Low density quasi-perfect linear codes, small complete caps and symmetric surfaces

Fernanda Pambianco

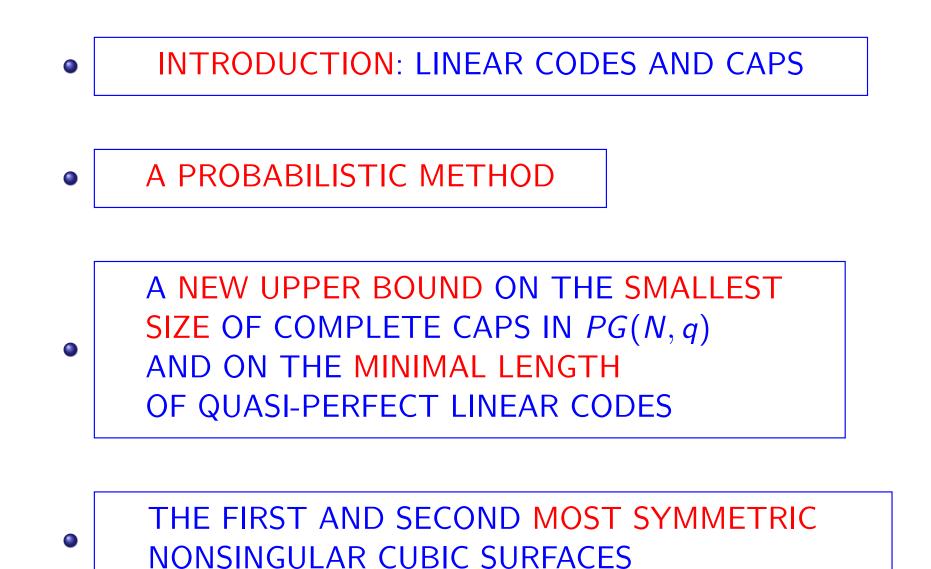
University of Perugia (Italy)

co-authors: D. Bartoli, H. Kaneta, S. Marcugini

ACCT 2014

Svetlogorsk (Kaliningrad region), Russia, September 7-13

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆□◆



Linear Codes

\mathbb{F}_q : Galois field of q elements

Definition

$$C$$
: linear code $[n, k, d]_q$

$$\mathcal{C} \subset \mathbb{F}_q^n$$
 dim $(\mathcal{C}) = k$ $d = \min_{x \in \mathcal{C} \setminus \{0\}} w(x)$

 $G_{k \times n}$: generator matrix of C

Definition

$$\mathcal{C}^{\perp} = \{ y \in \mathbb{F}_q^n | y \cdot x = 0 \quad \forall x \in \mathcal{C} \}$$

$$\mathcal{C}^{\perp}$$
: linear code $[n, n - k, d']_q$

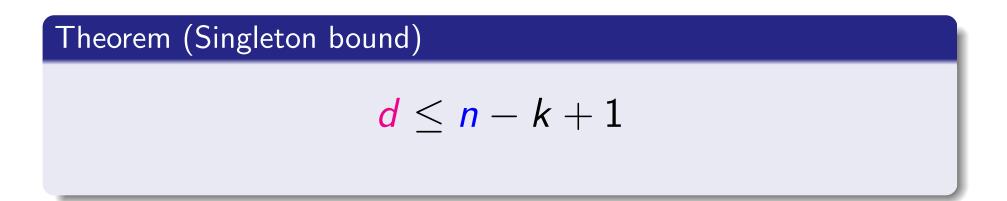
 $G_{(n-k)\times n}$: generator matrix of \mathcal{C}^{\perp} and parity check matrix of \mathcal{C}

Coding Theory and Projective Geometry: Connection

\mathcal{C} : $[n, k, d]_q$ $d \ge 3$ linear code

 $[n, k, d]_q$ linear code

$$\left\lfloor \frac{d-1}{2} \right\rfloor$$
-error correcting



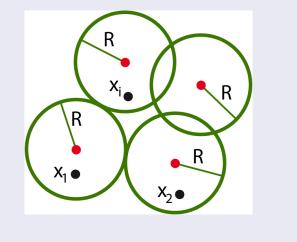
Definition (MDS code)

$$d = n - k + 1 \iff MDS$$
 code

Definition

Covering code with covering radius R

 $[n, k, d]_q R \text{ linear code } C$ R covering radius $\forall x \in \mathbb{F}_q^n \Longrightarrow d(x, C) \leq R$



Definition (Perfect code)

$$R(\mathcal{C}) = \lfloor \frac{d-1}{2} \rfloor \iff \mathcal{C} \text{ is perfect}$$

Covering Density

Definition (Covering Density)

$$\mu(\mathcal{C}) = \frac{1}{q^{n-k}} \sum_{i=0}^{R(\mathcal{C})} (q-1)^i \binom{n}{i}.$$

$$\mu(\mathcal{C}) \ge 1$$
$$\mu(\mathcal{C}) = 1 \iff \mathcal{C} \text{ is perfect}$$

