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Overview

We construct [gq(k,d) + 1, k,d],; codes for some q, k, d,
through projective geometry over finite fields, where
gq(k,d) = $F=3 [d/q*]. to determine ng(k,d), the mini-
mum value of n for which an [n, k,d]; code exists.
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1. Main results

Fg = {(a1,a2,...,an) | ay,...,an € Fg}.

FOI’ a — (al, ...,an),b — (bl, ,bn) & Fn,

the (Hamming) distance between a and b is
d(a,b) = [{t | a; 7 bi}|.

The weight of a is wt(a) = |{i | a; # 0} = d(a,0).

An [n,k,d]; code C means a k-dimensional subspace
of Iﬁ‘g with minimum distance d,

d min{d(a,b) | a = b, a,b € C}

min{wt(a) | wt(a) # 0, a € C}.

The elements of C are called codewords.



A good [n,k,d]; code will have

small n for fast transmission of messages,

large k to enable transmission of a wide variety
of messages,

large d to correct many errors.

Optimal linear codes problem.

Optimize one of the parameters n, k, d
for given the other two.



Optimal linear codes problem.

Problem 1. Find ng(k,d), the minimum value of n
for which an [n, k,d], code exists.

An [n,k,d]; code is called optimal if n = ngy(k,d).

See

http://www.mi.s.osakafu-u.ac.jp/ “maruta/griesmer.htm.

for the ny(k,d) tables for some small ¢ and k.



T he Griesmer bound

k=171 4
nCJ(k7d) > gCI(kvd> = Z {Zl
i=0 | 4

where [z| is a smallest integer > x.

Griesmer (1960) proved for binary codes.
Solomon and Stiffler (1965) proved for all g.

A linear code attaining the Griesmer bound is called
a Griesmer code.
Griesmer codes are optimal.



Thm A. (Maruta-Landjev-Rousseva, 2005)
nQ(kad) 2 gCZ(kad) _I_ 1 for k 2 51 q 2 3
for ¢" 1 —¢" 2 —¢*+1<d< g1 - g2 —q

Note. ng(k,d) = gq(k,d) + 1 for k > 5, ¢ > 3 for
Tl —gh2_2¢+1<d< g1 —¢b 24

Problem 2. Does a [gq(k,d) + 1,k,d]; code exist for
"l —g"2 P +1<d<gF Tt —¢F2 —2¢ for k> 57



Thm A. (Maruta-Landjev-Rousseva, 2005)
nQ(kad) 2 gCZ(kad) + 1 for k 2 51 q 2 3
for ¢" 1 —¢" 2 —¢*+1<d< g1 - g2 —q

Note. ng(k,d) = gq(k,d) + 1 for k > 5, ¢ > 3 for
Tl —gh2_2¢+1<d< g1 —¢b 24

Problem 2. Does a [gq(k,d) + 1,k,d]; code exist for
"l — g2 -2+ 1<d<gF1 —¢F2 —2¢ for k > 57

Answer. Yes for k=5. (Thm 1)



Thm B. (Klein-Metsch, 2007)
k=1 RSl p1i
Let d = sqg — X tiq “with 0 <t; <q.

=1

kol k1o k—4
Assume t; > 0, to =0 and X ¢t,q" 7" < rqg" ™. Then

1=3
nq(k,d) > gq(k,d) + 1 if the following conditions hold:
(a) s < min{ty,k — 1}.
(b) t1 < (¢+1)/2.
(c) t14+7r < g and r is a non-negative integer.



Thm B. (Klein-Metsch, 2007)
k=1 RSl p1i
Let d = sqg — X tiq “with 0 <t; <q.

=1

kol k1o k—4
Assume t; > 0, to =0 and X ¢t,q" 7" < rqg" ™. Then

1=3

nq(k,d) > gq(k,d) + 1 if the following conditions hold:
(a) s < min{ty,k — 1}.

(b) t1 < (¢g+1)/2.
(c) t14+7r < g and r is a non-negative integer.

k—4

Ex. d = (k—2)¢* 1 —(k—1)¢"2— .Zoujqj, qg > 2k—3,
J:

k>4 0<wup_4< k-3, Oguqu—lforjgk:—&



Thm B. (Klein-Metsch, 2007)
k=1 RSl p1i
Let d = sqg — X tiq “with 0 <t; <q.

