Low density quasi-perfect linear codes, small complete caps and symmetric surfaces

Fernanda Pambianco

University of Perugia (Italy)
co-authors: D. Bartoli, H. Kaneta, S. Marcugini

ACCT 2014

Svetlogorsk (Kaliningrad region), Russia, September 7-13

OUTLINE

INTRODUCTION: LINEAR CODES AND CAPS
-
A PROBABILISTIC METHOD

A NEW UPPER BOUND ON THE SMALLEST SIZE OF COMPLETE CAPS IN $P G(N, q)$
AND ON THE MINIMAL LENGTH
OF QUASI-PERFECT LINEAR CODES

THE FIRST AND SECOND MOST SYMMETRIC NONSINGULAR CUBIC SURFACES

Linear Codes

\mathbb{F}_{q} : Galois field of q elements

Definition

\mathcal{C} : linear code $[n, k, d]_{q}$

$$
\mathcal{C} \subset \mathbb{F}_{q}^{n} \quad \operatorname{dim}(\mathcal{C})=k \quad d=\min _{x \in \mathcal{C} \backslash\{0\}} w(x)
$$

$G_{k \times n}$: generator matrix of \mathcal{C}

Definition

$$
\mathcal{C}^{\perp}=\left\{y \in \mathbb{F}_{q}^{n} \mid y \cdot x=0 \quad \forall x \in \mathcal{C}\right\}
$$

$$
\mathcal{C}^{\perp}: \text { linear code }\left[n, n-k, d^{\prime}\right]_{q}
$$

$G_{(n-k) \times n}$: generator matrix of \mathcal{C}^{\perp} and parity check matrix of \mathcal{C}

Coding Theory and Projective Geometry: Connection

$\mathcal{C}:[n, k, d]_{q} \quad d \geq 3 \quad$ linear code

$$
\begin{aligned}
G_{(n-k) \times n}= & \left(A^{1}, A^{2}, \ldots, A^{n}\right) \text { parity check matrix } \\
& \downarrow \downarrow \\
& \left\{P_{1}, P_{2}, \ldots, P_{n}\right\} \\
& P G(n-k-1, q)
\end{aligned}
$$

Linear Codes: error correction

$[n, k, d]_{q}$ linear code

$$
\left\lfloor\frac{d-1}{2}\right\rfloor \text {-error correcting }
$$

Theorem (Singleton bound)

$$
d \leq n-k+1
$$

Definition (MDS code)

$$
d=n-k+1 \Longleftrightarrow \text { MDS code }
$$

Covering codes

Definition

Covering code with covering radius R

$$
\begin{gathered}
{[n, k, d]_{q} R \text { linear code } \mathcal{C}} \\
R \text { covering radius } \\
\forall x \in \mathbb{F}_{q}^{n} \Longrightarrow d(x, \mathcal{C}) \leq R
\end{gathered}
$$

Definition (Perfect code)

$$
R(\mathcal{C})=\left\lfloor\frac{d-1}{2}\right\rfloor \Longleftrightarrow \mathcal{C} \text { is perfect }
$$

Covering Density

Definition (Covering Density)

$$
\mu(\mathcal{C})=\frac{1}{q^{n-k}} \sum_{i=0}^{R(\mathcal{C})}(q-1)^{i}\binom{n}{i} .
$$

$$
\mu(\mathcal{C}) \geq 1
$$

$$
\mu(\mathcal{C})=1 \Longleftrightarrow \mathcal{C} \text { is perfect }
$$

Remark

Codes with the same codimension and covering radius shortest ones \Longrightarrow best covering density

Hamming codes and the Golay code are the only nontrivial examples of perfect codes \Downarrow
We are interested in quasi-perfect codes, i.e $R(\mathcal{C})=\left\lfloor\frac{d-1}{2}\right\rfloor+1$.

