New iterative decoder for product codes

Kreshchuk Alexey ¹ Zyablov Victor ¹ Ryabinkin Eygene ²

¹Institute for Information Transmission Problems

²National Research Centre "Kurchatov Institute"

ALGEBRAIC AND COMBINATORIAL CODING THEORY (ACCT-XIV)

Problem solved

Iterative decoder of product codes has some simple uncorrectable error sets.

In this work we will estimate the probability of this sets appearing (and thus setting a lower bound on error rate) and design a new decoder that can correct some of these sets.

Design of Product Codes

A codeword of a product code is a matrix whose rows are codewords of the first component code and whose columns are codewords of the second component code.

Error Set

Proposed Decoder

Simulation

Iterative Decoder

- 1. Decode all column codes in-place.
- 2. Decode all row codes in-place.
- 3. If the resulting word differs from the initial for the current iteration, repeat.

Error Set

Proposed Decoder

Simulation

Uncorrectible error set

Let us consider $[8,4,5] \times [8,6,3]$ product code.

Initial errors

Inserted errors

Uncorrectible error set

- Initial errors
 - Inserted errors

Uncorrectible error set

- Initial errors
 - Inserted errors

Correctible error set

- Initial errors
 - Corrected errors

Correctible error set

- Initial errors
 - Corrected errors

Correctible error set

- Initial errors
 - Corrected errors

Criterion

- All the words that have a "rectangle" of errors, some errors outside of its columns and at most one additional error in each of its columns would be decoded incorrectly.
- One additional error in a column of the "rectangle" is not enough to cause correct decoding.
- To count each error set only once we will limit the amount of the additional errors by [d_c/2] if d_c < d_r.

$$P_{f} \geq {\binom{n_{r}}{e_{r}}} {\binom{n_{c}}{e_{c}}} p^{e_{r}e_{c}} (1-p)^{n_{r}n_{c}-e_{r}e_{c}} \times \\ \times \left(\sum_{t=0}^{e_{c}} \sum_{w=0}^{t} {\binom{n_{r}n_{c}-e_{r}n_{c}}{t-w}} {\binom{e_{r}}{w}} (n_{c}-e_{c})^{w} {\binom{p}{1-p}}^{t} - \\ - (n_{r}-e_{r}) {\binom{p}{1-p}}^{e_{c}} \right)$$

Criterion

- All the words that have a "rectangle" of errors, some errors outside of its columns and at most one additional error in each of its columns would be decoded incorrectly.
- One additional error in a column of the "rectangle" is not enough to cause correct decoding.
- To count each error set only once we will limit the amount of the additional errors by [d/2] if d_c < d_r.

$$P_{f} \geq {\binom{n_{r}}{e_{r}}} {\binom{n_{c}}{e_{c}}} p^{e_{r}e_{c}} (1-p)^{n_{r}n_{c}-e_{r}e_{c}} \times \\ \times \left(\sum_{t=0}^{e_{c}} \sum_{w=0}^{t} {\binom{n_{r}n_{c}-e_{r}n_{c}}{t-w}} {\binom{e_{r}}{w}} (n_{c}-e_{c})^{w} {\binom{p}{1-p}}^{t} - \\ - (n_{r}-e_{r}) {\binom{p}{1-p}}^{e_{c}} \right)$$

The Proposed Decoder

- After the iterative decoder stops we can try to guess where the dense error submatrix is.
- Let us insert erasures to the guessed submatrix and continue iterative decoding.
- If we guessed right, the decoder would be able to correct all the errors.

How to Guess the Error Submatrix Position?

Product Codes

⋙

How to Guess the Error Submatrix Position?

- Corrected some errors
- Inserted erasures

Simulation parameters

- A product of [32, 30, 3]₂₅₆ and [32, 28, 5]₂₅₆ Reed-Solomon codes.
- This code has length 1024, distance 15 and 840 information symbols.
- The rate is 0.82.
- The channel was a q-ary symmetric channel.
- The uncorrectible error submatrix has size 3×5 .

Simulation

Thank you for your attention!