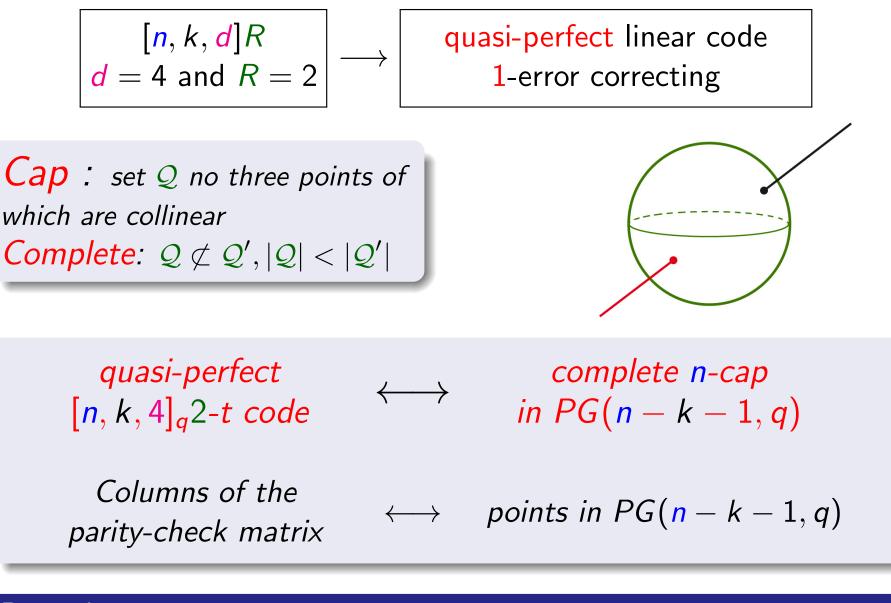
Remark

Codes with the same codimension and covering radius

shortest ones \implies *best covering density*

Hamming codes and the Golay code are the only nontrivial examples of perfect codes $\downarrow\downarrow$ We are interested in quasi-perfect codes, i.e $R(\mathcal{C}) = \lfloor \frac{d-1}{2} \rfloor + 1$.

Coding Theory and Caps



Remark

best covering density \iff *smallest complete caps*

Smallest Complete Caps

Remark

best covering density \iff *smallest complete caps*

Definition

 $t_2(N,q)$: Minimum size of complete caps in PG(N,q).

Trivial Lower Bound

$$t_2(N,q) \geq \sqrt{2}q^{\frac{N-1}{2}}$$

 $N=3\longrightarrow t_2(3,q)$ known only for $q\leq 7$

$q \leq 5$	1998 G.Faina, S.Marcugini, A.Milani, F.P., Ars Combin.
q = 7	2006 J. Bierbrauer, S.Marcugini, F.P., Discrete Math.

Known constructions of infinite families of small complete caps in PG(N, q)

Trivial Lower Bound

$$t_2(N,q) \geq \sqrt{2}q^{\frac{N-1}{2}}$$

q even and N odd
$$\longrightarrow 3(q^{\frac{N-1}{2}} + \ldots + q) + 2$$

- Gabidulin, Davydov, Tombak, "Linear codes with covering radius 2 and other new covering codes", *IEEE Trans. Inform. Theory*, 1991
- Pambianco, Storme, "Small complete caps in spaces of even characteristic", *J. Combin. Theory Ser. A*, 1996
- Giulietti, "Small complete caps in PG(N, q), q even", J. Combin. Des., 2007
- Davydov, Giulietti, Marcugini, Pambianco, "New inductive constructions of complete caps in PG(N, q), q even", J. Combin. Des., 2010

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Known constructions of infinite families of small complete caps in PG(N, q)

Trivial Lower Bound

$t_2(N,q) \geq \sqrt{2}q^{\frac{N-1}{2}}$

 $N \text{ even } \longrightarrow cq^{N/2}$

- Pambianco, Storme, "Small complete caps in spaces of even characteristic", J. Combin. Theory Ser. A, 1996
- Davydov, Östergård, "Recursive constructions of complete caps", J.
 Statist. Planning Infer., 2001
- Giulietti, "Small complete caps in PG(N, q), q even", J. Combin. Des.,
 2007
- Giulietti, "Small complete caps in Galois affine spaces", *J. Algebraic Combin.*, 2007
- Giulietti, Pasticci, "Quasi-perfect linear codes with minimum distance 4", IEEE Trans. Inform. Theory, 2007
- Davydov, Giulietti, Marcugini, Pambianco, "New inductive constructions of complete caps in PG(N, q), q even", J. Combin. Des., 2010

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Known constructions of infinite families of small complete caps in PG(N, q)

Trivial Lower Bound

$$t_2(N,q) \geq \sqrt{2}q^{\frac{N-1}{2}}$$

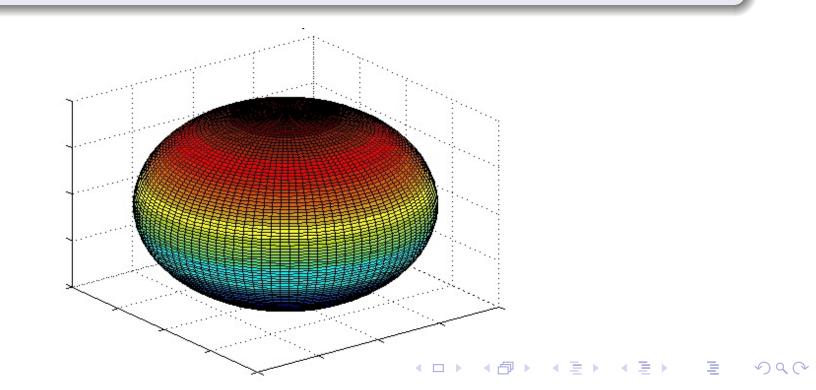
$$N \equiv 0 \pmod{4}$$
 and $q \operatorname{odd} \longrightarrow q^{(N/2-1/8)}$

