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OUTLINE

INTRODUCTION: LINEAR CODES AND CAPS

A PROBABILISTIC METHOD

A NEW UPPER BOUND ON THE SMALLEST
SIZE OF COMPLETE CAPS IN PG (N, q)
AND ON THE MINIMAL LENGTH
OF QUASI-PERFECT LINEAR CODES

THE FIRST AND SECOND MOST SYMMETRIC
NONSINGULAR CUBIC SURFACES



Linear Codes

Fq: Galois field of q elements

Definition

C: linear code [n, k , d ]q

C ⊂ Fn
q dim(C) = k d = min

x∈C\{0}
w(x)

Gk×n: generator matrix of C
Definition

C⊥ = {y ∈ Fn
q|y · x = 0 ∀ x ∈ C}

C⊥: linear code [n, n − k , d ′]q

G(n−k)×n: generator matrix of C⊥ and parity check matrix of C



Coding Theory and Projective Geometry: Connection

C : [n, k , d ]q d ≥ 3 linear code

G(n−k)×n =
(
A1,A2, . . . ,An

)
parity check matrix

↓ ↓ ↓

{P1,P2, . . . ,Pn}
set of points in

PG (n − k − 1, q)



Linear Codes: error correction

[n, k, d ]q linear code⌊
d−1

2

⌋
-error correcting

Theorem (Singleton bound)

d ≤ n − k + 1

Definition (MDS code)

d = n − k + 1 ⇐⇒ MDS code



Covering codes

Definition

Covering code with covering radius R

[n, k , d ]qR linear code C

R covering radius

∀x ∈ Fn
q =⇒ d(x , C) ≤ R

Definition (Perfect code)

R(C) =
⌊

d−1
2

⌋
⇐⇒ C is perfect



Covering Density

Definition (Covering Density)

µ(C) =
1

qn−k

R(C)∑
i=0

(q − 1)i
(

n

i

)
.

µ(C) ≥ 1

µ(C) = 1 ⇐⇒ C is perfect

Remark

Codes with the same codimension and covering radius

shortest ones =⇒ best covering density

Hamming codes and the Golay code are the only nontrivial
examples of perfect codes

⇓
We are interested in quasi-perfect codes, i.e R(C) =

⌊
d−1

2

⌋
+ 1.



Coding Theory and Caps

[n, k , d ]R
d = 4 and R = 2

−→ quasi-perfect linear code
1-error correcting

Cap : set Q no three points of

which are collinear

Complete: Q 6⊂ Q′, |Q| < |Q′|

quasi-perfect
[n, k , 4]q2-t code

←→ complete n-cap
in PG (n − k − 1, q)

Columns of the
parity-check matrix

←→ points in PG (n − k − 1, q)

Remark

best covering density ⇐⇒ smallest complete caps



Smallest Complete Caps

Remark

best covering density ⇐⇒ smallest complete caps

Definition

t2(N , q) : Minimum size of complete caps in PG (N , q).

Trivial Lower Bound

t2(N , q) ≥
√

2q
N−1

2

N = 3 −→ t2(3, q) known only for q ≤ 7

q ≤ 5 1998 G.Faina, S.Marcugini, A.Milani, F.P., Ars Combin.

q = 7 2006 J. Bierbrauer, S.Marcugini, F.P., Discrete Math.



Known constructions of infinite families of small complete
caps in PG (N , q)

Trivial Lower Bound

t2(N , q) ≥
√

2q
N−1

2

q even and N odd −→ 3(q
N−1

2 + . . . + q) + 2

Gabidulin, Davydov, Tombak, “Linear codes with covering radius 2 and

other new covering codes”, IEEE Trans. Inform. Theory, 1991

Pambianco, Storme, “Small complete caps in spaces of even

characteristic”, J. Combin. Theory Ser. A, 1996

Giulietti, “Small complete caps in PG(N, q), q even”, J. Combin. Des.,

2007

Davydov, Giulietti, Marcugini, Pambianco, “New inductive constructions

of complete caps in PG(N, q), q even”, J. Combin. Des., 2010



Known constructions of infinite families of small complete
caps in PG (N , q)

Trivial Lower Bound

t2(N , q) ≥
√

2q
N−1

2

N even −→ cqN/2

Pambianco, Storme, “Small complete caps in spaces of even

characteristic”, J. Combin. Theory Ser. A, 1996

Davydov, Österg̊ard, “Recursive constructions of complete caps”, J.

