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Overview

We construct [gq(k, d)+1, k, d]q codes for some q, k, d,

through projective geometry over finite fields, where

gq(k, d) =
∑k−1
i=0

⌈
d/qi

⌉
. to determine nq(k, d), the mini-

mum value of n for which an [n, k, d]q code exists.
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1. Main results

Fnq = {(a1, a2, ..., an) | a1, ..., an ∈ Fq}.
For a = (a1, ..., an), b = (b1, ..., bn) ∈ Fnq ,
the (Hamming) distance between a and b is

d(a, b) = |{i | ai ̸= bi}|.

The weight of a is wt(a) = |{i | ai ̸= 0}| = d(a, 0).

An [n, k, d]q code C means a k-dimensional subspace

of Fnq with minimum distance d,

d = min{d(a, b) | a ̸= b, a, b ∈ C}
= min{wt(a) | wt(a) ̸= 0, a ∈ C}.

The elements of C are called codewords.



A good [n, k, d]q code will have

small n for fast transmission of messages,

large k to enable transmission of a wide variety

of messages,

large d to correct many errors.

Optimal linear codes problem.

Optimize one of the parameters n, k, d

for given the other two.



Optimal linear codes problem.

Problem 1. Find nq(k, d), the minimum value of n

for which an [n, k, d]q code exists.

An [n, k, d]q code is called optimal if n = nq(k, d).

See

http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer.htm.

for the nq(k, d) tables for some small q and k.



The Griesmer bound

nq(k, d) ≥ gq(k, d) :=
k−1∑
i=0

 d

qi


where ⌈x⌉ is a smallest integer ≥ x.

Griesmer (1960) proved for binary codes.

Solomon and Stiffler (1965) proved for all q.

A linear code attaining the Griesmer bound is called

a Griesmer code.

Griesmer codes are optimal.



Thm A. (Maruta-Landjev-Rousseva, 2005)

nq(k, d) ≥ gq(k, d) + 1 for k ≥ 5, q ≥ 3

for qk−1 − qk−2 − q2 +1 ≤ d ≤ qk−1 − qk−2 − q.

Note. nq(k, d) = gq(k, d) + 1 for k ≥ 5, q ≥ 3 for

qk−1 − qk−2 − 2q +1 ≤ d ≤ qk−1 − qk−2 − q.

Problem 2. Does a [gq(k, d) + 1, k, d]q code exist for

qk−1 − qk−2 − q2 +1 ≤ d ≤ qk−1 − qk−2 − 2q for k ≥ 5?

Answer. Yes for k = 5. (Thm 1)
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Thm B. (Klein-Metsch, 2007)

Let d = sqk−1 −
k−1∑
i=1

tiq
k−1−i with 0 ≤ ti < q.

Assume t1 > 0, t2 = 0 and
k−1∑
i=3

tiq
k−1−i ≤ rqk−4. Then

nq(k, d) ≥ gq(k, d) + 1 if the following conditions hold:

(a) s < min{t1, k − 1}. s = k − 2, i0 = 1, ti0 = k − 1

(b) t1 ≤ (q +1)/2. ⇔ q ≥ 2k − 3

(c) t1+r ≤ q and r is a non-negative integer. r = k−2

Ex. d = (k−2)qk−1−(k−1)qk−2−
k−4∑
j=0

ujq
j, q ≥ 2k−3,

k ≥ 4, 0 ≤ uk−4 ≤ k − 3, 0 ≤ uj ≤ q − 1 for j ≤ k − 5.
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♣ nq(k, d) = gq(k, d) for d > (k − 2)qk−1 − (k − 1)qk−2.

nq(k, d) > gq(k, d) for

• d = (k − 2)qk−1 − (k − 1)qk−2(:= d1) for

q ≥ k, k = 3,4,5; for q ≥ 2k − 3, k ≥ 6 (M, 1997).

• d1−qk−4 ≤ d ≤ d1 for q ≥ 2k−3, k ≥ 4 (Klein, 2004).

• d1 − (k − 2)qk−4 +1 ≤ d ≤ d1 for q ≥ 2k − 3, k ≥ 4

(Klein-Metsch, 2007).

To show nq(k, d) = gq(k, d)+1 for the above values of

d, we construct [gq(k, d) + 1, k, d]q codes.



Lemma 2. nq(k, d) ≥ gq(k, d) + 1 if q ≥ 2k − 3, k ≥ 4

for d1 − (k − 2)qk−4 +1 ≤ d ≤ d1.

Lemma 3. There exists a [gq(k, d)+1, k, d]q code with

q ≥ k ≥ 5 for d1 − (q − k +1)qk−3 +1 ≤ d ≤ d1.