- Giulietti, "Small complete caps in Galois affine spaces", *J. Algebraic Combin.*, 2007
- Anbar, Bartoli, Giulietti, Platoni, "Small Complete Caps from Singular Cubics", J. Combin. Des., 2013
- Anbar, Bartoli, Giulietti, Platoni, "Small Complete Caps from Singular Cubics II", J. Algebraic Combin., 2014

Main result

Theorem

PG(N,q) $\exists c > 0 and M > 0:$ $q \ge M \Longrightarrow \exists a \text{ complete cap of size}$ $O\left(q^{\frac{N-1}{2}}\log^{c}q\right).$



Theorem

$$\mathcal{C} : [n, n - (N + 1), 4]_q 2 \quad \text{linear code}$$
$$\exists c > 0 \text{ and } M > 0:$$
$$q \ge M \Longrightarrow \qquad n = O\left(q^{\frac{N-1}{2}}\log^c q\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ りへぐ

• Graph Theory

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ 圖 - 釣�?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ∽੧<

- Graph Theory
- Blocking sets

- Graph Theory
- Blocking sets
- Saturating sets

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- Graph Theory
- Blocking sets
- Saturating sets

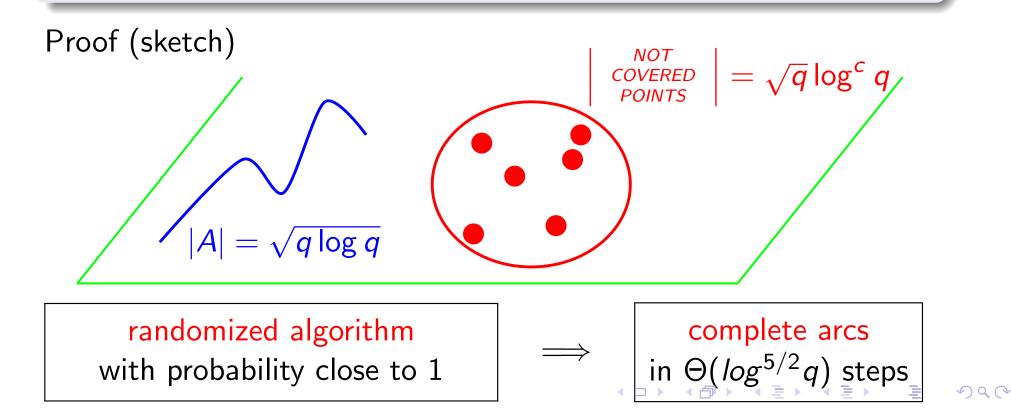
Complete arcs in projective planes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

The probabilistic construction of small complete arcs of J.H. Kim and W.H. Vu, *Combinatorica*, 2003

Theorem

 $\begin{array}{ll} PG(2,q) & \exists \ c > 0 \ and \ M > 0: \\ q \ge M \Longrightarrow \exists \ a \ complete \ arc \ of \ size \\ & O\left(q^{\frac{1}{2}} \log^{c} q\right). \end{array}$



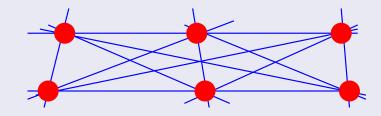
Point-by-point construction

- Select a new element among those which do not cause any conflict
 - Random
 - Greedy
 - According a certain ordering
- Discard all elements that cause any conflict

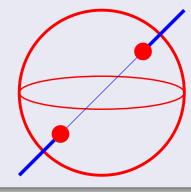
◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Example

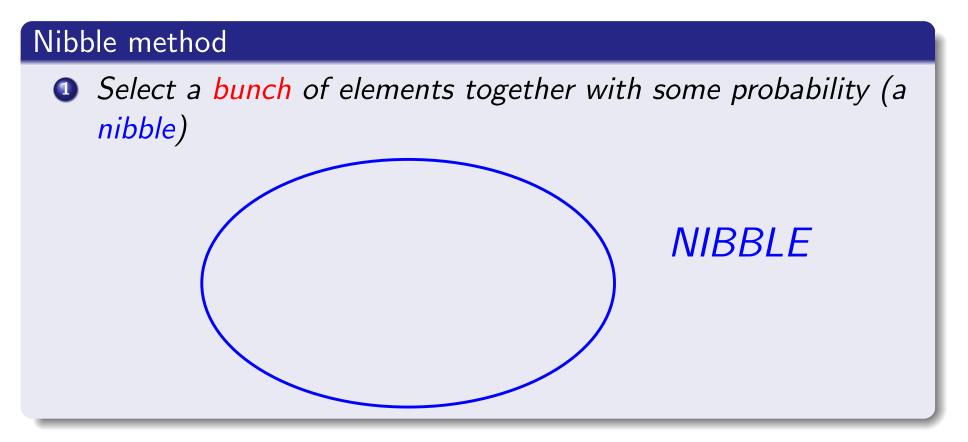
- At the beginning the cap being constructed is empty
- **2** Select one non-discarded point according to the criterion
- 3 At each step, discard all points contained in any secant of already selected points



