Covering of F_{3}^{n} with spheres of maximal radius

Emil Kolev

The football pool problem

Find the minimum cardinality of a mixed binary/ternary code of covering radius $R=1,2,3$ or 4 .

Bounds on $K(4 ; b ; R)$

t	b	$R=1$	$R=2$	$R=3$	$R=4$
4	1	18	6	3	2
4	2	36	10	4	3
4	3	$60-72$	$15-18$	6	3
4	4	$107-128$	$20-24$	10	4
4	5	$195-238$	$32-48$	$12-16$	6
4	6	$356-432$	$55-72$	$16-24$	$8-10$
4	7	$672-852$	$93-144$	$22-40$	$10-15$
4	8	$1257-1296$	$168-252$	$36-60$	$12-22$
4	9	$2370-2592$	$290-480$	$58-107$	$16-36$
4	10	$4366-5184$	$494-852$	$91-183$	$24-60$

Bounds on $K(5 ; b ; R)$

t	b	$R=1$	$R=2$	$R=3$	$R=4$
5	1	$45-54$	12	4	3
5	2	$80-96$	$16-21$	7	3
5	3	$148-168$	$24-36$	$11-12$	4
5	4	$268-324$	$42-64$	$13-21$	7
5	5	$509-624$	$71-108$	$18-32$	$8-12$
5	6	$936-1184$	$126-192$	$28-54$	$11-18$
5	7	$1791-1944$	$222-348$	$44-86$	$12-29$
5	8	$3353-3888$	$385-664$	$76-144$	$19-48$
5	9	$6221-7776$	$669-1224$	$117-245$	$30-79$

INVERSE FOOTBALL POOL PROBLEM

Cover the space F_{3}^{n} with minimum number of spheres of maximal radius.
$T(n)$ - the minimum cardinality of a ternary code of length n such that the spheres centered at the codewords of radius n cover F_{3}^{n}.

The sequence $T(n)$ is a part of The on-line encyclopedia of integer sequences, number A086676.

Main Problems

- Find the value of $T(n)$;
- Find all optimal coverings.

What is in this talk?

- General approach of finding exact value or bounds on $T(n+1)$ when $T(n)$ and all optimal coverings of F_{3}^{n} are known;
- Combinatorial proof of known computer based results for $n \leq 7$.

Known results for $T(n)$ for $1 \leq n \leq 13$

n	$T(n)$
1	2
2	3
3	5
4	8
5	12
6	18

7	29
8	44
9	68
10	$102-104$
11	$153-172$
12	$230-264$
13	$345-408$

Let C be a covering of F_{3}^{n+1}.
Denote by C_{i}^{k} the set of all codewords from C having i in k-th coordinate without this coordinate.

It is clear that for $i, j \in\{0,1,2\}, i \neq j$ and for any $k, 1 \leq k \leq n+1$ the set $C_{i}^{k} \cup C_{j}^{k}$ is a covering of F_{3}^{n}.

A straightforward recursive bound on $T(n)$ is given by

$$
T(n+1) \geq\left\lceil\frac{3}{2} T(n)\right\rceil
$$

Proposition.

If $T(n+1)=\frac{3}{2} T(n)$ and the minimum distance of all optimal coverings of F_{3}^{n} equals t then the minimum distance of all optimal covering of F_{3}^{n+1} equals $t+1$.

Denote by a_{k} the number of unordered pairs (u, v), $u, v \in C$ such that $d(u, v)=k$.

The set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is referred to as pair distance distribution of C.

For each $k, 1 \leq k \leq n$ consider a graph G_{k} with vertices the codewords of C. Two vertices u and v are connected with an edge if and only if $d(u, v)=k$.

Call this graph induced graph of C of weight k.

Proposition.

Suppose $T(n)$ is even and there exists a unique optimal covering of F_{3}^{n} with pair distance distribution $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. If there exists k such that $a_{k} \neq 0$, $a_{k-1}=0$ and the induced graph G_{k} has an odd cycle then $T(n+1)>\frac{3}{2} T(n)$.