Coding Theory and Caps

$$
\begin{gathered}
{[n, k, d] R} \\
d=4 \text { and } R=2
\end{gathered}
$$

quasi-perfect linear code 1-error correcting

Cap : set \mathcal{Q} no three points of which are collinear
Complete: $\mathcal{Q} \not \subset \mathcal{Q}^{\prime},|\mathcal{Q}|<\left|\mathcal{Q}^{\prime}\right|$

Columns of the parity-check matrix

$$
\begin{gathered}
\text { quasi-perfect } \\
{[n, k, 4]_{q} 2-t \text { code }}
\end{gathered} \longleftrightarrow \begin{gathered}
\text { complete } n \text {-cap } \\
\text { in } P G(n-k-1, q)
\end{gathered}
$$

$\longleftrightarrow \quad$ points in $P G(n-k-1, q)$

Remark
best covering density \Longleftrightarrow smallest complete caps

Smallest Complete Caps

Remark

best covering density \Longleftrightarrow smallest complete caps

Definition

$$
t_{2}(N, q): \text { Minimum size of complete caps in } P G(N, q)
$$

Trivial Lower Bound

$$
t_{2}(N, q) \geq \sqrt{2} q^{\frac{N-1}{2}}
$$

$$
N=3 \longrightarrow t_{2}(3, q) \text { known only for } q \leq 7
$$

$q \leq 5$	1998 G.Faina, S.Marcugini, A.Milani, F.P., Ars Combin.
$q=7$	2006 J. Bierbrauer, S.Marcugini, F.P., Discrete Math.

Known constructions of infinite families of small complete caps in $P G(N, q)$

Trivial Lower Bound

$$
t_{2}(N, q) \geq \sqrt{2} q^{\frac{N-1}{2}}
$$

q even and N odd $\longrightarrow 3\left(q^{\frac{N-1}{2}}+\ldots+q\right)+2$

- Gabidulin, Davydov, Tombak, "Linear codes with covering radius 2 and other new covering codes", IEEE Trans. Inform. Theory, 1991
- Pambianco, Storme, "Small complete caps in spaces of even characteristic", J. Combin. Theory Ser. A, 1996
- Giulietti, "Small complete caps in $\operatorname{PG}(N, q), q$ even", J. Combin. Des., 2007
- Davydov, Giulietti, Marcugini, Pambianco, "New inductive constructions of complete caps in $P G(N, q)$, q even", J. Combin. Des., 2010

Known constructions of infinite families of small complete caps in $P G(N, q)$

Trivial Lower Bound

$$
t_{2}(N, q) \geq \sqrt{2} q^{\frac{N-1}{2}}
$$

N even $\longrightarrow c q^{N / 2}$

- Pambianco, Storme, "Small complete caps in spaces of even characteristic", J. Combin. Theory Ser. A, 1996
- Davydov, Östergård, "Recursive constructions of complete caps", J. Statist. Planning Infer., 2001
- Giulietti, "Small complete caps in $P G(N, q), q$ even", J. Combin. Des., 2007
- Giulietti, "Small complete caps in Galois affine spaces", J. Algebraic Combin., 2007
- Giulietti, Pasticci, "Quasi-perfect linear codes with minimum distance 4", IEEE Trans. Inform. Theory, 2007
- Davydov, Giulietti, Marcugini, Pambianco, "New inductive constructions of complete caps in $P G(N, q)$, q even", J. Combin. Des., 2010

Known constructions of infinite families of small complete caps in $P G(N, q)$

Trivial Lower Bound

$$
t_{2}(N, q) \geq \sqrt{2} q^{\frac{N-1}{2}}
$$

$N \equiv 0(\bmod 4)$ and q odd $\longrightarrow q^{(N / 2-1 / 8)}$

- Giulietti, "Small complete caps in Galois affine spaces", J. Algebraic Combin., 2007
- Anbar, Bartoli, Giulietti, Platoni, "Small Complete Caps from Singular Cubics", J. Combin. Des., 2013
- Anbar, Bartoli, Giulietti, Platoni, "Small Complete Caps from Singular Cubics II", J. Algebraic Combin., 2014

Main result

Theorem $P G(N, q)$

$$
\exists c>0 \text { and } M>0 \text { : }
$$

$q \geq M \Longrightarrow \exists$ a complete cap of size

$$
O\left(q^{\frac{N-1}{2}} \log ^{c} q\right)
$$

Main result

Theorem

$\mathcal{C}:[n, n-(N+1), 4]_{q} 2$ linear code

$$
\exists c>0 \text { and } M>0:
$$

$$
q \geq M \Longrightarrow \quad n=O\left(q^{\frac{N-1}{2}} \log ^{c} q\right)
$$