• At the end the set of all selected points is a complete cap



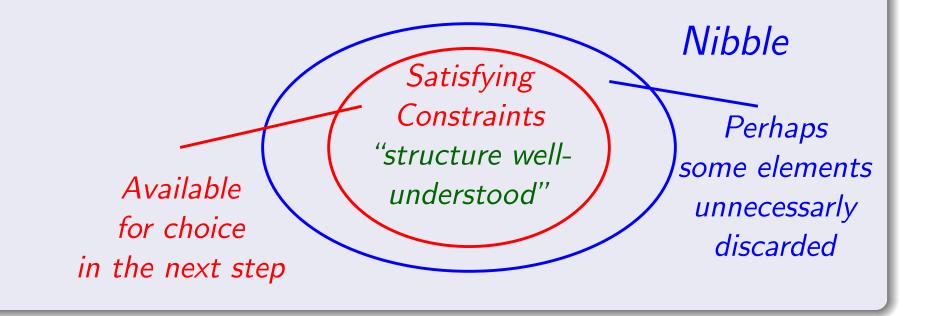
Ajtai, Komlós, Szemerédi, "A dense infinite Sidon sequence", *Eur. J. Comb.*, 1981 Rödl, "On a packing and covering problem", European J. Comb., 1985

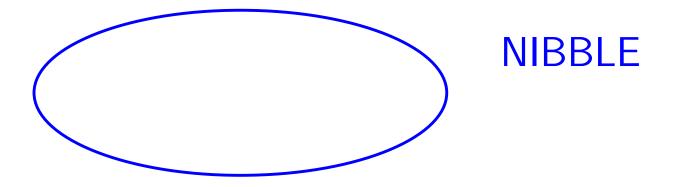


Ajtai, Komlós, Szemerédi, "A dense infinite Sidon sequence", *Eur. J. Comb.*, 1981 Rödl, "On a packing and covering problem", European J. Comb., 1985

Nibble method

- Select a bunch of elements together with some probability (a nibble)
- **2** Select a subset of the nibble satisfying some constraints





"Convenient Size?"

- too many elements would be unnecessarily discarded
- hard to predict the structure of its elements

- <u>YES</u> SMALL ENOUGH
- no conflict occurs for most chosen elements
- only few elements would be unnecessarily discarded

- E

 \mathcal{A}

▲□▶ ▲□▶ ▲□▶ ▲

PG(N,q)

 $A_i \rightarrow$ the cap at step *i*

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

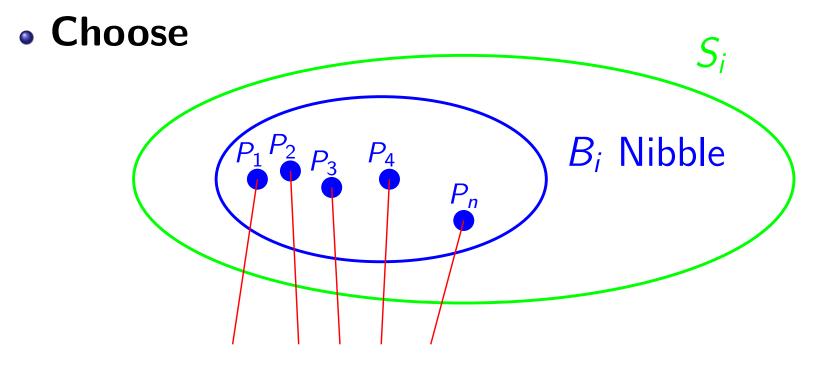
PG(N,q)

$A_i \rightarrow$ the cap at step *i*

START:

 $A_0 = \emptyset.$ $\Omega_0 = S_0 = PG(N, q).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



Chosen independently with the same probability

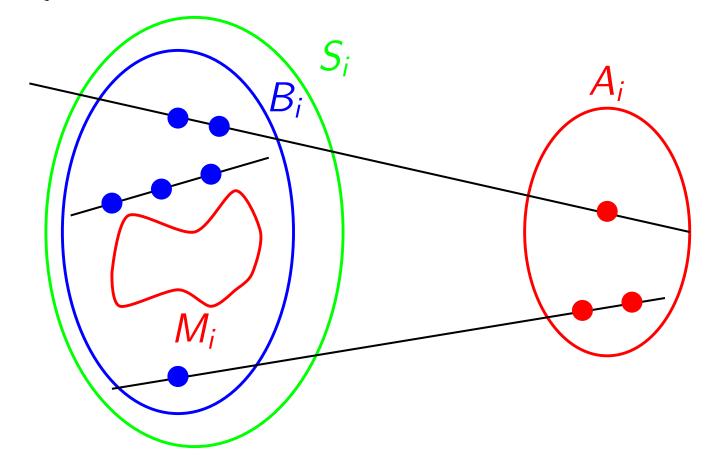
$$p_i = (b_i q^{\frac{N+1}{2}} \log^2 q)^{-1},$$

where
$$b_i = \frac{|S_i|}{q^N + q^{N-1} + ... + q + 1}$$

Algorithm: AT EACH STEP

Choose

 $M_i = \{ P \in B_i : \nexists Q, R \in A_i \cup B_i : P, Q, R \text{ are collinear } \}$



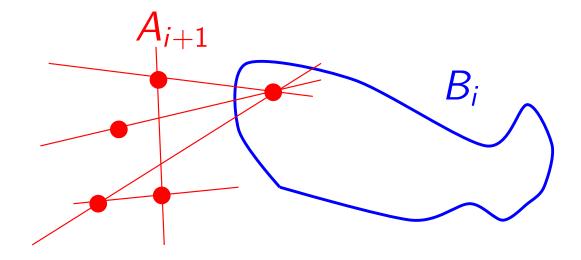
 $A_{i+1} = A_i \cup M_i$.

