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OUTLINE

) INTRODUCTION: LINEAR CODES AND CAPS

o A PROBABILISTIC METHOD

A NEW UPPER BOUND ON THE SMALLEST
SIZE OF COMPLETE CAPS IN PG(N, q)
AND ON THE MINIMAL LENGTH

OF QUASI-PERFECT LINEAR CODES

THE FIRST AND SECOND MOST SYMMETRIC
NONSINGULAR CUBIC SURFACES




Fo: Galois field of q elements J

C: linear code [n, k, d],

C C I, dim(C) = k d = X€r1c1\ir{10} w(x)

Gixn: generator matrix of C

Cr={yeF]ly-x=0 VxeC}

C*: linear code [n,n — k,d'],

G(n—k)xn" generator matrix of C+ and parity check matrix of C



Coding Theory and Projective Geometry: Connection

C: [nk,dlqg d>3 linear code

G(n—k)xn = (Al, A% ,A”) parity check matrix

Ll

set of points in
(P, Ps,... P} P

PG(n—k—1,q)



Linear Codes: error correction

[n, k, d]q linear code

d—1 ;
LTJ -€rror correctlng

Theorem (Singleton bound)

d<n—k+1

Definition (MDS code)

d=n—k+1 <= MDS code




Covering codes

Definition

Covering code with covering radius R

[n, k, d]4R linear code C a
R covering radius %

Vx € Fy = d(x,C) <R

Definition (Perfect code)

R(C) = |52 | < C is perfect




Covering Density

Definition (Covering Density)
R(C)

O) = = > (a- (7).

u(C) =1

1(C) =1 <= C is perfect

Codes with the same codimension and covering radius

shortest ones =—> best covering density

Hamming codes and the Golay code are the only nontrivial
examples of perfect codes

4

We are interested in quasi-perfect codes, i.e R(C) = L%J + 1.



Coding Theory and Caps

[n, k,d|R quasi-perfect linear code
d=4and R =2 1-error correcting

Cap . set Q no three points of
which are collinear
Complete: 9 ¢ Q',|Q| < |2/ '

quasi-perfect
[n, k,4],2-t code

complete n-cap
in PG(n—k —1,q)
Columns of the

parity-check matrix points in PG(n —k —1,q)

y

best covering density <= smallest complete caps \




Smallest Complete Caps

best covering density <= smallest complete caps \

to(N, q) : Minimum size of complete caps in PG(N, q).

Trivial Lower Bound

t2(N7 q) Z \/iq%

N =3 — (3, q) known only for g <7

g <5 | 1998 G.Faina, S.Marcugini, A.Milani, F.P., Ars Combin.
qg = ( | 2006 J. Bierbrauer, S.Marcugini, F.P., Discrete Math.




Known constructions of infinite families of small complete
caps in PG(N, q)

Trivial Lower Bound

t2(N7 q) Z ﬁq%

N—-1

gevenand Nodd — 3(g 2 +...+q)+?2

@ Gabidulin, Davydov, Tombak, “Linear codes with covering radius 2 and

other new covering codes”, IEEE Trans. Inform. Theory, 1991

@ Pambianco, Storme, “Small complete caps in spaces of even
characteristic”’, J. Combin. Theory Ser. A, 1996

@ Giulietti, “Small complete caps in PG(N, q), q even”, J. Combin. Des.,
2007

@ Davydov, Giulietti, Marcugini, Pambianco, “New inductive constructions

of complete caps in PG(N, q), g even”, J. Combin. Des., 2010



Known constructions of infinite families of small complete
caps in PG(N, q)

Trivial Lower Bound

t2(N7 q) Z \/iq%

N even — cq/?

