Covering of F_3^n with spheres of maximal radius

Emil Kolev

The football pool problem

Find the minimum cardinality of a mixed binary/ternary code of covering radius R = 1, 2, 3 or 4.

Bounds on K(4;b;R)

t	b	R = 1	R=2	R = 3	R = 4
4	1	18	6	3	2
4	2	36	10	4	3
4	3	60-72	15 - 18	6	3
4	4	107 - 128	20 - 24	10	4
4	5	195 - 238	32 - 48	12 - 16	6
4	6	356-432	55 - 72	16-24	8-10
4	7	672 - 852	93-144	22 - 40	10 - 15
4	8	1257 - 1296	168-252	36-60	12 - 22
4	9	2370 - 2592	290-480	58 - 107	16-36
4	10	4366 - 5184	494 - 852	91-183	24-60

Bounds on K(5; b; R)

t	b	R = 1	R=2	R = 3	R = 4
5	1	45-54	12	4	3
5	2	80-96	16-21	7	3
5	3	148 - 168	24 - 36	11 - 12	4
5	4	268-324	42-64	13 - 21	7
5	5	509-624	71 - 108	18-32	8-12
5	6	936 - 1184	126 - 192	28-54	11 - 18
5	7	1791-1944	222 - 348	44-86	12 - 29
5	8	3353-3888	385-664	76 - 144	19-48
5	9	6221-7776	669 - 1224	117 - 245	30-79

INVERSE FOOTBALL POOL PROBLEM

Cover the space F_3^n with minimum number of spheres of maximal radius.

T(n) – the minimum cardinality of a ternary code of length n such that the spheres centered at the codewords of radius n cover F_3^n .

The sequence T(n) is a part of The on-line encyclopedia of integer sequences, number A086676.

Main Problems

- Find the value of T(n);
- Find all optimal coverings.

What is in this talk?

- General approach of finding exact value or bounds on T(n+1) when T(n) and all optimal coverings of F_3^n are known;
- Combinatorial proof of known computer based results for $n \leq 7$.

Known results for T(n) for $1 \le n \le 13$

n	T(n)	7	29
1	2	8	44
2	3	9	68
3	5	10	102 - 104
4	8	11	153 - 172
5	12	12	230 - 264
6	18	13	345 - 408

Let C be a covering of F_3^{n+1} .

Denote by C_i^k the set of all codewords from C having i in k-th coordinate without this coordinate.

It is clear that for $i, j \in \{0, 1, 2\}$, $i \neq j$ and for any $k, 1 \leq k \leq n+1$ the set $C_i^k \cup C_j^k$ is a covering of F_3^n .

A straightforward recursive bound on T(n) is given by

$$T(n+1) \ge \left|\frac{3}{2}T(n)\right|.$$

Proposition.

If $T(n+1) = \frac{3}{2}T(n)$ and the minimum distance of all optimal coverings of F_3^n equals t then the minimum distance of all optimal covering of F_3^{n+1} equals t+1. Denote by a_k the number of unordered pairs (u, v), $u, v \in C$ such that d(u, v) = k.

The set $\{a_1, a_2, \ldots, a_n\}$ is referred to as pair distance distribution of C.

For each $k, 1 \leq k \leq n$ consider a graph G_k with vertices the codewords of C. Two vertices u and vare connected with an edge if and only if d(u, v) = k. Call this graph induced graph of C of weight k.

Proposition.

Suppose T(n) is even and there exists a unique optimal covering of F_3^n with pair distance distribution $\{a_1, a_2, \ldots, a_n\}$. If there exists k such that $a_k \neq 0$, $a_{k-1} = 0$ and the induced graph G_k has an odd cycle then $T(n+1) > \frac{3}{2}T(n)$. Let T(n) = 2t and assume $T(n+1) = \frac{3}{2}T(n) = 3t$. It follows that $c_0 = c_1 = c_2 = t$ and the set $C_0 \cup C_1$ is the optimal covering of F_3^n .

We prove that if $u, v \in C_0 \cup C_1$ are such that d(u, v) = k then $u \in C_0, v \in C_1$ or $u \in C_1, v \in C_0$. Indeed, assume $u, v \in C_i$ for i = 0 or 1 and let

$$u = (u_2, \dots, u_{n+1}), \quad v = (v_2, \dots, v_{n+1}).$$

Without loss of generality assume $u_2 = 0$ and $v_2 = 1$. Since $C_0^2 \cup C_1^2$ is equivalent to the unique optimal covering of F_3^n , $u' = (i, u_3, \ldots, u_{n+1}), v' = (i, v_3, \ldots, v_{n+1}) \in C_0^2 \cup C_1^2$ and d(u', v') = d(u, v) - 1 = k - 1 we get a contradiction with $a_{k-1} = 0$. Hence, if two vertices u and v of G_k are connected with an edge then $u \in C_0, v \in C_1$ or $u \in C_1, v \in C_0$. This is impossible for the elements of an odd cycle in G_k , a contradiction. Therefore $T(n+1) > 3t = \frac{3}{2}T(n)$.

Proposition

It is true that:

T(2) = 3; T(3) = 5; T(4) = 8;

$$T(5) = 12;$$
 $T(6) = 18.$

and for every $n, 2 \le n \le 6$ there exists unique optimal covering of F_3^n .

