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The football pool problem

Find the minimum cardinality of a mixed bina-
ry/ternary code of covering radius R = 1, 2, 3 or 4.



Bounds on K(4; b;R)

t b R = 1 R = 2 R = 3 R = 4

4 1 18 6 3 2
4 2 36 10 4 3
4 3 60-72 15-18 6 3
4 4 107-128 20-24 10 4
4 5 195-238 32-48 12-16 6
4 6 356-432 55-72 16-24 8-10
4 7 672-852 93-144 22-40 10-15
4 8 1257-1296 168-252 36-60 12-22
4 9 2370-2592 290-480 58-107 16-36
4 10 4366-5184 494-852 91-183 24-60



Bounds on K(5; b;R)

t b R = 1 R = 2 R = 3 R = 4

5 1 45-54 12 4 3
5 2 80-96 16-21 7 3
5 3 148-168 24-36 11-12 4
5 4 268-324 42-64 13-21 7
5 5 509-624 71-108 18-32 8-12
5 6 936-1184 126-192 28-54 11-18
5 7 1791-1944 222-348 44-86 12-29
5 8 3353-3888 385-664 76-144 19-48
5 9 6221-7776 669-1224 117-245 30-79



INVERSE FOOTBALL POOL PROBLEM

Cover the space F n
3 with minimum number of spheres

of maximal radius.

T (n) – the minimum cardinality of a ternary code
of length n such that the spheres centered at the
codewords of radius n cover F n

3 .

The sequence T (n) is a part of The on-line encyclo-
pedia of integer sequences, number A086676.



Main Problems

• Find the value of T (n);

• Find all optimal coverings.



What is in this talk?

• General approach of finding exact value or bounds
on T (n+1) when T (n) and all optimal coverings of
F n
3 are known;

• Combinatorial proof of known computer based re-
sults for n ≤ 7.



Known results for T (n) for 1 ≤ n ≤ 13

n T (n)

1 2
2 3
3 5
4 8
5 12
6 18

7 29
8 44
9 68
10 102–104
11 153–172
12 230–264
13 345–408



Let C be a covering of F n+1
3 .

Denote by Ck
i the set of all codewords from C hav-

ing i in k-th coordinate without this coordinate.

It is clear that for i, j ∈ {0, 1, 2}, i ̸= j and for any
k, 1 ≤ k ≤ n + 1 the set Ck

i ∪ Ck
j is a covering of F n

3 .

A straightforward recursive bound on T (n) is given
by

T (n + 1) ≥

3

2
T (n)

 .



Proposition.

If T (n+1) = 3
2T (n) and the minimum distance of all

optimal coverings of F n
3 equals t then the minimum

distance of all optimal covering of F n+1
3 equals t + 1.



Denote by ak the number of unordered pairs (u, v),
u, v ∈ C such that d(u, v) = k.

The set {a1, a2, . . . , an} is referred to as pair distance
distribution of C.

For each k, 1 ≤ k ≤ n consider a graph Gk with
vertices the codewords of C. Two vertices u and v

are connected with an edge if and only if d(u, v) = k.
Call this graph induced graph of C of weight k.



Proposition.

Suppose T (n) is even and there exists a unique
optimal covering of F n

3 with pair distance distribu-
tion {a1, a2, . . . , an}. If there exists k such that ak ̸= 0,
ak−1 = 0 and the induced graph Gk has an odd cycle
then T (n + 1) > 3

2T (n).



Let T (n) = 2t and assume T (n + 1) = 3
2T (n) = 3t. It

follows that c0 = c1 = c2 = t and the set C0 ∪ C1 is the
optimal covering of F n

3 .
We prove that if u, v ∈ C0∪C1 are such that d(u, v) =

k then u ∈ C0, v ∈ C1 or u ∈ C1, v ∈ C0.
Indeed, assume u, v ∈ Ci for i = 0 or 1 and let

u = (u2, . . . , un+1), v = (v2, . . . , vn+1).

Without loss of generality assume u2 = 0 and v2 = 1.
Since C2

0 ∪C2
1 is equivalent to the unique optimal cov-

ering of F n
3 , u′ = (i, u3, . . . , un+1), v

′ = (i, v3, . . . , vn+1) ∈
C2

0 ∪ C2
1 and d(u′, v′) = d(u, v) − 1 = k − 1 we get a

contradiction with ak−1 = 0.



Hence, if two vertices u and v of Gk are connected
with an edge then u ∈ C0, v ∈ C1 or u ∈ C1, v ∈ C0.
This is impossible for the elements of an odd cycle in
Gk, a contradiction. Therefore T (n + 1) > 3t = 3

2T (n).