@ Pambianco, Storme, “Small complete caps in spaces of even
characteristic”, J. Combin. Theory Ser. A, 1996

@ Davydov, (")stergérd, “Recursive constructions of complete caps”, J.
Statist. Planning Infer., 2001

@ Giulietti, “Small complete caps in PG(N, q), q even”, J. Combin. Des.,
2007

@ Giulietti, “Small complete caps in Galois affine spaces”, J. Algebraic
Combin., 2007

@ Giulietti, Pasticci, “Quasi-perfect linear codes with minimum distance 4",
IEEE Trans. Inform. Theory, 2007

@ Davydov, Giulietti, Marcugini, Pambianco, “New inductive constructions

of complete caps in PG(N, q), g even”, J. Combin. Des., 2010



Known constructions of infinite families of small complete
caps in PG(N, q)

Trivial Lower Bound

t2(N7 q) Z \/ﬁq%

N =0 (mod 4) and g odd — g(N/2=1/8)

@ Giulietti, “Small complete caps in Galois affine spaces”, J. Algebraic
Combin., 2007

@ Anbar, Bartoli, Giulietti, Platoni, “Small Complete Caps from Singular
Cubics”, J. Combin. Des., 2013

@ Anbar, Bartoli, Giulietti, Platoni, “Small Complete Caps from Singular
Cubics II", J. Algebraic Combin., 2014



PG(N, q)
4c>0and M > 0:
g > M — 4 a complete cap of size

O (qlvgllogcq) .

HAERNIR

I




Main result

C: [n,n—(N+1),4],2 linear code

dc¢c>0and M > 0:

qg> M — n= QO (qullong)




Probabilistic methods in Combinatorics
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Probabilistic methods in Combinatorics

o Graph Theory
» Blocking sets
o Saturating sets

o« Complete arcs in projective planes



The probabilistic construction of small complete arcs of
J.H. Kim and W.H. Vu, Combinatorica, 2003

Theorem

PG(2,q) dc¢c>0and M > 0:
qg > M — 4 a complete arc of size

0, (q%/ogcq) .

Proof (sketch)

CONgIZ’-ED log €
V —
POINTS \/a o6 g
Al =+Vqloggq
randomized algorithm complete arcs

with probability close to 1 in ©(log®/?q) steps




Nibble method vs Point-by-point method

Point-by-point construction

O Select a new element among those which do

not cause any conflict

» Random
o Greedy

o According a certain ordering

@ Discard all elements that cause any conflict




Nibble method vs Point-by-point method

E]E
© At the beginning the cap being constructed is empty
@ Select one non-discarded point according to the criterion

© At each step, discard all points contained in any secant of
already selected points

==

Q At the end the set of all selected points is a complete cap




Nibble method vs Point-by-point method

Ajtai, Komlds, Szemerédi, “A dense infinite Sidon sequence”, Eur. J. Comb., 1981

Rodl, “On a packing and covering problem”, European J. Comb., 1985

Nibble method

@ Select a bunch of elements together with some probability (a
nibble)

NIBBLE




Nibble method vs Point-by-point method

Ajtai, Komlds, Szemerédi, “A dense infinite Sidon sequence”, Eur. J. Comb., 1981

Rodl, “On a packing and covering problem”, European J. Comb., 1985

Nibble method

© Select a bunch of elements together with some probability (a
nibble)

@ Select a subset of the nibble satisfying some constraints

Nibble
Satisfying
Constraints
“structure well-

understood”’

Perhaps
some elements

unnecessarly
discarded

Available
for choice
In the next step




Nibble method vs Point-by-point method

NIBBLE

“Convenient Size?”

e too many elements
NO would be unnecessarily discarded

TOOBIG e hard to predict
the structure of its elements

e no conflict occurs
YES for most chosen elements

SMALL ENOUGH e only few elements
would be unnecessarily discarded



Algorithm: START

PG(N, q)

A; — the cap at step |



Algorithm: START

PG(N, q)

A; — the cap at step |

START

e
||
=

QO — 50 — PG(N, Q)



Algorithm: AT EACH STEP

o Choose S,

B,’ Nibble

Chosen independently with the same probability

— (biq ? log?q)~ !,

|5
gV +qgN=1+.. . +q+1

where b, =



Algorithm: AT EACH STEP

o Choose
M, ={P € B; BQ.R € A;UB;: P, Q, R are collinear }

Definition

Ay = AU M.