Probabilistic methods in Combinatorics

- Graph Theory
- Graph Theory
- Blocking sets

Probabilistic methods in Combinatorics

- Graph Theory
- Blocking sets
- Saturating sets

Probabilistic methods in Combinatorics

。 Graph Theory

- Blocking sets
- Saturating sets
- Complete arcs in projective planes

The probabilistic construction of small complete arcs of J.H. Kim and W.H. Vu, Combinatorica, 2003

Theorem

$$
\begin{gathered}
P G(2, q) \quad \begin{array}{l}
\exists c>0 \text { and } M>0: \\
q \geq M \Longrightarrow \exists \text { a complete arc of size } \\
O\left(q^{\frac{1}{2}} \log ^{c} q\right)
\end{array} .
\end{gathered}
$$

Proof (sketch)

randomized algorithm
with probability close to 1
$\Longrightarrow \quad \begin{gathered}\text { complete arcs } \\ \text { in } \Theta\left(\log ^{5 / 2} q\right) \text { steps }\end{gathered}$

Nibble method vs Point-by-point method

Point-by-point construction

- Select a new element among those which do not cause any conflict
- Random
- Greedy
- According a certain ordering
(2) Discard all elements that cause any conflict

Nibble method vs Point-by-point method

Example

(1) At the beginning the cap being constructed is empty
(2) Select one non-discarded point according to the criterion
(3) At each step, discard all points contained in any secant of already selected points

(4) At the end the set of all selected points is a complete cap

Nibble method vs Point-by-point method

Ajtai, Komlós, Szemerédi, "A dense infinite Sidon sequence", Eur. J. Comb., 1981 Rödl, "On a packing and covering problem", European J. Comb., 1985

Nibble method

(1) Select a bunch of elements together with some probability (a nibble)

Nibble method vs Point-by-point method

Ajtai, Komlós, Szemerédi, "A dense infinite Sidon sequence", Eur. J. Comb., 1981 Rödl, "On a packing and covering problem", European J. Comb., 1985

Nibble method

(1) Select a bunch of elements together with some probability (a nibble)
(2) Select a subset of the nibble satisfying some constraints

Nibble method vs Point-by-point method

"Convenient Size?"

- too many elements

$\stackrel{\underline{\mathrm{NO}}}{\mathrm{TOO} \mathrm{BIG}} \Longrightarrow \quad$| would be unnecessarily discarded |
| :---: |
| - hard to predict |
| the structure of its elements |

- no conflict occurs
$\underset{\text { SMALL ENOUGH }}{\Longrightarrow} \begin{gathered}\text { for most chosen elements } \\ \text { - only few elements } \\ \text { would be unnecessarily discarded }\end{gathered}$

Algorithm: START

$$
P G(N, q)
$$

$A_{i} \rightarrow$ the cap at step i

Algorithm: START

$$
P G(N, q)
$$

$A_{i} \rightarrow$ the cap at step i

START :

$$
\begin{gathered}
A_{0}=\emptyset \\
\Omega_{0}=S_{0}=P G(N, q)
\end{gathered}
$$

Algorithm: AT EACH STEP

- Choose

Chosen independently with the same probability

$$
p_{i}=\left(b_{i} q^{\frac{N+1}{2}} \log ^{2} q\right)^{-1}
$$

where $b_{i}=\frac{\left|S_{i}\right|}{q^{N}+q^{N-1}+\ldots+q+1}$

Algorithm: AT EACH STEP

- Choose

$$
M_{i}=\left\{P \in B_{i}: \nexists Q, R \in A_{i} \cup B_{i}: P, Q, R \text { are collinear }\right\}
$$

Definition

$$
A_{i+1}=A_{i} \cup M_{i}
$$

Algorithm: AT EACH STEP

- Delete
$D_{i}=\left\{\right.$ the set of points on bisecants of $\left.A_{i+1}\right\} \cup B_{i}$