=1

kol k1o k—4
Assume t; > 0, to =0 and X ¢t,q" 7" < rqg" ™. Then

1=3

nq(k,d) > gq(k,d) + 1 if the following conditions hold:
(@) s<min{t1,k—1}. s=k—2, 11 =k—1

(b) t1 <(¢g+1)/2. < qg=>2k—-3

(c) t14+7r < q and r is a non-negative integer. r = k-2

k—4

Ex. d = (k—2)¢* 1 —(k—1)¢"2— .Zoujqj, qg > 2k—3,
j:

k>4 0<wup_4< k-3, Oguqu—lforjgk:—&



ng(k,d) = gq(k,d) for d > (k —2)¢" 1 — (k. — 1)¢* 2.

ng(k,d) > gq(k,d) for

e d=(k—2)¢" 1 —(k—-1)¢"2(:=dq) for
g>k, k=3,4,5 forg>2k—3, k> 6 (M, 1997).
e di—¢F4<d<dy forq>2k—3, k> 4 (Klein, 2004).
oedi —(k—2)¢F%4+1<d<dyforqg>2k—3, k>4
(Klein-Metsch, 2007).

To show ng(k,d) = g¢(k,d) -+ 1 for the above values of
d, we construct [gq(k,d) + 1,k,d],; codes.



Lemma 2. ng4(k,d) > gq(k,d) +1ifg>2k—3, k>4
fordi — (k—2)¢" % +1<d <d.

Lemma 3. There exists a [gq(k,d)+1,k,d], code with
g>k>5fordy—(g—k+1)¢*3+1<d<d;.

Thm 4. ng(k,d) = gq(k,d) +1 if ¢> 2k —3, k > 4 for
dp — (k—2)¢"*+1<d<dj.

Lemma 3’. There exists a [gq(k,d)+1, k,d]; code with
q>k>5ford=dy —¥F3t;q" with 0 < t_3<q—k
and 0<t¢; <g—1forl<j<k-—4.




2. Gometric method

PG(r,q): projective space of dim. r over Fq
j-flat: j-dim. projective subspace of PG(r,q)

0; :=IPGU. Dl =¢ +¢ 1+ +q+1

C: an [n,k,d]; code with By =0
Il.e. with no coordinate which is identically zero

(G: a generator matrix of C
The columns of G can be considered as a multiset of
n points in X = PG(k — 1,¢q) denoted by Mg.

J; = the set of j-flats of >



> 3 P: i-point < P has multiplicity ¢ in Mg

vo= max{: | AP : ¢-point in X}

C,={P € X | P:i-point}, 0 <<~

A1+ -+ Ag: the multiset consisting of the s sets
Aq,--- ,Agin 2.

s = A1+ -+ Asg when A1 =--- = Aq.

Then, ./\/lc — Cl -+ 202 4+ .. 4+ ’70070.

For any set S in X, Mg(S) is the multiset
{PeMg| PeS}.

The multiplicity of S, denoted by mg(S), is defined as
Y0
me(S) = [Mc(S)| = > ©|SNC;.
i=1



Then it holds that

me(2),
max{me(xw) | m € Fr._o}.

n

n—d

Conversely, a multiset on > satisfying the above equal-
ities gives an [n, k,d]; code in the natural manner.



A line [ is called an i-line if mg(l) = 1.
An -plane, an -hp and so on are defined similarly.

a; = |{H c Fr_»o | mc(H) _— Z}| = # of i-hps
List of a;'s: the spectrum of C

An [n,k,d]q code is called m-divisible if all codewords
have weights divisible by an integer m > 1.



Lemma 4. C: m-divisible [n, k,d]; code, g = p",
p prime, m=9p", 1 <r<h(k—2), \g> 0, with spec.

Gy d—im — g fOr 0 < < w — 1.

= 3C*: t-divisible [n* k,d*]; code with t = ¢¥=2/m,

n* = Z;“-U:_&jaj = ntq — L0, 1, d* = ((n — d)g — n)t,
whose spectrum is
Qpx_gx—ip = N Tor 0 <1 < g
where \; = |C;| (# of i-points for C).
C* is called the projective dual (PD) of C, see

A.E. Brouwer, M. van Eupen, The correspondence between projective codes

and 2-weight codes, Des. Codes Cryptogr. 11 (1997) 261-266.



Lemma 5. (Maruta-Oya, 2011)
C: [n,k,d]q code
UJ0 ,C;: the partition of < obtained from C.

If U;j>1C; D A t-flat and d > ¢t
= 3C": [n— O k,d]q code with d' > d — ¢’

The above C’ can be constructed from the multiset
M by deleting A. We denote the resulting multiset

by MC’: MC—A.



Lemma 5. (Maruta-Oya, 2011)
C: [n,k,d]q code
UJ0 ,C;: the partition of < obtained from C.

If U;j>1C; D A t-flat and d > ¢t
= 3C": [n— O k,d]q code with d' > d — ¢’

The puncturing to construct new codes from a given
In, k,d]q code by deleting the coordinates correspond-
ing to some geometric object in PG(k —1,¢q) is called
geometric puncturing, see

T. Maruta, Construction of optimal linear codes by geometric puncturing,

Serdica J. Computing, 7, 73—80, 2013.



Lemma 5 can be generalized as follows.

Lemma 6.