Thm 4. nq(k, d) = gq(k, d)+ 1 if q ≥ 2k− 3, k ≥ 4 for

d1 − (k − 2)qk−4 +1 ≤ d ≤ d1.

Lemma 3’. There exists a [gq(k, d)+1, k, d]q code with

q ≥ k ≥ 5 for d = d1 − ∑k−3
i=1 tiq

i with 0 ≤ tk−3 ≤ q − k

and 0 ≤ tj ≤ q − 1 for 1 ≤ j ≤ k − 4.



2. Gometric method

PG(r, q): projective space of dim. r over Fq
j-flat: j-dim. projective subspace of PG(r, q)

θj := |PG(j, q)| = qj + qj−1 + · · ·+ q +1

C: an [n, k, d]q code with B1 = 0

i.e. with no coordinate which is identically zero

G: a generator matrix of C
The columns of G can be considered as a multiset of

n points in Σ = PG(k − 1, q) denoted by MC.

Fj := the set of j-flats of Σ



Σ ∋ P : i-point ⇔ P has multiplicity i in MC
γ0= max{i | ∃P : i-point in Σ}
Ci= {P ∈ Σ | P : i-point}, 0 ≤ i ≤ γ0
∆1 + · · ·+∆s: the multiset consisting of the s sets

∆1, · · · ,∆s in Σ.

s∆ = ∆1 + · · ·+∆s when ∆1 = · · · = ∆s.

Then, MC = C1 +2C2 + · · ·+ γ0Cγ0.

For any set S in Σ, MC(S) is the multiset

{P ∈ MC | P ∈ S}.
The multiplicity of S, denoted by mC(S), is defined as

mC(S) = |MC(S)| =
γ0∑
i=1

i·|S∩Ci|.



Then it holds that

n = mC(Σ),

n− d = max{mC(π) | π ∈ Fk−2}.

Conversely, a multiset on Σ satisfying the above equal-

ities gives an [n, k, d]q code in the natural manner.



A line l is called an i-line if mC(l) = i.

An i-plane, an i-hp and so on are defined similarly.

ai = |{H ∈ Fk−2 | mC(H) = i}| = # of i-hps

List of ai’s: the spectrum of C

An [n, k, d]q code is called m-divisible if all codewords

have weights divisible by an integer m > 1.



Lemma 4. C: m-divisible [n, k, d]q code, q = ph,

p prime, m = pr, 1 ≤ r < h(k − 2), λ0 > 0, with spec.

an−d−im = αi for 0 ≤ i ≤ w − 1.

⇒ ∃C∗: t-divisible [n∗, k, d∗]q code with t = qk−2/m,

n∗ =
∑w−1
j=0 jαj = ntq − d

mθk−1, d∗ = ((n − d)q − n)t,

whose spectrum is

an∗−d∗−it = λi for 0 ≤ i ≤ γ0

where λi = |Ci| (# of i-points for C).

C∗ is called the projective dual (PD) of C, see

A.E. Brouwer, M. van Eupen, The correspondence between projective codes

and 2-weight codes, Des. Codes Cryptogr. 11 (1997) 261–266.



Lemma 5. (Maruta-Oya, 2011)

C: [n, k, d]q code

∪γ0
i=0Ci: the partition of Σ obtained from C.

If ∪i≥1Ci ⊃ ∆: t-flat and d > qt

⇒ ∃C′: [n− θt, k, d
′]q code with d′ ≥ d− qt.

The above C′ can be constructed from the multiset

MC by deleting ∆. We denote the resulting multiset

by MC′ = MC −∆.

is called geometric puncturing, see

T. Maruta, Construction of optimal linear codes by geometric puncturing,

Serdica J. Computing, 7, 73–80, 2013.
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[n, k, d]q code by deleting the coordinates correspond-

ing to some geometric object in PG(k− 1, q) is called

geometric puncturing, see

T. Maruta, Construction of optimal linear codes by geometric puncturing,

Serdica J. Computing, 7, 73–80, 2013.



Lemma 5 can be generalized as follows.

Lemma 6.

C: [n, k, d]q code, Σ = PG(k − 1, q), 0 ≤ t ≤ k − 2

∪γ0
i=0Ci: the partition of Σ obtained from C.

If ∪i≥1Ci ⊃ F: {f,m; k − 1, q}-minihyper

s.t. (C1 \ F) ∪ (∪i≥2Ci) spans Σ

⇒ ∃C′: [n− f, k, d+m− f ]q code

An f-set F in PG(r, q) is an {f,m; r, q}-minihyper if

m = min{|F ∩ π| | π ∈ Fr−1}.

Ex. A j-flat is a {θj, θj−1; r, q}-minihyper.

A blocking b-set in some plane is a {b,1; r, q}-minihyper.