Algorithm: AT EACH STEP

e Delete

D; = {the set of points on bisecants of A;,;1} U B;

Aii1

B;

/./

e

Q,'_|_1 — Q,‘ \ D,'.

Definition

PeQ; pi(P)=Pr(PeD;), p'upper bound



Algorithm: AT EACH STEP

o Compensate
PeQ;, pi(P)=Pr(PeD;), p;upperbound

R; C 5; set of points chosen with probability

p!' — pi(P)
f:om P — I .
P (P) 1 —pi(P)
R, Ait1

Definition




Algorithm

Compensation is made in order to give the

same probability

to the points in 5; to be in

In fact, if pi(P) = Pr(P € D;), then

pl_p u
Pr(P ¢ P e )—p+(1—p) —, P

So,
E(|Si+11) = [Si[(1 — pi').




Algorithm: STOP

STOP : after k steps if k is the smallest integer such that

| Sk N
=by < 2 log® q,
AT+ g1 & d

for some constant ¢ (we set ¢ = 300).

PR
HIHIRN

AT




Concentration of Measure

X random variable with mean E|X].

What is the probability that
X deviates far from E[X]?7

random variable X; Success of a trial
i=1,...,n with probability p;

7

Estimate the number of successes

Theorem (Chernoff Bound)
Let X =>70 Xi, p= 2iz1 Pi g=1—p. Then for any t

n 7

PF(X ~ (P 4 t)n) S e(—(p—l—t)ln pTH—(q—t)ln qT—t)n.




New Concentration Results

tp Is the binary event:
the point P € S; is chosen to be in the nibble B; or not

?:(tl,..

Y(tl,..

., t,) independent binary random variables

., t,) function

discrete Lipschitz
coefficient of Y

smallest integer r
Y(t) = Y(@) <r

t=(t1,..., ..., tn)
t = (t1,...,th,... tn)

Theorem (J.H. Kim, W.H. Vu, Combinatorica, 2000)

r sufficiently small with respect to n and the mean of Y

Y is strongly concentrated with variance of order at most r°n.

y




Main result

3 M > 0:
in PG(N, q) g > M there exists
a Comp/ete cap of size

o, (q > log 300 )

0

C: [n,n—(N+1),4],2 linear code

4 M > 0:
qZMﬁnzO(qz log"°q )




Something better?

1200 ¢

1000 |

800 |

600 ¢

400 | size of the smallest planar complete arcs
found using a randomized greedy algorithm

200 ¢

0

0 5k 10k 15k 20k q25k 30k 35k 40k 45k



Something better?

1200 ¢

1000
300 ¢
600 | \/a |Og0.75 q
400 |

200 ¢

0

0 5k 10k 15k 20k q25k 30k 35k 40k 45k



Something better?

1200 ¢

1000 |
800 | th¢ (2, q)

600 7 \/a |Og0.75 q
400 |

200 ¢

0

0 5k 10k 15k 20k c%Sk 30k 35k 40k 45k



o computer search using a nibble algorithm

bounds for the sizes
o of complete (n,r)-arcs
In projective planes

bounds for the
o sizes of complete arcs
In projective spaces




SYMMETRIC SURFACES

K algebraically closed field char(K) =0

P3(K)
What are the maximally symmetric
nonsingular algebraic surfaces?




SYMMETRIC SURFACES

K algebraically closed field char(K) =0

P3(K)
What are the maximally symmetric
nonsingular algebraic surfaces?

P2(K)
What are the maximally symmetric
nonsingular algebraic curves?