Statist. Planning Infer., 2001

Giulietti, “Small complete caps in PG(N, q), q even”, J. Combin. Des.,

2007

Giulietti, “Small complete caps in Galois affine spaces”, J. Algebraic

Combin., 2007

Giulietti, Pasticci, “Quasi-perfect linear codes with minimum distance 4”,

IEEE Trans. Inform. Theory, 2007

Davydov, Giulietti, Marcugini, Pambianco, “New inductive constructions

of complete caps in PG(N, q), q even”, J. Combin. Des., 2010



Known constructions of infinite families of small complete
caps in PG (N , q)

Trivial Lower Bound

t2(N , q) ≥
√

2q
N−1

2

N ≡ 0 (mod 4) and q odd −→ q(N/2−1/8)

Giulietti, “Small complete caps in Galois affine spaces”, J. Algebraic

Combin., 2007

Anbar, Bartoli, Giulietti, Platoni, “Small Complete Caps from Singular

Cubics”, J. Combin. Des., 2013

Anbar, Bartoli, Giulietti, Platoni, “Small Complete Caps from Singular

Cubics II”, J. Algebraic Combin., 2014



Main result

Theorem

PG (N , q)

∃ c > 0 and M > 0:

q ≥ M =⇒ ∃ a complete cap of size

O
(

q
N−1

2 log cq
)
.



Main result

Theorem

C : [n, n − (N + 1), 4]q2 linear code

∃ c > 0 and M > 0:

q ≥ M =⇒ n = O
(

q
N−1

2 log cq
)



Probabilistic methods in Combinatorics

Graph Theory

Blocking sets

Saturating sets

Complete arcs in projective planes
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The probabilistic construction of small complete arcs of
J.H. Kim and W.H. Vu, Combinatorica, 2003

Theorem

PG (2, q) ∃ c > 0 and M > 0:
q ≥ M =⇒ ∃ a complete arc of size

O
(

q
1
2 log cq

)
.

Proof (sketch)

|A| =
√

q log q

∣∣∣ NOT
COVERED
POINTS

∣∣∣ =
√

q logc q

randomized algorithm
with probability close to 1

=⇒ complete arcs

in Θ(log 5/2q) steps



Nibble method vs Point-by-point method

Point-by-point construction
1 Select a new element among those which do
not cause any conflict

Random
Greedy

According a certain ordering

2 Discard all elements that cause any conflict



Nibble method vs Point-by-point method

Example

1 At the beginning the cap being constructed is empty

2 Select one non-discarded point according to the criterion

3 At each step, discard all points contained in any secant of
already selected points

4 At the end the set of all selected points is a complete cap



Nibble method vs Point-by-point method

Ajtai, Komlós, Szemerédi, “A dense infinite Sidon sequence”, Eur. J. Comb., 1981

Rödl, “On a packing and covering problem”, European J. Comb., 1985

Nibble method

1 Select a bunch of elements together with some probability (a
nibble)

NIBBLE



Nibble method vs Point-by-point method

Ajtai, Komlós, Szemerédi, “A dense infinite Sidon sequence”, Eur. J. Comb., 1981

Rödl, “On a packing and covering problem”, European J. Comb., 1985

Nibble method

1 Select a bunch of elements together with some probability (a
nibble)

2 Select a subset of the nibble satisfying some constraints

Nibble
Satisfying

Constraints
“structure well-

understood”Available
for choice

in the next step

Perhaps
some elements
unnecessarly

discarded



Nibble method vs Point-by-point method

NIBBLE

“Convenient Size?”

NO
TOO BIG

=⇒

• too many elements
would be unnecessarily discarded
• hard to predict

the structure of its elements

YES
SMALL ENOUGH

=⇒

• no conflict occurs
for most chosen elements
• only few elements

would be unnecessarily discarded



Algorithm: START

PG (N , q)

Ai → the cap at step i

START :
A0 = ∅.