Lemma 7.

C: s-fold simplex [sθk−1, k, sq
k−1]q code, s ≥ 1,

i.e., Cs = Σ = PG(k − 1, q).

If there exist F1, ..., Ft (Fj ∈ Fmj, 0 ≤ mj ≤ k − 2) s.t.

• m1 ≥ · · · ≥ mt with mi+q−1 < mi for any i

•
∩
i∈I

Fi = ∅ for any (s+1)-set I ⊂ {1, · · · , t}

⇒ MC − (F1 + · · ·+ Ft) generates a [gq(k, d), k, d]q
code with d = sqk−1 − ∑t

i=1 q
mi.

The Griesmer codes constructed in this way is said to

be of Belov type.

For the existence of Griesmer codes of Belov type,

the following is known.



Thm 8. ∃C: [gq(k, d), k, d]q code of Belov type iff

d = sqk−1 −
t∑

i=1
qui−1,

min{s+1,t}∑
i=1

ui ≤ sk,

where s =
⌈
d/qk−1

⌉
, k > u1 ≥ u2 ≥ · · · ≥ ut ≥ 1 with

ui > ui+q−1 for 1 ≤ i ≤ t− q +1.

Thm 8 was first proved by Belov, Logachev, Sandimirov

(1974) for binary codes, and generalized to non-binary

codes by Dodunekov (1985) and Hill (1992). For

q = 2, see

F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting

Codes, North-Holland, 1977.



Thm 8. ∃C: [gq(k, d), k, d]q code of Belov type iff

d = sqk−1 −
t∑

i=1
qui−1,

min{s+1,t}∑
i=1

ui ≤ sk,

where s =
⌈
d/qk−1

⌉
, k > u1 ≥ u2 ≥ · · · ≥ ut ≥ 1 with

ui > ui+q−1 for 1 ≤ i ≤ t− q +1.

Cor. nq(k, d) = gq(k, d) for all d when k = 1,2 and for

d > d1 = (k − 2)qk−1 − (k − 1)qk−2 for q ≥ k ≥ 3.

How about for d ≤ (k−2)qk−1−(k−1)qk−2 ? Griesmer

codes are optimal.For q = 2, see

F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting

Codes, North-Holland, 1977.



Thm 8 was proved by geometric puncturing from s-

fold simplex code as Lemma 7, and the following

lemma can be proved similarly.

Lemma 9. Let Π be a t-flat in Σ = PG(k − 1, q),

2 ≤ t ≤ k − 1 and let u1, · · · , ur be integers with

0 ≤ ur ≤ ur−1 ≤ · · · ≤ u1 ≤ t− 1 and ui > ui+q−1 (∀i).

⇒ ∃∆uj: uj-flat in Π (1 ≤ j ≤ r) s.t. the multiset

sΠ contains ∆u1 + · · ·+∆ur if

s+1∑
i=1

ui ≤ st− 1.



3. Construction of new codes 1

Lemma 3’. There exists a [gq(k, d)+1, k, d]q code with

q ≥ k ≥ 5 for d = (k − 2)qk−1 − (k − 1)qk−2 − ∑k−3
i=1 tiq

i

with 0 ≤ tk−3 ≤ q−k and 0 ≤ tj ≤ q−1 for 1 ≤ j ≤ k−4.

s-arc in PG(r, q)

• set of s points in PG(r, q).

• no r +1 points are on a hyperplane.

When q ≥ r, it is known that there exists a (q+1)-arc.

A set of s hps is an s-arc of hps if it forms an s-arc in

the dual space.

⇒ C is a [gq(k, d1) + 1, k, d1]q code with

d1 = (k − 2)qk−1 − (k − 1)qk−2

aaa
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i=1 tiq
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Proof. Σ = PG(k − 1, q)

{H1, H2, · · · , Hk}: a k-arc of hps in Σ

Let P be the point P = H1 ∩ · · · ∩Hk−1 ̸∈ Hk.

S = (k − 2)Σ+ P − (H1 + · · ·+Hk−1)

C : the code with MC = S.
⇒ C is a [gq(k, d1) + 1, k, d1]q code with

d1 = (k − 2)qk−1 − (k − 1)qk−2.

The set of 0-points in Σ consists of k−1 lines through

P meeting Hk in k − 1 points.



Let πi = Hk ∩Hi for 1 ≤ i ≤ k − 1.

⇒ {π1, · · · , πk−1} is a (k−1)-arc of (k−3)-flats in Hk

and MC(Hk) = (k − 2)Hk − (π1 + · · ·+ πk−1).

