Uniform distribution of uncovered points

Lemma

Every point of $P G(2, q)$ may be considered as a random object that can be uncovered by a randomly chosen w-arc \mathcal{K}_{w} with some probability p_{w}. The probability p_{w} is the same for all points:

$$
p_{w}=\frac{U_{w}}{\# P G(2, q)}=\frac{U_{w}}{q^{2}+q+1} .
$$

the proportion of uncovered points $=$ the probability that a point is uncovered

One step of a greedy algorithm

the number of new covered points on the $(w+1)$-th step

A_{i} - point of $\operatorname{PG}(2, q) . \quad \# P G(2, q)=q^{2}+q+1$ $\operatorname{arc} \mathcal{K}_{w}=\left\{A_{1}, A_{2}, \ldots, A_{w}\right\}$ point A_{w+1} will be included in the arc on the $(w+1)$-th step A_{w+1} defines a bundle $\mathcal{B}_{w}\left(A_{w+1}\right)$ of w tangents to \mathcal{K}_{w} $w(q-1)+1$ points of $\mathcal{B}_{w}\left(A_{w+1}\right) \backslash\left\{A_{1}, \ldots, A_{w}\right\}$ are candidates to be new covered points at the $(w+1)$-th step
$\Delta_{w}\left(A_{w+1}\right)$ - the number of new covered points on $(w+1)$-th step
U_{w} uncovered points $\Rightarrow U_{w}$ distinct bundles

the main idea for bounds

if events to be uncovered are independent, the expected value of the number new covered points among $w(q-1)+1$ random points $=$

$$
\mathrm{E}=p_{w} \cdot(w(q-1)+1)=\frac{U_{w}}{q^{2}+q+1}(w(q-1)+1)
$$

MAIN IDEA \Rightarrow there exists an uncovered point A_{w+1} providing

$$
\Delta_{w}\left(A_{w+1}\right) \geq \mathrm{E}
$$

RIGOROUS PROOF
$\approx 58 \%$ of all the steps of the process CONJECTURE rest of the steps

Theorem and Conjecture

Theorem

$$
\text { Let } \quad U_{w}>\frac{(q+2)(q+2-w)}{w} \text { or } \frac{q+3}{w}>U_{w}
$$

Then for any arc \mathcal{K}_{w} of $\mathbf{S}_{w}\left(U_{w}\right)$, there exists an uncovered point A_{w+1} providing the inequality $\Delta_{w}\left(A_{w+1}\right) \geq \mathbf{E}$

Conjecture

Then for any arc \mathcal{K}_{w} of $\mathrm{S}_{w}\left(U_{w}\right)$, there exists an uncovered point A_{w+1} providing the inequality $\Delta_{w}\left(A_{w+1}\right) \geq \mathbf{E}$

Theorem and Conjecture

Theorem

$$
\text { Let } \quad U_{w}>\frac{(q+2)(q+2-w)}{w} \text { or } \frac{q+3}{w}>U_{w}
$$

Then for any arc \mathcal{K}_{w} of $\mathbf{S}_{w}\left(U_{w}\right)$, there exists an uncovered point A_{w+1} providing the inequality $\Delta_{w}\left(A_{w+1}\right) \geq \mathbf{E}$

Conjecture

$$
\text { Let } \quad \frac{(q+2)(q+2-w)}{w}>U_{w}>\frac{q+3}{w}
$$

Then for any arc \mathcal{K}_{w} of $\mathbf{S}_{w}\left(U_{w}\right)$, there exists an uncovered point A_{w+1} providing the inequality $\Delta_{w}\left(A_{w+1}\right) \geq \mathbf{E}$

tools for rigorous proof

the average value of $\Delta_{w}\left(A_{w+1}\right)$ by all U_{w} uncovered points A_{w+1}

$$
\Delta_{w}^{\text {aver }}\left(\mathcal{K}_{w}\right)=\frac{\sum_{A_{w+1}} \Delta_{w}\left(A_{w+1}\right)}{U_{w}} \geq 1
$$

there exists $\Delta_{w}\left(A_{w+1}\right) \geq \Delta_{w}^{\text {aver }}\left(\mathcal{K}_{w}\right)$

Lemma

$$
\Delta_{w}^{\text {aver }}\left(\mathcal{K}_{w}\right) \geq \Delta_{w}^{\text {low }}=\max \left\{1, \frac{w U_{w}}{q+2-w}-w+1\right\}
$$

where equality holds if and only if every tangent contains the same number of uncovered points.

Conjecture is reasonable

1. The rigorous proof uses the equality $\Delta_{w}^{\text {aver }}\left(\mathcal{K}_{w}\right)=\Delta_{w}^{\text {low }}$. Formally, we have no right to take inequality $\Delta_{w}^{\text {aver }}\left(\mathcal{K}_{w}\right)>\Delta_{w}^{\text {low }}$. The equality is sufficient only for the 1-st 58% steps of Algorithm. The 2-nd part formally needs in conjecture. But, in this 2-nd part: the numbers of uncovered points on tangents are essentially distinct \& there is many random factors affecting the process \Rightarrow the variance of the random value $\Delta_{w}\left(A_{w+1}\right)$ increases \Rightarrow $\Delta_{w}\left(A_{w+1}\right)>\mathrm{E}$ exists
2. In fact: the probability that a point is uncovered $>p_{w} \Rightarrow$ the expected value of the number new covered points among $w(q-1)+1$ random points $>\mathrm{E}$

RIGOROUS proof vs CONJECTURE

new upper bounds (under Conjecture)

Theorem

Let a constant $\xi \geq 1$. Under Conjecture,

$$
t_{2}(2, q) \leq w+1+\xi, \quad w \text { satisfies } \prod_{i=1}^{w}\left(1-\frac{i}{q+3}\right) \leq \frac{\xi}{q^{2}+q}
$$

$$
t_{2}(2, q)<\sqrt{q} \sqrt{3 \ln q+\ln \ln q+\ln 3}+\sqrt{\frac{q}{3 \ln q}}+3
$$

$$
t_{2}(2, q)<1.885 \sqrt{q \ln q}
$$

Thank you Spasibo Mille grazie
Premnogo blagodarya
!'Muchas gracias
Toda raba
Merci beaucoup
Dankeschön
Dank u wel
Domo arigato