Let $T(n)=2 t$ and assume $T(n+1)=\frac{3}{2} T(n)=3 t$. It follows that $c_{0}=c_{1}=c_{2}=t$ and the set $C_{0} \cup C_{1}$ is the optimal covering of F_{3}^{n}.

We prove that if $u, v \in C_{0} \cup C_{1}$ are such that $d(u, v)=$ k then $u \in C_{0}, v \in C_{1}$ or $u \in C_{1}, v \in C_{0}$.
Indeed, assume $u, v \in C_{i}$ for $i=0$ or 1 and let

$$
u=\left(u_{2}, \ldots, u_{n+1}\right), \quad v=\left(v_{2}, \ldots, v_{n+1}\right) .
$$

Without loss of generality assume $u_{2}=0$ and $v_{2}=1$. Since $C_{0}^{2} \cup C_{1}^{2}$ is equivalent to the unique optimal covering of $F_{3}^{n}, u^{\prime}=\left(i, u_{3}, \ldots, u_{n+1}\right), v^{\prime}=\left(i, v_{3}, \ldots, v_{n+1}\right) \in$ $C_{0}^{2} \cup C_{1}^{2}$ and $d\left(u^{\prime}, v^{\prime}\right)=d(u, v)-1=k-1$ we get a contradiction with $a_{k-1}=0$.

Hence, if two vertices u and v of G_{k} are connected with an edge then $u \in C_{0}, v \in C_{1}$ or $u \in C_{1}, v \in C_{0}$. This is impossible for the elements of an odd cycle in G_{k}, a contradiction. Therefore $T(n+1)>3 t=\frac{3}{2} T(n)$.

Proposition

It is true that:

$$
\begin{array}{ll}
T(2)=3 ; & T(3)=5 ; \quad T(4)=8 \\
T(5)=12 ; & T(6)=18
\end{array}
$$

and for every $n, 2 \leq n \leq 6$ there exists unique optimal covering of F_{3}^{n}.

The first two cases $T(2)=3$ and $T(3)=5$ are straightforward. The corresponding unique optimal coverings are given by

$$
\mathcal{C}_{2}=\{00,11,22\} \text { and } \mathcal{C}_{3}=\{000,110,101,011,222\}
$$

It follows from $T(3)=5$ that $T(4) \geq 8$. Let \mathcal{C}_{4} be a covering of F_{3}^{4} with cardinality 8 . Since $T(3)=5$ we may assume that $c_{0}=c_{1}=3$ and $c_{2}=2$. Therefore both $C_{0} \cup C_{2}$ and $C_{1} \cup C_{2}$ are equivalent to \mathcal{C}_{3}.

Observing the structure of \mathcal{C}_{3} we conclude that up to equivalence there are two choices for $C_{2}-\{000,222\}$ or $\{000,011\}$. The corresponding options for C_{1} are: $\{110,101,011\}$ and $\{110,101,222\}$. In the first case there are two possible choices for C_{0} :

$$
\{110,101,011\},\{112,121,211\}
$$

both do not result in a covering.

In the second case there are also two possible choices for $C_{0}:\{110,101,222\}$ or $\{122,210,201\}$. The second one gives a covering. Therefore, up to equivalence there exists a unique covering of F_{3}^{4} :

$$
\{0122,0210,0201,1222,1110,1101,2000,2011\}
$$

The above covering is equivalent to:

$$
\mathcal{C}_{4}=\{0122,0000,0011,1022,1100,1111,2210,2201\} .
$$

The pair distance distribution of \mathcal{C}_{4} is given by $a_{1}=$ $0, a_{2}=6, a_{3}=16$ and $a_{4}=6$.