Definition

$$
\Omega_{i+1}=\Omega_{i} \backslash D_{i}
$$

$$
P \in \Omega_{i}, \quad p_{i}(P)=\operatorname{Pr}\left(P \in D_{i}\right), \quad p_{i}^{u} \text { upper bound }
$$

Algorithm: AT EACH STEP

- Compensate

$$
P \in \Omega_{i}, \quad p_{i}(P)=\operatorname{Pr}\left(P \in D_{i}\right), \quad p_{i}^{u} \text { upper bound }
$$

$R_{i} \subset S_{i}$ set of points chosen with probability

$$
p_{i}^{\text {com }}(P)=\frac{p_{i}^{u}-p_{i}(P)}{1-p_{i}(P)}
$$

Definition

$$
S_{i+1}=S_{i} \backslash\left(D_{i} \cup R_{i}\right)
$$

Algorithm

Remark
Compensation is made in order to give the

same probability

to the points in S_{i} to be in S_{i+1}.
In fact, if $p_{i}(P)=\operatorname{Pr}\left(P \in D_{i}\right)$, then

$$
\operatorname{Pr}\left(P \notin S_{i+1} \mid P \in S_{i}\right)=p+(1-p) \frac{p_{i}^{\mu}-p}{1-p}=p_{i}^{U}
$$

So,

$$
\mathbb{E}\left(\left|S_{i+1}\right|\right)=\left|S_{i}\right|\left(1-p_{i}^{u}\right)
$$

Algorithm: STOP

STOP : after k steps if k is the smallest integer such that

$$
\frac{\left|S_{k}\right|}{q^{N}+q^{N-1}+\ldots+q+1}=b_{k} \leq q^{-\frac{N+1}{2}} \log ^{c} q,
$$

for some constant c (we set $c=300$).

Concentration of Measure

Problem

X random variable with mean $\mathbb{E}[X]$.
What is the probability that
X deviates far from $\mathbb{E}[X]$?
random variable X_{i}
$i=1, \ldots, n$
Success of a trial
$\leftrightarrow \quad$ with probability p_{i}

Estimate the number of successes

Theorem (Chernoff Bound)

Let $X=\sum_{i=1}^{n} X_{i}, p=\frac{\sum_{i=1}^{n} p_{i}}{n}, q=1-p$. Then for any t

$$
\operatorname{Pr}(X>(p+t) n) \leq e^{\left(-(p+t) \ln \frac{p+t}{p}-(q-t) \ln \frac{q-t}{t}\right)^{n}} .
$$

New Concentration Results

t_{P} is the binary event: the point $P \in S_{i}$ is chosen to be in the nibble B_{i} or not

Definition

$\bar{t}=\left(t_{1}, \ldots, t_{n}\right)$ independent binary random variables
$Y\left(t_{1}, \ldots, t_{n}\right)$ function

$$
\begin{array}{cc}
\text { smallest integer } r \\
\text { discrete Lipschitz } \\
\text { coefficient of } Y
\end{array}:=\begin{gathered}
\left|Y(\bar{t})-Y\left(\bar{t}^{\prime}\right)\right| \leq r \\
\bar{t}=\left(t_{1}, \ldots, t_{i}, \ldots, t_{n}\right) \\
\bar{t}^{\prime}=\left(t_{1}, \ldots, t_{i}^{\prime}, \ldots, t_{n}\right)
\end{gathered}
$$

Theorem (J.H. Kim, W.H. Vu, Combinatorica, 2000)
r sufficiently small with respect to n and the mean of Y
Y is strongly concentrated with variance of order at most $r^{2} n$.

Main result

Theorem

$$
\exists M>0 \text { : }
$$

in $P G(N, q) q \geq M$ there exists a complete cap of size

$$
O\left(q^{\frac{N-1}{2}} \log ^{300} q\right)
$$

$$
\Uparrow
$$

Theorem

$\mathcal{C}:[n, n-(N+1), 4]_{q} 2 \quad$ linear code

$$
\begin{gathered}
\exists M>0: \\
q \geq M \Longrightarrow n=O\left(q^{\frac{N-1}{2}} \log ^{300} q\right) .
\end{gathered}
$$

Something better?