Q Q

Algorithm: AT EACH STEP

• Delete

 $D_i = \{\text{the set of points on bisecants of } A_{i+1}\} \cup B_i$



Definition

$$\Omega_{i+1}=\Omega_i\setminus D_i.$$

 $P \in \Omega_i, \quad p_i(P) = Pr(P \in D_i), \quad \underset{i \to i}{p_i^u} \text{upper bound}$

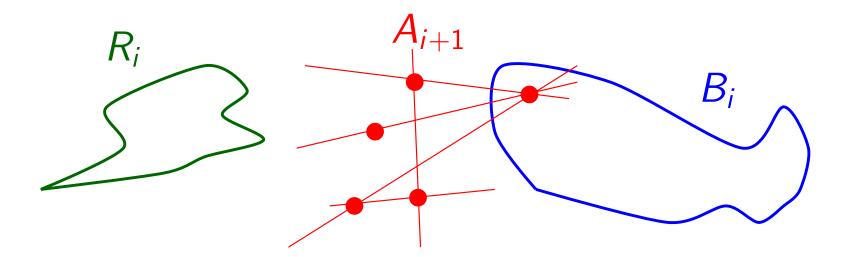
Algorithm: AT EACH STEP

Compensate

 $P \in \Omega_i$, $p_i(P) = Pr(P \in D_i)$, p_i^u upper bound

 $R_i \subset S_i$ set of points chosen with probability

$$p_i^{com}(P) = \frac{p_i^u - p_i(P)}{1 - p_i(P)}.$$



Definition

$$S_{i+1} = S_i \setminus (D_i \cup R_i).$$

Remark

Compensation is made in order to give the

same probability

to the points in S_i to be in S_{i+1} .

In fact, if $p_i(P) = Pr(P \in D_i)$, then

$$Pr(P \notin S_{i+1} | P \in S_i) = p + (1-p) \frac{p_i^u - p}{1-p} = p_i^u.$$

So,

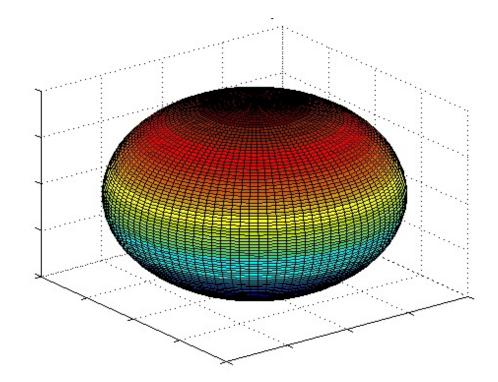
 $\mathbb{E}(|S_{i+1}|) = |S_i|(1-p_i^u).$

Algorithm: STOP

STOP : after k steps if k is the smallest integer such that

$$rac{|S_k|}{q^N + q^{N-1} + \ldots + q + 1} = b_k \le q^{-rac{N+1}{2}} \log^c q,$$

for some constant c (we set c = 300).



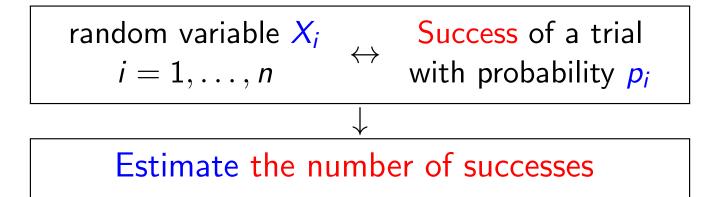
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Concentration of Measure

Problem

X random variable with mean $\mathbb{E}[X]$.

What is the probability that X deviates far from $\mathbb{E}[X]$?



Theorem (Chernoff Bound)

Let
$$X = \sum_{i=1}^{n} X_i$$
, $p = \frac{\sum_{i=1}^{n} p_i}{n}$, $q = 1 - p$. Then for any t
 $Pr(X > (p+t)n) \le e^{\left(-(p+t)\ln \frac{p+t}{p} - (q-t)\ln \frac{q-t}{t}\right)^n}$.

000

New Concentration Results

t_P is the binary event:

the point $P \in S_i$ is chosen to be in the nibble B_i or not

Definition

 $\overline{t} = (t_1, \ldots, t_n)$ independent binary random variables $Y(t_1, \ldots, t_n)$ function

discrete Lipschitz coefficient of Y

smallest integer
$$r$$

 $|Y(\overline{t}) - Y(\overline{t}')| \leq r$
 $\overline{t} = (t_1, \dots, t_i, \dots, t_n)$
 $\overline{t}' = (t_1, \dots, t'_i, \dots, t_n)$

Theorem (J.H. Kim, W.H. Vu, Combinatorica, 2000)

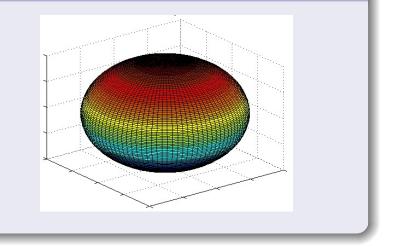
r sufficiently small with respect to n and the mean of Y

Y is strongly concentrated with variance of order at most $r^2 n$.