The Fermat curve
[Characterization of the Fermat curve as the most

symmetric nonsingular algebraic plane curve,

F.P., Mathematische Zeitschrift 2014]




The most symmetric nonsingular plane curve

THEOREM

K algebraically closed field char(K) =0
f € K|x, y, t], homogeneous of degree d > 4, d # 6
V/(f): nonsingular algebraic curve in P?(K)

|

o [Aut(V(f))| < 6d?
o [Aut(V/(f))| =6d* < V/(f) projectively

4 equivalent to
\ Fermat curve

-

—
\ xT+y?+1t9=0




SYMMETRIC SURFACES

P3(K), K algebraically closed field char(K) = 0

What are the maximally symmetric
nonsingular algebraic surfaces Sq47

d=2 xg+xt+x5+x53=0
the unique non-singular quadric

Automorphism

group:
INFINITE




SYMMETRIC SURFACES

K algebraically closed field char(K) =0

P3(K)
What are the maximally symmetric
nonsingular algebraic surfaces Sq7

SgCP3(K) d>3,d#4
Y

AUt(Sa)  _ pey(a k)

FINITE
H. Matsumura and P. Monsky, 1964




CUBIC SURFACES
P3(K)
d=3 Nonsingular algebraic cubic surfaces Sz

Complete classification of automorphism groups (T. Hosoh, 1997)

Aut(S3) = (Z3)3 xs Sa  MAXIMUM ORDER

Aut(Ss) = Ss SECOND MAXIMUM ORDER




CUBIC SURFACES

P3(K)
d=3 Nonsingular algebraic cubic surfaces Sz
Complete classification of automorphism groups (T. Hosoh, 1997)

Aut(S3) = (Z3)3 xs Sa  MAXIMUM ORDER

Aut(Ss) = Ss SECOND MAXIMUM ORDER

Theorem (H. Kaneta, S. Marcugini, F. P., 2014)

Up to equivalence

the Fermat surface =
S=VX*+y’+22+1¢t) |

UNIQUE MAXIMALLY SYMMETRIC | B3
nonsingular algebraic cubic surface | R

V




THE MAXIMALLY SYMMETRIC

Theorem (H. Kaneta, S. Marcugini, F. P., 2014)

Up to equivalence T e
the Fermat surface | == ; f'
S;=V(3+y3+23+13) S |
i | ]

UNIQUE MAXIMALLY SYMMETRIC | 3 H} |
nonsingular algebraic cubic surface | “‘:“-:i |

Proof (sketch)
(1) G < PGL(4,K) G =~ 73 conjugate to
g27 — <(d1ag[w7 17 17 1])7 dlag[la W, 17 1])7 (dlag[la 17 W, 1])>

(2) Any Go7—invariant nonsingular algebraic cubic surface is
V(ax3 + by3 + cz3 + dt3) a,b,c,d e K*



FERMAT CUBIC SURFACE

(2) Any Go7—Iinvariant nonsingular algebraic cubic surface is
a,b,c,d e K*

f homogeneous polynomial of degree 3
V(f) Gor—invariant nonsingular algebraic cubic surface

A; = diag|w, 1,1, 1], Ay = diag[l,w, 1,1], A3 = diag[l,1,w, 1]
OI’d(A,‘) =3

(AI) C g27 = f((X,y,Z, t)Ai) S {fvwf7w2f}

o f((x,y,z t)A;) € {wf,w?f} = V(f) singular

o f((x,y,z,)A))=f = f =ax>+ by’ + cz’ + dt’
V(ax® + by® + cz° + dt?) nonsingular < a, b,c,d € K*



THE SECOND MAXIMALLY SYMMETRIC

Theorem (H. Kaneta, S. Marcugini, F. P., 2014)

Up to equivalence
S3 = V(x%y + y?z + z°t + t°x)

UNIQUE SECOND MAXIMALLY SYMMETRIC
nonsingular algebraic cubic surface

Proof (sketch)
any Cgl-invariant

Cs1 | = nonsingular algebraic cubic surface

/( is V(x%y + y?z + z°t + t2x)
Ss
up to — Csi Il = 3 nonsingular
conjugacy

\‘ Csi 11l = 3 nonsingular

Representations



Thank you

for your attention!

Fernanda PAMBIANCO