The unique optimal covering of F_{3}^{6} :

| 1. | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | 2 | 1 | 2 | 1 | 0 | 0 |
| 3. | 1 | 2 | 2 | 0 | 1 | 0 |
| 4. | 2 | 0 | 1 | 2 | 1 | 0 |
| 5. | 0 | 2 | 1 | 1 | 2 | 0 |
| 6. | 1 | 1 | 0 | 2 | 2 | 0 |
| 7. | 2 | 2 | 1 | 0 | 0 | 1 |
| 8. | 1 | 0 | 2 | 2 | 0 | 1 |
| 9. | 1 | 1 | 1 | 1 | 1 | 1 |

| 10. | 0 | 2 | 0 | 2 | 1 | 1 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 11. | 0 | 1 | 2 | 0 | 2 | 1 |
| 12. | 2 | 0 | 0 | 1 | 2 | 1 |
| 13. | 1 | 2 | 0 | 1 | 0 | 2 |
| 14. | 0 | 1 | 1 | 2 | 0 | 2 |
| 15. | 2 | 1 | 0 | 0 | 1 | 2 |
| 16. | 0 | 0 | 2 | 1 | 1 | 2 |
| 17. | 1 | 0 | 1 | 0 | 2 | 2 |
| 18. | 2 | 2 | 2 | 2 | 2 | 2 |

The pair distance distribution of \mathcal{C}_{6} is given by

$$
a_{4}=135, a_{6}=18 .
$$

Proposition

It is true that $T(7)=29$.

Suppose $T(7) \leq 28$ and consider a covering C of F_{3}^{7} with 28 elements. Since $T(6)=18$ we have that for any $t=1,2, \ldots, 7$ and for any two $i, j \in\{0,1,2\}$ it is true that $c_{i}^{t}+c_{j}^{t} \geq 18$. It follows from $c_{0}^{t}+c_{1}^{t}+c_{2}^{t}=28$ that for any $t=1,2, \ldots, 7$ there exist $i, j \in\{0,1,2\}$ such that $c_{i}^{t}+c_{j}^{t}=18$. Hence, $C_{i}^{t} \cup C_{j}^{t} \equiv \mathcal{C}_{6}$.

Without loss of generality when $t=1$ assume $i=0, j=1$. Consider three codewords

$$
\left.\begin{array}{rl}
u & =\left(i, \quad u_{2},\right. \\
u_{3}, & \ldots, \\
v & =(i, \\
u_{7}
\end{array}\right)
$$

for $i=0$ or 1 . Since $C_{0} \cup C_{1} \equiv \mathcal{C}_{6}$ we have that all pairwise distances between u, v, w equal 4 or 6 . Assume that for some t we have $\left\{u_{t}, v_{t}, w_{t}\right\}=\{0,1,2\}$. Without loss of generality $t=2$. All pairwise distances between the vectors $\left(i, u_{3}, \ldots, u_{7}\right),\left(i, v_{3}, \ldots, v_{7}\right)$, $\left(i, w_{3}, \ldots, w_{7}\right)$ equal 3 or 5 , a contradiction to the fact that two of them are elements of \mathcal{C}_{6}.

Without loss of generality let $000000,111111 \in C_{0}$. Since all elements of C_{6} contain at least one 2 it follows from the above observations that $C_{1}=\mathcal{C}_{6} \backslash C_{0}$. It is obvious that there exist a $0,1,2$ coordinate in C_{1}, a contradiction.

Therefore $T(7) \geq 29$ and since there exists a covering of F_{3}^{7} of cardinality 29 , we conclude that $T(7)=29$.

Suppose we know $T(n)$ and all optimal coverings of F_{3}^{n}. Using the above approach we are able:

- for any $T(n)$ (even or odd) to determine whether $T(n+1)=\left[\frac{3}{2} T(n)\right\rceil$ and if so, to find all optimal coverings;
- for $T(n)$ even to determine whether $T(n+1)=$ $\left\lceil\frac{3}{2} T(n)\right\rceil+1$ and if so, to find all optimal coverings.

Known results for $T(n)$ for $1 \leq n \leq 13$

n	$T(n)$
1	2
2	3
3	5
4	8
5	12
6	18

7	29
8	44
9	68
10	$102-104$
11	$153-172$
12	$230-264$
13	$345-408$