Main result

Theorem

 $\exists M > 0:$ in $PG(N,q) \ q \ge M$ there exists a complete cap of size $O\left(q^{\frac{N-1}{2}}\log^{300}q\right).$



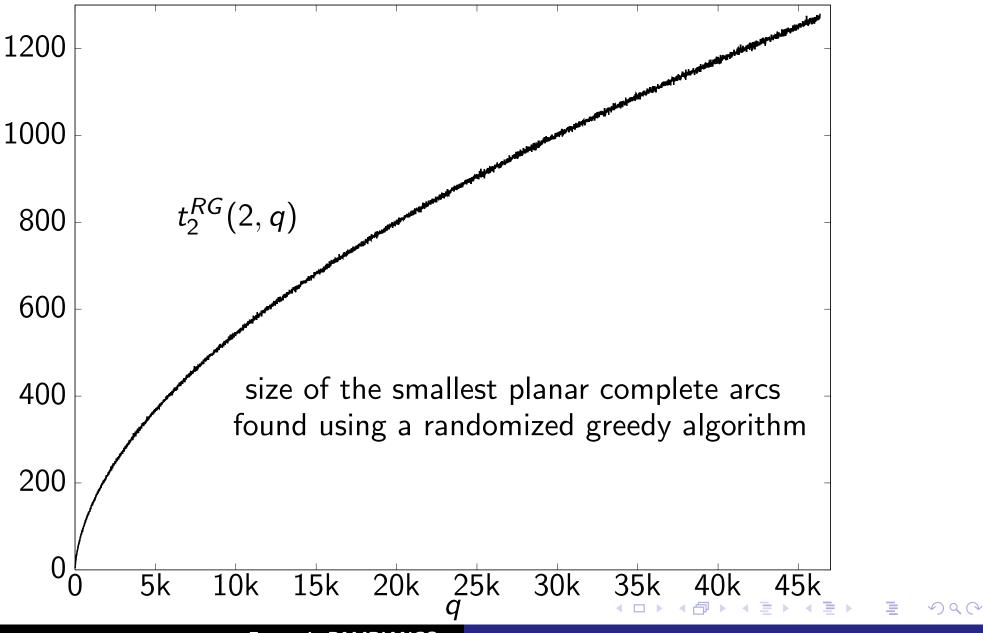
Theorem

$$\mathcal{C} : [n, n - (N + 1), 4]_q 2 \quad \text{linear code}$$

$$\exists M > 0:$$

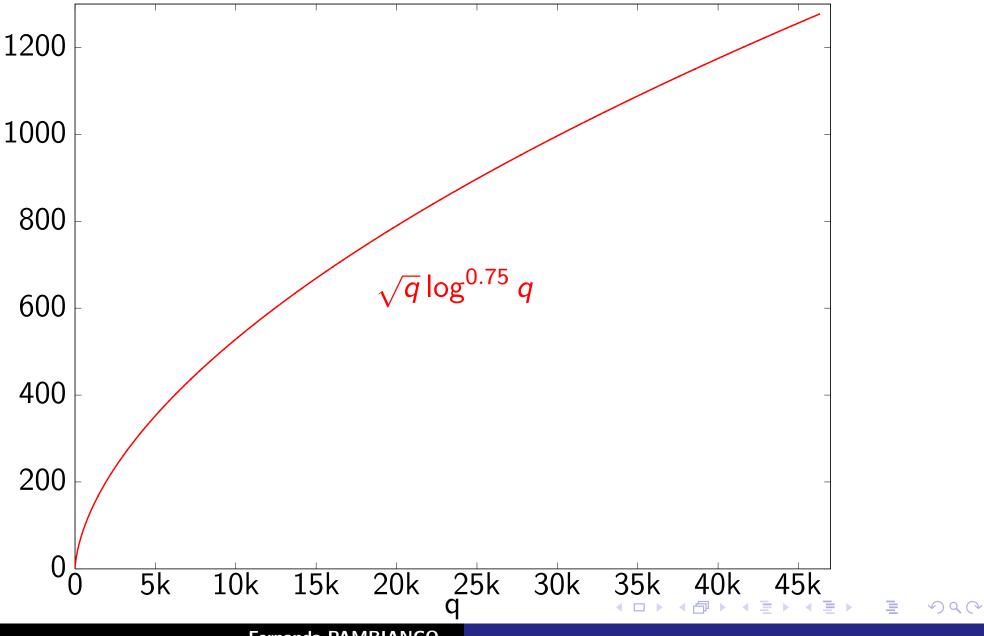
$$q \ge M \Longrightarrow n = O\left(q^{\frac{N-1}{2}}\log^{300}q\right).$$

Something better?