C: [n,k,d]q code, Z =PG(k—1,q), 0<t<k—-2
U0 ,C;: the partition of < obtained from C.

If Ui>1C; D F: {f,m; k—1,q}-minihyper

s.t. (C1\ F)U(U;>2C;) spans X

= 3C" [n— f,k,d+ m — f]; code
An f-set F in PG(r,q) is an {f,m;r,q}-minihyper if
m=min{|FNx«||7meF_1}.

Ex. A j-flat is a {6;,0;_1;r,q}-minihyper.
A blocking b-set in some planeis a {b,1; r,q}-minihyper.



Lemma 7.

C: s-fold simplex [sf_1, k, s¢" 1], code, s > 1,

e, Cs=X =PG(k—-1,q).

If there exist Fi,..., Fy (F; € Fm;, 0 <m; <k —2) s.t.
e my > -+ 2>my With m; 1 <m; for any 1

e (F,=0forany (s+1)-set I C {1, ---,t}
iel
— MC o (Fl _l_ T _I_ Ft) generates d [gg(ka d)7 ka d]q
code with d = sgF~1 — xt_, ¢™i.

The Griesmer codes constructed in this way is said to
be of Belov type.

For the existence of Griesmer codes of Belov type,
the following is known.



Thm 8. 3C: [gq(k,d), k,d]q; code of Belov type iff

¢ min{s+1,t}
d=sq"t— > " > wu; < sk,
where s = {d/qk_lw, k>u1 > uy > --- > u > 1 with
U; > Ujdq—1 forl1 <:<t—qg+1.

Thm 8 was first proved by Belov, Logachev, Sandimirov
(1974) for binary codes, and generalized to non-binary
codes by Dodunekov (1985) and Hill (1992). For
q = 2, see

F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting
Codes, North-Holland, 1977.



Thm 8. 3C: [gq(k,d), k,d]q; code of Belov type iff

¢ min{s+1,t}
d=sq"t— > "1 > w; < sk,

where s = {d/qk_lw, k>u1 > uy > --- > ux > 1 with
U; > Ui g1 forl1 <:<t—qg+ 1.

Cor. ng(k,d) = gq¢(k,d) for all d when k= 1,2 and for
d>d; = (k—2)¢* 1 - (k—1)¢* 2 for ¢ > k > 3.



Thm 8 was proved by geometric puncturing from s-
fold simplex code as Lemma 7, and the following
lemma can be proved similarly.

Lemma 9. Let N be a ¢-flat in X = PG(k — 1,q),
2<t<k—1andlet uy,---,ur be integers with
O<ur<ur1<---<wup<t—1andu; >u4, 1 (V).
= JAy; uj-flat in M (1 <5 <r) s.t. the multiset
sl1 contains Ay, + -+ + Ay, If
s+1

> u; < st— 1.
1=1



3. Construction of new codes 1

Lemma 3’. There exists a [gq(k,d)+1,k,d]; code with
g>k>5ford=(k—2)¢" 1 — (k- 1)¢*F 2 - xi-?t;¢
with 0 <tp_3<g—kand0<¢; <qg—1forl <j<k—4.

s-arc in PG(r,q)
e set of s points in PG(r,q).
e NO r-+ 1 points are on a hyperplane.

When ¢ > r, it is known that there exists a (¢+ 1)-arc.
A set of s hps is an s-arc of hps if it forms an s-arc in
the dual space.



3. Construction of new codes 1

Lemma 3’. There exists a [gq(k,d)+1,k,d]; code with
¢>k>5ford=(k-2)¢* 1 — (k—1)¢" 2 - o7 ti¢’
with 0 <tp_3<g—kand0<¢; <qg—1forl <j<k—4.

Proof. > =PG(k—-1,q)
{H1,H>,---,Hy}: a k-arc of hps in X
Let P be the point P=HiN---NHL_1 & Hy.
S=k-2)+P—-(H1+ -+ Hp_1)
C : the code with M, =S8.
= Cis a [gq(k,d1) + 1,k,d1]q code with
dy = (k—2)¢" 1 — (k—1)¢" 2.
The set of O-points in >~ consists of k—1 lines through
P meeting H; in £k — 1 points.



Let m;, = H.NH; for1<:<k—1.

= {mq1, - ,m_1} isa (k—1)-arc of (k—3)-flats in Hy,
and Mc(Hy) = (k—2)Hp — (m1+ -+ m_1).

Since (k — 1)-arcs in a (k — 2)-flat are unique up to
projective equivalence, it follows from Lemma 9 that
the multiset Mc(H) contains Ay, 4+ - -+ Ay,, where
Auj IS a u;-flatin H for 1 <j <r with ur <--- <wup <
k—2st u;>ujpqg 1 and Ay, =m;for 1 <j< k-1
since kil u, < (k—2)(k—1).