Proposition

It is true that:

T (2) = 3; T (3) = 5; T (4) = 8;

T (5) = 12; T (6) = 18.

and for every n, 2 ≤ n ≤ 6 there exists unique optimal
covering of F n

3 .



The first two cases T (2) = 3 and T (3) = 5 are straight-
forward. The corresponding unique optimal coverings
are given by

C2 = {00, 11, 22} and C3 = {000, 110, 101, 011, 222}.



It follows from T (3) = 5 that T (4) ≥ 8. Let C4 be a
covering of F 4

3 with cardinality 8. Since T (3) = 5 we
may assume that c0 = c1 = 3 and c2 = 2. Therefore
both C0 ∪ C2 and C1 ∪ C2 are equivalent to C3.



Observing the structure of C3 we conclude that up
to equivalence there are two choices for C2 – {000, 222}
or {000, 011}. The corresponding options for C1 are:
{110, 101, 011} and {110, 101, 222}. In the first case there
are two possible choices for C0:

{110, 101, 011}, {112, 121, 211},

both do not result in a covering.



In the second case there are also two possible choic-
es for C0: {110, 101, 222} or {122, 210, 201}. The second
one gives a covering. Therefore, up to equivalence
there exists a unique covering of F 4

3 :

{0122, 0210, 0201, 1222, 1110, 1101, 2000, 2011}.



The above covering is equivalent to:

C4 = {0122, 0000, 0011, 1022, 1100, 1111, 2210, 2201}.

The pair distance distribution of C4 is given by a1 =

0, a2 = 6, a3 = 16 and a4 = 6.



The unique optimal covering of F 6
3 :

1. 0 0 0 0 0 0
2. 2 1 2 1 0 0
3. 1 2 2 0 1 0
4. 2 0 1 2 1 0
5. 0 2 1 1 2 0
6. 1 1 0 2 2 0
7. 2 2 1 0 0 1
8. 1 0 2 2 0 1
9. 1 1 1 1 1 1

10. 0 2 0 2 1 1
11. 0 1 2 0 2 1
12. 2 0 0 1 2 1
13. 1 2 0 1 0 2
14. 0 1 1 2 0 2
15. 2 1 0 0 1 2
16. 0 0 2 1 1 2
17. 1 0 1 0 2 2
18. 2 2 2 2 2 2

The pair distance distribution of C6 is given by
a4 = 135, a6 = 18.



Proposition

It is true that T (7) = 29.



Suppose T (7) ≤ 28 and consider a covering C of F 7
3

with 28 elements. Since T (6) = 18 we have that for
any t = 1, 2, . . . , 7 and for any two i, j ∈ {0, 1, 2} it is
true that cti + ctj ≥ 18. It follows from ct0 + ct1 + ct2 = 28

that for any t = 1, 2, . . . , 7 there exist i, j ∈ {0, 1, 2}
such that cti + ctj = 18. Hence, Ct

i ∪ Ct
j ≡ C6.



Without loss of generality when t = 1 assume
i = 0, j = 1. Consider three codewords

u = (i, u2, u3, . . . , u7)

v = (i, v2, v3, . . . , v7)

u = (i, w2, w3, . . . , w7)

for i = 0 or 1. Since C0 ∪ C1 ≡ C6 we have that all
pairwise distances between u, v, w equal 4 or 6. As-
sume that for some t we have {ut, vt, wt} = {0, 1, 2}.
Without loss of generality t = 2. All pairwise dis-
tances between the vectors (i, u3, . . . , u7), (i, v3, . . . , v7),
(i, w3, . . . , w7) equal 3 or 5, a contradiction to the fact
that two of them are elements of C6.



Without loss of generality let 000000, 111111 ∈ C0.
Since all elements of C6 contain at least one 2 it fol-
lows from the above observations that C1 = C6\C0. It
is obvious that there exist a 0,1,2 coordinate in C1, a
contradiction.

Therefore T (7) ≥ 29 and since there exists a cover-
ing of F 7

3 of cardinality 29, we conclude that T (7) = 29.



Suppose we know T (n) and all optimal coverings of
F n
3 . Using the above approach we are able:

• for any T (n) (even or odd) to determine whether
T (n + 1) =

⌈
3
2T (n)

⌉
and if so, to find all optimal

coverings;

• for T (n) even to determine whether T (n + 1) =⌈
3
2T (n)

⌉
+ 1 and if so, to find all optimal coverings.



Known results for T (n) for 1 ≤ n ≤ 13

n T (n)

1 2
2 3
3 5
4 8
5 12
6 18

7 29
8 44
9 68
10 102–104
11 153–172
12 230–264
13 345–408