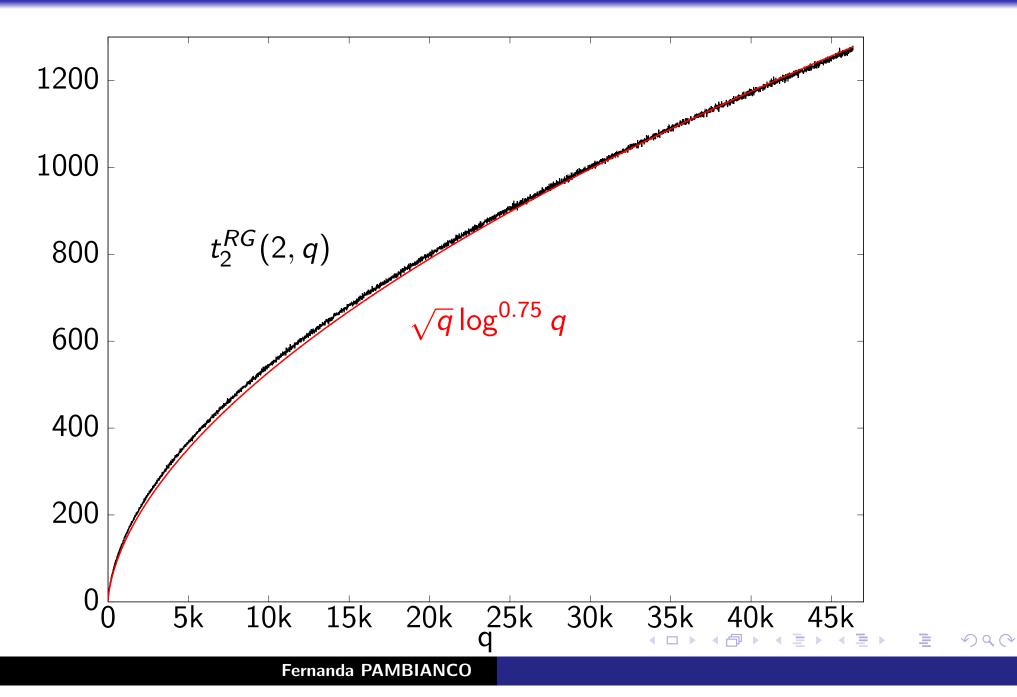
Fernanda PAMBIANCO

Something better?



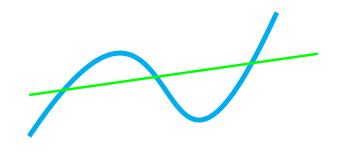
Fernanda PAMBIANCO

Something better?



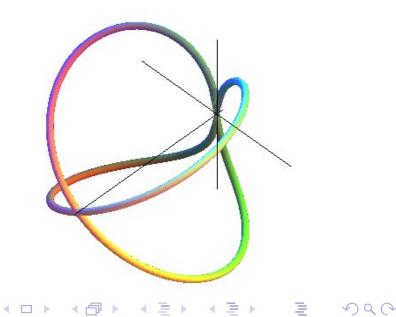
computer search using a nibble algorithm

bounds for the sizes
of complete (n,r)-arcs in projective planes



bounds for the

 sizes of complete arcs in projective spaces



SYMMETRIC SURFACES

 \mathbb{K} algebraically closed field $char(\mathbb{K}) = 0$

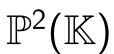
$\mathbb{P}^{3}(\mathbb{K})$ What are the maximally symmetric nonsingular algebraic surfaces?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

SYMMETRIC SURFACES

 \mathbb{K} algebraically closed field $char(\mathbb{K}) = 0$

 $\mathbb{P}^{3}(\mathbb{K})$ What are the maximally symmetric nonsingular algebraic surfaces?



What are the maximally symmetric nonsingular algebraic curves?

The Fermat curve

[Characterization of the Fermat curve as the most

symmetric nonsingular algebraic plane curve,

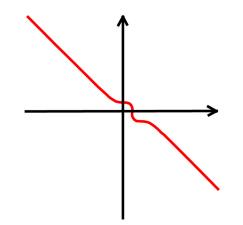
F.P., Mathematische Zeitschrift 2014]

The most symmetric nonsingular plane curve

THEOREM

 \mathbb{K} algebraically closed field $char(\mathbb{K}) = 0$ $f \in \mathbb{K}[x, y, t]$, homogeneous of degree d > 4, $d \neq 6$ V(f): nonsingular algebraic curve in $\mathbb{P}^2(\mathbb{K})$

• $|\operatorname{Aut}(V(f))| = 6d^2 \iff V(f)$ projectively



equivalent to

Fermat curve

$$x^d + y^d + t^d = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

SYMMETRIC SURFACES

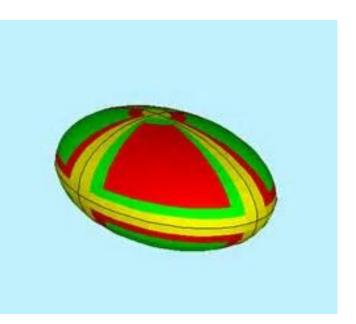
 $\mathbb{P}^{3}(\mathbb{K})$, \mathbb{K} algebraically closed field $char(\mathbb{K}) = 0$

What are the maximally symmetric nonsingular algebraic surfaces S_d ?

$$d = 2 \qquad x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0$$

the unique non-singular quadric

Automorphism group: INFINITE



 \mathbb{K} algebraically closed field $char(\mathbb{K}) = 0$

$$\mathbb{P}^{3}(\mathbb{K})$$

What are the maximally symmetric
nonsingular algebraic surfaces \mathcal{S}_{d} ?

