New iterative decoder for product codes

Kreshchuk Alexey ${ }^{1}$ Zyablov Victor ${ }^{1}$ Ryabinkin Eygene ${ }^{2}$

${ }^{1}$ Institute for Information Transmission Problems
${ }^{2}$ National Research Centre "Kurchatov Institute"

ALGEBRAIC AND COMBINATORIAL CODING THEORY (ACCT-XIV)

Problem solved

Iterative decoder of product codes has some simple uncorrectable error sets.
In this work we will estimate the probability of this sets appearing (and thus setting a lower bound on error rate) and design a new decoder that can correct some of these sets.

Design of Product Codes

A codeword of a product code is a matrix whose rows are codewords of the first component code and whose columns are codewords of the second component code.

$\left[n_{c} n_{r}, k_{c} k_{r}, d_{c} d_{r}\right]_{q}$

Iterative Decoder

1. Decode all column codes in-place.
2. Decode all row codes in-place.
3. If the resulting word differs from the initial for the current iteration, repeat.

Uncorrectible error set

Let us consider $[8,4,5] \times[8,6,3]$ product code.

\square
Initial errors
Inserted errors

Uncorrectible error set

Let us consider $[8,4,5] \times[8,6,3]$ product code.

- Initial errors

Uncorrectible error set

Let us consider $[8,4,5] \times[8,6,3]$ product code.

Initial errors
Inserted errors
-

Correctible error set

Let us consider $[8,4,5] \times[8,6,3]$ product code.

■
Initial errors
Corrected errors

Correctible error set

Let us consider $[8,4,5] \times[8,6,3]$ product code.

■
Initial errors
Corrected errors

Correctible error set

Let us consider $[8,4,5] \times[8,6,3]$ product code.

Step 1

Step 2

Initial errors
Corrected errors

Criterion

" All the words that have a "rectangle" of errors, some errors outside of its columns and at most one additional error in each of its columns would be decoded incorrectly.

- One additional error in a column of the "rectangle" is not enough to cause correct decoding.
- To count each error set only once we will limit the amount of the additional errors by $\left\lceil\frac{d_{c}}{2}\right\rceil$ if $d_{c}<d_{r}$.

Criterion

" All the words that have a "rectangle" of errors, some errors outside of its columns and at most one additional error in each of its columns would be decoded incorrectly.
" One additional error in a column of the "rectangle" is not enough to cause correct decoding.

- To count each error set only once we will limit the amount of the additional errors by $\left\lceil\frac{d_{c}}{2}\right\rceil$ if $d_{c}<d_{r}$.

$$
\begin{aligned}
P_{f} & \geq\binom{ n_{r}}{e_{r}}\binom{n_{c}}{e_{c}} p^{e_{r} e_{c}}(1-p)^{n_{r} n_{c}-e_{r} e_{c}} \times \\
& \times\left(\sum_{t=0}^{e_{c}} \sum_{w=0}^{t}\binom{n_{r} n_{c}-e_{r} n_{c}}{t-w}\binom{e_{r}}{w}\left(n_{c}-e_{c}\right)^{w}\left(\frac{p}{1-p}\right)^{t}-\right. \\
& \left.-\left(n_{r}-e_{r}\right)\left(\frac{p}{1-p}\right)^{e_{c}}\right)
\end{aligned}
$$

The Proposed Decoder

- After the iterative decoder stops we can try to guess where the dense error submatrix is.
- Let us insert erasures to the guessed submatrix and continue iterative decoding.
- If we guessed right, the decoder would be able to correct all the errors.

How to Guess the Error Submatrix Position?

		A			

No errors detected
Rejection
Corrected some errors

How to Guess the Error Submatrix Position?

No errors detected
Rejection
Corrected some errors
Inserted erasures

Simulation parameters

- A product of $[32,30,3]_{256}$ and $[32,28,5]_{256}$ Reed-Solomon codes.
- This code has length 1024 , distance 15 and 840 information symbols.
- The rate is 0.82 .
- The channel was a q-ary symmetric channel.
- The uncorrectible error submatrix has size 3×5.

Simulation

Thank you for your attention!