Something better?

Something better?

To do

- computer search using a nibble algorithm
bounds for the sizes
- of complete (n, r)-arcs
in projective planes

bounds for the
- sizes of complete arcs
in projective spaces

SYMMETRIC SURFACES

\mathbb{K} algebraically closed field $\operatorname{char}(\mathbb{K})=0$

$$
\mathbb{P}^{3}(\mathbb{K})
$$

What are the maximally symmetric nonsingular algebraic surfaces?

SYMMETRIC SURFACES

\mathbb{K} algebraically closed field $\operatorname{char}(\mathbb{K})=0$

$$
\mathbb{P}^{3}(\mathbb{K})
$$

What are the maximally symmetric nonsingular algebraic surfaces?

$$
\mathbb{P}^{2}(\mathbb{K})
$$

What are the maximally symmetric nonsingular algebraic curves?

The Fermat curve

[Characterization of the Fermat curve as the most symmetric nonsingular algebraic plane curve, F.P., Mathematische Zeitschrift 2014]

The most symmetric nonsingular plane curve

THEOREM

\mathbb{K} algebraically closed field $\quad \operatorname{char}(\mathbb{K})=0$ $f \in \mathbb{K}[x, y, t]$, homogeneous of degree $d>4, \quad d \neq 6$ $V(f)$: nonsingular algebraic curve in $\mathbb{P}^{2}(\mathbb{K})$

$$
\Downarrow
$$

- $|\operatorname{Aut}(V(f))| \leq 6 d^{2}$
- $|\operatorname{Aut}(V(f))|=6 d^{2} \Longleftrightarrow V(f)$ projectively

equivalent to
Fermat curve

$$
x^{d}+y^{d}+t^{d}=0
$$

SYMMETRIC SURFACES

$\mathbb{P}^{3}(\mathbb{K}), \mathbb{K}$ algebraically closed field $\operatorname{char}(\mathbb{K})=0$
What are the maximally symmetric nonsingular algebraic surfaces \mathcal{S}_{d} ?

$$
d=2 \quad x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0
$$

the unique non-singular quadric

Automorphism group: INFINITE

SYMMETRIC SURFACES

\mathbb{K} algebraically closed field $\operatorname{char}(\mathbb{K})=0$

$$
\mathbb{P}^{3}(\mathbb{K})
$$

What are the maximally symmetric nonsingular algebraic surfaces \mathcal{S}_{d} ?

$$
\begin{gathered}
\mathcal{S}_{\mathbf{d}} \subset \mathbb{P}^{3}(\mathbb{K}) \quad d \geq 3, d \neq 4 \\
\quad \Downarrow \\
\operatorname{Aut}\left(\mathcal{S}_{\mathrm{d}}\right) \\
\text { FINITE }<P G L(4, \mathbb{K})
\end{gathered}
$$

H. Matsumura and P. Monsky, 1964

CUBIC SURFACES

$\mathbb{P}^{3}(\mathbb{K})$

$d=3 \quad$ Nonsingular algebraic cubic surfaces \mathcal{S}_{3}
Complete classification of automorphism groups (T. Hosoh, 1997)

$$
\begin{array}{cl}
\operatorname{Aut}\left(\mathcal{S}_{3}\right)=\left(\mathbb{Z}_{3}\right)^{3} \times_{s} \mathbf{S}_{4} & \text { MAXIMUM ORDER } \\
\operatorname{Aut}\left(\mathcal{S}_{3}\right)=\mathbf{S}_{5} & \text { SECOND MAXIMUM ORDER }
\end{array}
$$

CUBIC SURFACES

$$
\mathbb{P}^{3}(\mathbb{K})
$$

$d=3 \quad$ Nonsingular algebraic cubic surfaces \mathcal{S}_{3}
Complete classification of automorphism groups (T. Hosoh, 1997)

$$
\begin{array}{cl}
\operatorname{Aut}\left(\mathcal{S}_{3}\right)=\left(\mathbb{Z}_{3}\right)^{3} \times_{s} \mathbf{S}_{4} & \text { MAXIMUM ORDER } \\
\operatorname{Aut}\left(\mathcal{S}_{3}\right)=\mathbf{S}_{5} & \text { SECOND MAXIMUM ORDER }
\end{array}
$$