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧ → りへぐ

CUBIC SURFACES

$$\mathbb{P}^3(\mathbb{K})$$

d = 3 Nonsingular algebraic cubic surfaces S_3

Complete classification of automorphism groups (T. Hosoh, 1997)

 $Aut(S_3) = (\mathbb{Z}_3)^3 \times_s S_4$ MAXIMUM ORDER $Aut(S_3) = S_5$ SECOND MAXIMUM ORDER

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

CUBIC SURFACES

$\mathbb{P}^{3}(\mathbb{K})$

d = 3 Nonsingular algebraic cubic surfaces S_3

Complete classification of automorphism groups (T. Hosoh, 1997)

 $Aut(S_3) = (\mathbb{Z}_3)^3 \times_s S_4$ MAXIMUM ORDER

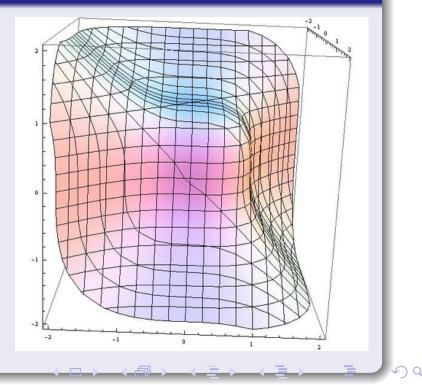
 $Aut(S_3) = \mathbf{S}_5$ SECOND MAXIMUM ORDER

Theorem (H. Kaneta, S. Marcugini, F. P., 2014)

Up to equivalence

the Fermat surface $S_3 = V(x^3 + y^3 + z^3 + t^3)$

UNIQUE MAXIMALLY SYMMETRIC nonsingular algebraic cubic surface



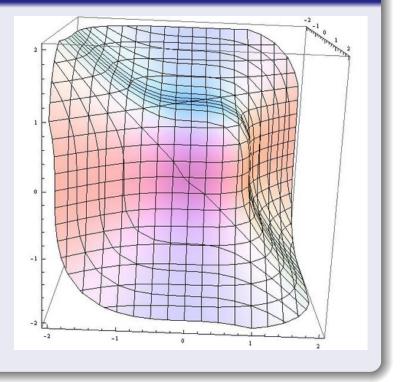
THE MAXIMALLY SYMMETRIC

Theorem (H. Kaneta, S. Marcugini, F. P., 2014)

Up to equivalence

the Fermat surface $S_3 = V(x^3 + y^3 + z^3 + t^3)$

UNIQUE MAXIMALLY SYMMETRIC nonsingular algebraic cubic surface



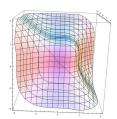
Proof (sketch)

(1) $\mathcal{G} < PGL(4, \mathbb{K})$ $\mathcal{G} \cong \mathbb{Z}_3^3$ conjugate to $\mathcal{G}_{27} = \langle (\operatorname{diag}[\omega, 1, 1, 1]), (\operatorname{diag}[1, \omega, 1, 1]), (\operatorname{diag}[1, 1, \omega, 1]) \rangle$

(2) Any \mathcal{G}_{27} -invariant nonsingular algebraic cubic surface is $V(ax^3 + by^3 + cz^3 + dt^3)$ $a, b, c, d \in \mathbb{K}^*$

FERMAT CUBIC SURFACE

(2) Any \mathcal{G}_{27} —invariant nonsingular algebraic cubic surface is $V(ax^3 + by^3 + cz^3 + dt^3) \qquad a, b, c, d \in \mathbb{K}^*$



f homogeneous polynomial of degree 3 V(f) \mathcal{G}_{27} -invariant nonsingular algebraic cubic surface $A_1 = \text{diag}[\omega, 1, 1, 1], A_2 = \text{diag}[1, \omega, 1, 1], A_3 = \text{diag}[1, 1, \omega, 1]$ $ord(A_i) = 3$

$$(A_i) \subset \mathcal{G}_{27} \Rightarrow f((x, y, z, t)A_i) \in \{f, \omega f, \omega^2 f\}$$

• $f((x, y, z, t)A_i) \in \{\omega f, \omega^2 f\} \Rightarrow V(f)$ singular

• $f((x, y, z, t)A_i) = f \Rightarrow f = ax^3 + by^3 + cz^3 + dt^3$ $V(ax^3 + by^3 + cz^3 + dt^3)$ nonsingular $\Leftrightarrow a, b, c, d \in \mathbb{K}^*$

THE SECOND MAXIMALLY SYMMETRIC

Theorem (H. Kaneta, S. Marcugini, F. P., 2014)

Up to equivalence

$$S_3 = V(x^2y + y^2z + z^2t + t^2x)$$

UNIQUE SECOND MAXIMALLY SYMMETRIC nonsingular algebraic cubic surface

Proof (sketch)

 $\begin{array}{ccc} & & \text{any } \mathcal{C}_{5!} \text{ I-invariant} \\ & & \text{nonsingular algebraic cubic surface} \\ & & \swarrow & \mathcal{C}_{5!} \text{ II} \implies \text{is } \mathcal{V}(x^2y + y^2z + z^2t + t^2x) \\ & & \text{S}_5 \\ & & \text{up to} & & \rightarrow & \mathcal{C}_{5!} \text{ II} \implies \nexists \text{ nonsingular} \\ & & \text{conjugacy} & & & \searrow & \mathcal{C}_{5!} \text{ III} \implies \nexists \text{ nonsingular} \\ & & & \text{Representations} \end{array}$

Thank you for your attention!

590

Fernanda PAMBIANCO