Ω0 = S0 = PG (N , q).
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Algorithm: AT EACH STEP

Choose

Bi Nibble

Si

P1
P2 P3

P4

Pn

Chosen independently with the same probability

pi = (bi q
N+1

2 log 2q)−1,

where bi = |Si |
qN+qN−1+...+q+1



Algorithm: AT EACH STEP

Choose

Mi = {P ∈ Bi : @Q,R ∈ Ai ∪ Bi : P ,Q,R are collinear }

Mi

Si
Bi

Ai

Definition

Ai+1 = Ai ∪Mi .



Algorithm: AT EACH STEP

Delete

Di = {the set of points on bisecants of Ai+1} ∪ Bi

Bi

Ai+1

Definition

Ωi+1 = Ωi \ Di .

P ∈ Ωi , pi (P) = Pr(P ∈ Di ), pu
i upper bound



Algorithm: AT EACH STEP

Compensate

P ∈ Ωi , pi(P) = Pr(P ∈ Di), pu
i upper bound

Ri ⊂ Si set of points chosen with probability

pcom
i (P) =

pu
i − pi(P)

1− pi(P)
.

Bi

Ai+1Ri

Definition

Si+1 = Si \ (Di ∪ Ri).



Algorithm

Remark

Compensation is made in order to give the

same probability

to the points in Si to be in Si+1.

In fact, if pi (P) = Pr(P ∈ Di ), then

Pr(P /∈ Si+1|P ∈ Si ) = p + (1− p)
pu
i − p

1− p
= pu

i .

So,
E(|Si+1|) = |Si |(1− pu

i ).



Algorithm: STOP

STOP : after k steps if k is the smallest integer such that

|Sk |
qN + qN−1 + . . .+ q + 1

=bk ≤ q−
N+1

2 logc q,

for some constant c (we set c = 300).



Concentration of Measure

Problem

X random variable with mean E[X ].

What is the probability that
X deviates far from E[X ]?

random variable Xi

i = 1, . . . , n
↔ Success of a trial

with probability pi

↓
Estimate the number of successes

Theorem (Chernoff Bound)

Let X =
∑n

i=1 Xi , p =
∑n

i=1 pi
n

, q = 1− p. Then for any t

Pr(X > (p + t)n) ≤ e(−(p+t) ln p+t
p
−(q−t) ln q−t

t )
n

.



New Concentration Results

tP is the binary event:
the point P ∈ Si is chosen to be in the nibble Bi or not

Definition

t = (t1, . . . , tn) independent binary random variables
Y (t1, . . . , tn) function

discrete Lipschitz
coefficient of Y

:=

smallest integer r
|Y (t̄)− Y (t̄ ′)| ≤ r

t = (t1, . . . , ti , . . . , tn)
t ′ = (t1, . . . , t

′
i , . . . , tn)

Theorem (J.H. Kim, W.H. Vu, Combinatorica, 2000)

r sufficiently small with respect to n and the mean of Y
⇓

Y is strongly concentrated with variance of order at most r 2n.



Main result

Theorem

∃ M > 0:
in PG (N , q) q ≥ M there exists

a complete cap of size

O
(

q
N−1

2 log 300q
)
.

m

Theorem

C : [n, n − (N + 1), 4]q2 linear code

∃ M > 0:

q ≥ M =⇒ n = O
(

q
N−1

2 log 300q
)
.



Something better?
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size of the smallest planar complete arcs
found using a randomized greedy algorithm

Fernanda PAMBIANCO
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To do

computer search using a nibble algorithm

bounds for the sizes
of complete (n,r)-arcs
in projective planes

bounds for the
sizes of complete arcs
in projective spaces



SYMMETRIC SURFACES

K algebraically closed field char(K) = 0

P3(K)
What are the maximally symmetric

nonsingular algebraic surfaces?

P2(K)
What are the maximally symmetric

nonsingular algebraic curves?

The Fermat curve
[Characterization of the Fermat curve as the most

symmetric nonsingular algebraic plane curve,

F.P., Mathematische Zeitschrift 2014]



SYMMETRIC SURFACES

K algebraically closed field char(K) = 0

P3(K)
What are the maximally symmetric

nonsingular algebraic surfaces?

P2(K)
What are the maximally symmetric

nonsingular algebraic curves?