Theorem (H. Kaneta, S. Marcugini, F. P., 2014)
Up to equivalence

> the Fermat surface
> $\mathcal{S}_{3}=V\left(x^{3}+y^{3}+z^{3}+t^{3}\right)$

UNIQUE MAXIMALLY SYMMETRIC nonsingular algebraic cubic surface

THE MAXIMALLY SYMMETRIC

Theorem (H. Kaneta, S. Marcugini, F. P., 2014)

Up to equivalence
the Fermat surface
$\mathcal{S}_{3}=V\left(x^{3}+y^{3}+z^{3}+t^{3}\right)$
UNIQUE MAXIMALLY SYMMETRIC nonsingular algebraic cubic surface

Proof (sketch)
(1) $\mathcal{G}<\operatorname{PGL}(4, \mathbb{K}) \quad \mathcal{G} \cong \mathbb{Z}_{3}^{3}$ conjugate to $\mathcal{G}_{27}=\langle(\operatorname{diag}[\omega, 1,1,1]),(\operatorname{diag}[1, \omega, 1,1]),(\operatorname{diag}[1,1, \omega, 1])\rangle$
(2) Any \mathcal{G}_{27}-invariant nonsingular algebraic cubic surface is

$$
V\left(a x^{3}+b y^{3}+c z^{3}+d t^{3}\right) \quad a, b, c, d \in \mathbb{K}^{*}
$$

FERMAT CUBIC SURFACE

(2) Any \mathcal{G}_{27}-invariant nonsingular algebraic cubic surface is

$$
V\left(a x^{3}+b y^{3}+c z^{3}+d t^{3}\right) \quad a, b, c, d \in \mathbb{K}^{*}
$$

f homogeneous polynomial of degree 3
$V(f) \quad \mathcal{G}_{27}$-invariant nonsingular algebraic cubic surface

$$
A_{1}=\operatorname{diag}[\omega, 1,1,1], A_{2}=\operatorname{diag}[1, \omega, 1,1], A_{3}=\operatorname{diag}[1,1, \omega, 1]
$$

$$
\operatorname{crd}\left(A_{i}\right)=3
$$

$$
\left(A_{i}\right) \subset \mathcal{G}_{27} \Rightarrow f\left((x, y, z, t) A_{i}\right) \in\left\{f, \omega f, \omega^{2} f\right\}
$$

- $f\left((x, y, z, t) A_{i}\right) \in\left\{\omega f, \omega^{2} f\right\} \Rightarrow V(f)$ singular
- $f\left((x, y, z, t) A_{i}\right)=f \Rightarrow f=a x^{3}+b y^{3}+c z^{3}+d t^{3}$
$V\left(a x^{3}+b y^{3}+c z^{3}+d t^{3}\right)$ nonsingular $\Leftrightarrow a, b, c, d \in \mathbb{K}^{*}$

THE SECOND MAXIMALLY SYMMETRIC

Theorem (H. Kaneta, S. Marcugini, F. P., 2014)

Up to equivalence

$$
\begin{gathered}
\mathcal{S}_{3}=V\left(x^{2} y+y^{2} z+z^{2} t+t^{2} x\right) \\
\text { UNIQUE SECOND MAXIMALLY SYMMETRIC } \\
\text { nonsingular algebraic cubic surface }
\end{gathered}
$$

Proof (sketch)

any $C_{5!}$ l-invariant

	$\mathcal{C}_{5!} \mathrm{I} \Longrightarrow$	nonsingular algebraic cubic surface is $V\left(x^{2} y+y^{2} z+z^{2} t+t^{2} x\right)$
S_{5} up to conjugacy$\longrightarrow \mathcal{C}_{5!} \mathrm{II} \Longrightarrow \nexists$ nonsingular		
	$\searrow \mathcal{C}_{5!} \mathrm{III} \Longrightarrow \nexists$ nonsingular	

Thank you

for your attention!