1=

So, the multiset M¢ — (Ay,+ Ayyyq+ -+ Ay,) gives
a [gq(k,d) + 1,k,d]q code for d =d; — X1 q*“i.




Remark. For £k =5, Lemma 3 implies
3[g4(5,d) +1,5,d]q code for dy —¢>+4¢*+1 < d < dy.
We can improve this as follows.

Thm 10. There exists a [gq(k,d) 4+ 1,k,d]; code for
di—qF2+1<d<dq for k=4,5.

Problem 3. Does a [gq(k,d) + 1,k,d]; code exist for
di —¢" 2 +1<d<d;=(k—2)¢" 1 - (k—1)g" 2 for
k> 67




4. Construction of new codes 2

Lemma 11. There exists a ¢-divisible [¢°+q, 5, ¢°—qlq

code C with spectrum

2_
(a'Oa an a2q) — (q 2 q7 q4 T q2 |

3122
g 1,2(1 +§q —I—q).

We need the above lemma to prove the following.

Thm 1. There exists a [gq¢(5,d) + 1,5,d],; code for
*— P —¢?+1<d<¢g*-¢>-2¢q



4. Construction of new codes 2

Lemma 11. There exists a g-divisible [¢°+¢, 5, ¢°—qlq

code C with spectrum

2_ 203 3 2
(aOaaqaCLQq) = (4 > q7q4 - q2 qg+1,= —|—2q +q)-

Construction

¢: line, §: plane with /ndé =0 in X = PG(4,q)

K ={Qq,Q1,..-.,Qq}: a (¢+1)-arcin

t=A{Py, P1,..., Py}, l; = (P}, Qy).

Setting C7 = (U_yl;) \ £ and Cy = =\ C1, we get a
g-divisible [¢2 4 ¢,5,¢% — qlq code C.



> =PG(4,q)

Nd =10

K: a(g+1)-arciné
li = (P, Q)

q
Ci1=(C(U )\?
1=0

= C is a g-divisible
[¢°+4q, 5, ¢°—q]q code.




Note. A g¢-divisible [¢° + ¢,5,¢° — q]q code was first
found for ¢ = 5 by the package Q-Extension, see

I.G. Bouvyukliev, What is Q-Extension?, Serdica J. Computing 1
(2007) 115—-130.

As for recent results on optimal codes over Fg, see

Y. Kageyama, T. Maruta, I. Bouyukliev, On the minimum length

of linear codes over Fg, submitted for publication.



q
Setting C1 = ('Uoli) \Z and Co = X\ (1, we get a
1=
g-divisible [¢2 4+ ¢,5,¢% — qlq code C.

C: g-divisible [¢° + ¢,5,¢° — q]q code
J projective dual
C*: g°-divisible [¢* + 1,5, ¢* — ¢°], code.

C C*

2¢-solid | O-point imNK| (m,?)

g-solid | 1-point 2 2q-sold
0-solid | 2-point 1 g-solid
P 0 0-solid

line ¢ | plane ¢*

) m:. a line on o
line I; | plane [}




e Every O-point in 2* for C* is a point on some plane
7 or on the plane ¢*.

e From a counting argument, one can take q — 1 skew
lines containing no O-point for C*.

Hence, from our code C*, one can construct a
[¢*+1—t(¢g+1),5,¢* —¢>—tqlg code for 1 <t < q—1
by geometric puncturing.




Remark. We constructed a ¢?-div. [¢*+1,5,¢* —¢3]4
code from a ¢-div. [¢° 4+ q,5,¢° — ¢]q code by PD.

The PD of a ¢*3-div. [¢* 14+ 1,k,¢" 1 —¢" 2], code
is a ¢g-div. [¢° + q,k,q° — q]q code for k > 4.
e For k = 4, Jg-div. [¢° + q,4,¢° — q]4 code
(take ¢ skew lines in PG(3,q)).
e For k =5, 3¢-div. [¢° + q,5,¢° — q]q code.

e For k > 6, existence of a ¢-div. [¢° + q,k,q° — qlq
code is unknown except for



Remark. We constructed a ¢?-div. [¢*+1,5,¢* —¢3]4
code from a ¢-div. [¢° + q,5,¢° — q]q code by PD.
The PD of a ¢*3-div. [¢* 14+ 1,k,¢" 1 —¢" 2], code
is a ¢g-div. [¢° + q,k,q° — q]q code for k > 4.

e For k = 4, Jg-div. [¢° + q,4,¢° — q]4 code
(take ¢ skew lines in PG(3,q)).
e For k =5, 3¢-div. [¢° + q,5,¢° — q]q code.

e For k > 6, existence of a ¢-div. [¢° + q,k,q° — qlq
code is unknown except for the extended ternary
Golay [12,6,6]3 code (k=6 and ¢ = 3).
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Thank you for your attention!