The Fermat curve
[Characterization of the Fermat curve as the most

symmetric nonsingular algebraic plane curve,

F.P., Mathematische Zeitschrift 2014]



The most symmetric nonsingular plane curve

THEOREM
K algebraically closed field char(K) = 0
f ∈ K[x , y , t], homogeneous of degree d > 4, d 6= 6
V (f ): nonsingular algebraic curve in P2(K)

⇓
|Aut(V (f ))| ≤ 6d2

|Aut(V (f ))| = 6d2 ⇐⇒ V (f ) projectively

equivalent to

Fermat curve

xd + yd + td = 0



SYMMETRIC SURFACES

P3(K), K algebraically closed field char(K) = 0

What are the maximally symmetric
nonsingular algebraic surfaces Sd?

d = 2 x2
0 + x2

1 + x2
2 + x2

3 = 0
the unique non-singular quadric

Automorphism
group:

INFINITE



SYMMETRIC SURFACES

K algebraically closed field char(K) = 0

P3(K)
What are the maximally symmetric
nonsingular algebraic surfaces Sd?

Sd ⊂ P3(K) d ≥ 3, d 6= 4
⇓

Aut(Sd)
FINITE

< PGL(4,K)

H. Matsumura and P. Monsky, 1964



CUBIC SURFACES

P3(K)
d = 3 Nonsingular algebraic cubic surfaces S3

Complete classification of automorphism groups (T. Hosoh, 1997)

Aut(S3) = (Z3)3 ×s S4 MAXIMUM ORDER

Aut(S3) = S5 SECOND MAXIMUM ORDER

Theorem (H. Kaneta, S. Marcugini, F. P., 2014)

Up to equivalence

the Fermat surface
S3 = V (x3 + y 3 + z3 + t3)

UNIQUE MAXIMALLY SYMMETRIC
nonsingular algebraic cubic surface
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THE MAXIMALLY SYMMETRIC

Theorem (H. Kaneta, S. Marcugini, F. P., 2014)

Up to equivalence

the Fermat surface
S3 = V (x3 + y 3 + z3 + t3)

UNIQUE MAXIMALLY SYMMETRIC
nonsingular algebraic cubic surface

Proof (sketch)

(1) G < PGL(4,K) G ∼= Z3
3 conjugate to

G27 = 〈(diag[ω, 1, 1, 1]), (diag[1, ω, 1, 1]), (diag[1, 1, ω, 1])〉

(2) Any G27−invariant nonsingular algebraic cubic surface is

V (ax3 + by 3 + cz3 + dt3) a, b, c , d ∈ K∗



FERMAT CUBIC SURFACE

(2) Any G27−invariant nonsingular algebraic cubic surface is

V (ax3 + by 3 + cz3 + dt3) a, b, c , d ∈ K∗

f homogeneous polynomial of degree 3
V (f ) G27−invariant nonsingular algebraic cubic surface

A1 = diag[ω, 1, 1, 1], A2 = diag[1, ω, 1, 1], A3 = diag[1, 1, ω, 1]

ord(Ai ) = 3

(Ai ) ⊂ G27 ⇒ f ((x , y , z , t)Ai ) ∈ {f , ωf , ω2f }

f ((x , y , z , t)Ai) ∈ {ωf , ω2f } ⇒ V (f ) singular

f ((x , y , z , t)Ai) = f ⇒ f = ax3 + by 3 + cz3 + dt3

V (ax3 + by 3 + cz3 + dt3) nonsingular ⇔ a, b, c, d ∈ K∗



THE SECOND MAXIMALLY SYMMETRIC

Theorem (H. Kaneta, S. Marcugini, F. P., 2014)

Up to equivalence

S3 = V (x2y + y 2z + z2t + t2x)

UNIQUE SECOND MAXIMALLY SYMMETRIC

nonsingular algebraic cubic surface

Proof (sketch)

C5! I =⇒
any C5!I-invariant
nonsingular algebraic cubic surface
is V (x2y + y 2z + z2t + t2x)↗

S5
up to

conjugacy

→ C5! II =⇒ @ nonsingular

↘ C5! III =⇒ @ nonsingular

Representations



Thank you

for your attention!

Fernanda PAMBIANCO