The first two cases T(2) = 3 and T(3) = 5 are straightforward. The corresponding unique optimal coverings are given by

$$C_2 = \{00, 11, 22\}$$
 and $C_3 = \{000, 110, 101, 011, 222\}.$

It follows from T(3) = 5 that $T(4) \ge 8$. Let C_4 be a covering of F_3^4 with cardinality 8. Since T(3) = 5 we may assume that $c_0 = c_1 = 3$ and $c_2 = 2$. Therefore both $C_0 \cup C_2$ and $C_1 \cup C_2$ are equivalent to C_3 .

Observing the structure of C_3 we conclude that up to equivalence there are two choices for $C_2 - \{000, 222\}$ or $\{000, 011\}$. The corresponding options for C_1 are: $\{110, 101, 011\}$ and $\{110, 101, 222\}$. In the first case there are two possible choices for C_0 :

 $\{110, 101, 011\}, \{112, 121, 211\},\$

both do not result in a covering.

In the second case there are also two possible choices for C_0 : {110, 101, 222} or {122, 210, 201}. The second one gives a covering. Therefore, up to equivalence there exists a unique covering of F_3^4 :

 $\{0122, 0210, 0201, 1222, 1110, 1101, 2000, 2011\}.$

The above covering is equivalent to:

 $C_4 = \{0122, 0000, 0011, 1022, 1100, 1111, 2210, 2201\}.$

The pair distance distribution of C_4 is given by $a_1 = 0$, $a_2 = 6$, $a_3 = 16$ and $a_4 = 6$.

The unique optimal covering of F_3^6 :

1.	000000	10.	$0\ 2\ 0\ 2\ 1\ 1$
2.	$2\ 1\ 2\ 1\ 0\ 0$	11.	$0\ 1\ 2\ 0\ 2\ 1$
3.	$1\ 2\ 2\ 0\ 1\ 0$	12.	$2 \ 0 \ 0 \ 1 \ 2 \ 1$
4.	$2 \ 0 \ 1 \ 2 \ 1 \ 0$	13.	$1\ 2\ 0\ 1\ 0\ 2$
5.	$0\ 2\ 1\ 1\ 2\ 0$	14.	$0\ 1\ 1\ 2\ 0\ 2$
6.	$1\ 1\ 0\ 2\ 2\ 0$	15.	$2 \ 1 \ 0 \ 0 \ 1 \ 2$
7.	$2\ 2\ 1\ 0\ 0\ 1$	16.	$0 \ 0 \ 2 \ 1 \ 1 \ 2$
8.	$1 \ 0 \ 2 \ 2 \ 0 \ 1$	17.	$1 \ 0 \ 1 \ 0 \ 2 \ 2$
9.	$1\ 1\ 1\ 1\ 1\ 1\ 1$	18.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

The pair distance distribution of C_6 is given by $a_4 = 135, a_6 = 18.$

Proposition

It is true that T(7) = 29.

Suppose $T(7) \leq 28$ and consider a covering C of F_3^7 with 28 elements. Since T(6) = 18 we have that for any $t = 1, 2, \ldots, 7$ and for any two $i, j \in \{0, 1, 2\}$ it is true that $c_i^t + c_j^t \geq 18$. It follows from $c_0^t + c_1^t + c_2^t = 28$ that for any $t = 1, 2, \ldots, 7$ there exist $i, j \in \{0, 1, 2\}$ such that $c_i^t + c_j^t = 18$. Hence, $C_i^t \cup C_j^t \equiv C_6$. Without loss of generality when t = 1 assume i = 0, j = 1. Consider three codewords

$$u = (i, u_2, u_3, \dots, u_7)$$

 $v = (i, v_2, v_3, \dots, v_7)$
 $u = (i, w_2, w_3, \dots, w_7)$

for i = 0 or 1. Since $C_0 \cup C_1 \equiv C_6$ we have that all pairwise distances between u, v, w equal 4 or 6. Assume that for some t we have $\{u_t, v_t, w_t\} = \{0, 1, 2\}$. Without loss of generality t = 2. All pairwise distances between the vectors $(i, u_3, \ldots, u_7), (i, v_3, \ldots, v_7),$ (i, w_3, \ldots, w_7) equal 3 or 5, a contradiction to the fact that two of them are elements of C_6 . Without loss of generality let $000000, 111111 \in C_0$. Since all elements of C_6 contain at least one 2 it follows from the above observations that $C_1 = C_6 \setminus C_0$. It is obvious that there exist a 0,1,2 coordinate in C_1 , a contradiction.

Therefore $T(7) \ge 29$ and since there exists a covering of F_3^7 of cardinality 29, we conclude that T(7) = 29.

Suppose we know T(n) and all optimal coverings of F_3^n . Using the above approach we are able:

- for any T(n) (even or odd) to determine whether $T(n+1) = \left\lceil \frac{3}{2}T(n) \right\rceil$ and if so, to find all optimal coverings;
- for T(n) even to determine whether $T(n + 1) = \left\lfloor \frac{3}{2}T(n) \right\rfloor + 1$ and if so, to find all optimal coverings.

Known results for T(n) for $1 \le n \le 13$

n	T(n)	7	29
1	2	8	44
2	3	9	68
3	5	10	102 - 104
4	8	11	153 - 172
5	12	12	230 - 264
6	18	13	345 - 408