Since (k − 1)-arcs in a (k − 2)-flat are unique up to

projective equivalence, it follows from Lemma 9 that

the multiset MC(Hk) contains ∆u1 + · · ·+∆ur, where

∆uj is a uj-flat in Hk for 1 ≤ j ≤ r with ur ≤ · · · ≤ u1 ≤
k − 2 s.t. ui > ui+q−1 and ∆uj = πj for 1 ≤ j ≤ k − 1

since
k−1∑
i=1

ui ≤ (k − 2)(k − 1).

So, the multiset MC−(∆uk+∆uk+1+ · · ·+∆ur) gives

a [gq(k, d) + 1, k, d]q code for d = d1 − ∑r
i=1 q

ui.



Remark. For k = 5, Lemma 3 implies

∃[gq(5, d)+1,5, d]q code for d1− q3+4q2+1 ≤ d ≤ d1.

We can improve this as follows.

Thm 10. There exists a [gq(k, d) + 1, k, d]q code for

d1 − qk−2 +1 ≤ d ≤ d1 for k = 4,5.

Problem 3. Does a [gq(k, d) + 1, k, d]q code exist for

d1 − qk−2 +1 ≤ d ≤ d1 = (k − 2)qk−1 − (k − 1)qk−2 for

k ≥ 6?



4. Construction of new codes 2

Lemma 11. There exists a q-divisible [q2+q,5, q2−q]q
code C with spectrum

(a0, aq, a2q) = (q
2−q
2 , q4 − q2 + q +1, 2q

3+3q2+q
2 ).

We need the above lemma to prove the following.

Thm 1. There exists a [gq(5, d) + 1,5, d]q code for

q4 − q3 − q2 +1 ≤ d ≤ q4 − q3 − 2q.



4. Construction of new codes 2

Lemma 11. There exists a q-divisible [q2+q,5, q2−q]q
code C with spectrum

(a0, aq, a2q) = (q
2−q
2 , q4 − q2 + q +1, 2q

3+3q2+q
2 ).

Construction

ℓ: line, δ: plane with ℓ ∩ δ = ∅ in Σ = PG(4, q)

K = {Q0, Q1, . . . , Qq}: a (q +1)-arc in δ

ℓ = {P0, P1, . . . , Pq}, li = ⟨Pi, Qi⟩.

Setting C1 = (∪q
i=0li) \ ℓ and C0 = Σ \ C1, we get a

q-divisible [q2 + q,5, q2 − q]q code C.



Σ = PG(4, q)

ℓ ∩ δ = ∅
K: a (q +1)-arc in δ

li = ⟨Pi, Qi⟩

C1 = (
q∪

i=0
li) \ ℓ

C0 = Σ \ C1

⇒ C is a q-divisible

[q2+q,5, q2−q]q code.



Note. A q-divisible [q2 + q,5, q2 − q]q code was first

found for q = 5 by the package Q-Extension, see

I.G. Bouyukliev, What is Q-Extension?, Serdica J. Computing 1

(2007) 115–130.

As for recent results on optimal codes over F5, see

Y. Kageyama, T. Maruta, I. Bouyukliev, On the minimum length

of linear codes over F5, submitted for publication.



Setting C1 = (
q∪

i=0
li) \ ℓ and C0 = Σ \ C1, we get a

q-divisible [q2 + q,5, q2 − q]q code C.

C: q-divisible [q2 + q,5, q2 − q]q code

↓ projective dual

C∗: q2-divisible [q4 +1,5, q4 − q3]q code.

C C∗
2q-solid 0-point
q-solid 1-point
0-solid 2-point
line ℓ plane ℓ∗

line li plane l∗i

|m ∩K| ⟨m, ℓ⟩
2 2q-solid
1 q-solid
0 0-solid

m: a line on δ



• Every 0-point in Σ∗ for C∗ is a point on some plane

l∗i or on the plane ℓ∗.

• From a counting argument, one can take q−1 skew

lines containing no 0-point for C∗.

Hence, from our code C∗, one can construct a

[q4+1− t(q+1),5, q4− q3− tq]q code for 1 ≤ t ≤ q−1

by geometric puncturing.



Remark. We constructed a q2-div. [q4+1,5, q4− q3]q
code from a q-div. [q2 + q,5, q2 − q]q code by PD.

The PD of a qk−3-div. [qk−1+1, k, qk−1− qk−2]q code

is a q-div. [q2 + q, k, q2 − q]q code for k ≥ 4.

• For k = 4, ∃q-div. [q2 + q,4, q2 − q]q code

(take q skew lines in PG(3, q)).

• For k = 5, ∃q-div. [q2 + q,5, q2 − q]q code.

• For k ≥ 6, existence of a q-div. [q2 + q, k, q2 − q]q
code is unknown except for the extended ternary

Golay [12,6,6]3 code (k = 6 and q = 3).
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