On the construction of optimal codes over \mathbb{F}_q

Tatsuya Maruta (Joint work with Yuuki Kageyama)

Department of Mathematics and Information Sciences Osaka Prefecture University maruta@mi.s.osakafu-u.ac.jp

Overview

We construct $[g_q(k,d) + 1, k, d]_q$ codes for some q, k, d, through projective geometry over finite fields, where $g_q(k,d) = \sum_{i=0}^{k-1} [d/q^i]$. to determine $n_q(k,d)$, the minimum value of n for which an $[n,k,d]_q$ code exists.

Contents

- 1. Main results
- 2. Geometric method
- 3. Construction of new codes 1
- 4. Construction of new codes 2

1. Main results

$$\begin{split} \mathbb{F}_q^n &= \{(a_1, a_2, ..., a_n) \mid a_1, ..., a_n \in \mathbb{F}_q\}.\\ \text{For } a &= (a_1, ..., a_n), b = (b_1, ..., b_n) \in \mathbb{F}_q^n,\\ \text{the (Hamming) distance between } a \text{ and } b \text{ is}\\ d(a, b) &= |\{i \mid a_i \neq b_i\}|.\\ \text{The weight of } a \text{ is } wt(a) &= |\{i \mid a_i \neq 0\}| = d(a, 0).\\ \text{An } [n, k, d]_q \text{ code } \mathcal{C} \text{ means a } k \text{-dimensional subspace}\\ \text{of } \mathbb{F}_q^n \text{ with minimum distance } d, \end{split}$$

$$d = \min\{d(a,b) \mid a \neq b, a, b \in \mathcal{C}\}$$

= min{wt(a) | wt(a) \neq 0, a \in \mathcal{C}}.

The elements of \mathcal{C} are called codewords.

A good $[n, k, d]_q$ code will have

small n for fast transmission of messages,

large k to enable transmission of a wide variety of messages,

large d to correct many errors.

Optimal linear codes problem.

Optimize one of the parameters n, k, d for given the other two.

Optimal linear codes problem.

Problem 1. Find $n_q(k,d)$, the minimum value of n for which an $[n,k,d]_q$ code exists.

An $[n, k, d]_q$ code is called optimal if $n = n_q(k, d)$. See

http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer.htm. for the $n_q(k,d)$ tables for some small q and k.

The Griesmer bound

$$n_q(k,d) \ge g_q(k,d) := \sum_{i=0}^{k-1} \left[\frac{d}{q^i} \right]$$

where $\lceil x \rceil$ is a smallest integer $\ge x$.

Griesmer (1960) proved for binary codes. Solomon and Stiffler (1965) proved for all q.

A linear code attaining the Griesmer bound is called a Griesmer code.

Griesmer codes are optimal.

Thm A. (Maruta-Landjev-Rousseva, 2005) $n_q(k,d) \ge g_q(k,d) + 1$ for $k \ge 5$, $q \ge 3$ for $q^{k-1} - q^{k-2} - q^2 + 1 \le d \le q^{k-1} - q^{k-2} - q$.

Note.
$$n_q(k,d) = g_q(k,d) + 1$$
 for $k \ge 5$, $q \ge 3$ for $q^{k-1} - q^{k-2} - 2q + 1 \le d \le q^{k-1} - q^{k-2} - q$.

Problem 2. Does a $[g_q(k,d) + 1, k, d]_q$ code exist for $q^{k-1} - q^{k-2} - q^2 + 1 \le d \le q^{k-1} - q^{k-2} - 2q$ for $k \ge 5$?

Thm A. (Maruta-Landjev-Rousseva, 2005) $n_q(k,d) \ge g_q(k,d) + 1$ for $k \ge 5$, $q \ge 3$ for $q^{k-1} - q^{k-2} - q^2 + 1 \le d \le q^{k-1} - q^{k-2} - q$.

Note.
$$n_q(k,d) = g_q(k,d) + 1$$
 for $k \ge 5$, $q \ge 3$ for $q^{k-1} - q^{k-2} - 2q + 1 \le d \le q^{k-1} - q^{k-2} - q$.

Problem 2. Does a $[g_q(k,d) + 1, k, d]_q$ code exist for $q^{k-1} - q^{k-2} - q^2 + 1 \le d \le q^{k-1} - q^{k-2} - 2q$ for $k \ge 5$?

Answer. Yes for k = 5. (Thm 1)

Thm B. (Klein-Metsch, 2007) Let $d = sq^{k-1} - \sum_{i=1}^{k-1} t_i q^{k-1-i}$ with $0 \le t_i < q$. Assume $t_1 > 0$, $t_2 = 0$ and $\sum_{i=3}^{k-1} t_i q^{k-1-i} \le rq^{k-4}$. Then $n_q(k,d) \ge g_q(k,d) + 1$ if the following conditions hold: (a) $s < \min\{t_1, k-1\}$. (b) $t_1 \le (q+1)/2$. (c) $t_1 + r \le q$ and r is a non-negative integer. Thm B. (Klein-Metsch, 2007) Let $d = sq^{k-1} - \sum_{i=1}^{k-1} t_i q^{k-1-i}$ with $0 \le t_i < q$. Assume $t_1 > 0$, $t_2 = 0$ and $\sum_{i=3}^{k-1} t_i q^{k-1-i} \le rq^{k-4}$. Then $n_q(k,d) \ge g_q(k,d) + 1$ if the following conditions hold: (a) $s < \min\{t_1, k-1\}$. (b) $t_1 \le (q+1)/2$. (c) $t_1 + r \le q$ and r is a non-negative integer.

Ex.
$$d = (k-2)q^{k-1} - (k-1)q^{k-2} - \sum_{j=0}^{k-4} u_j q^j, q \ge 2k-3,$$

 $k \ge 4, 0 \le u_{k-4} \le k-3, 0 \le u_j \le q-1$ for $j \le k-5$.

Thm B. (Klein-Metsch, 2007) Let $d = sq^{k-1} - \sum_{i=1}^{k-1} t_i q^{k-1-i}$ with $0 \le t_i < q$. Assume $t_1 > 0$, $t_2 = 0$ and $\sum_{i=3}^{k-1} t_i q^{k-1-i} \le rq^{k-4}$. Then $n_q(k,d) \ge g_q(k,d) + 1$ if the following conditions hold: (a) $s < \min\{t_1, k-1\}$. s = k - 2, $t_1 = k - 1$ (b) $t_1 \le (q+1)/2$. $\Leftrightarrow q \ge 2k - 3$ (c) $t_1 + r \le q$ and r is a non-negative integer. r = k - 2

Ex.
$$d = (k-2)q^{k-1} - (k-1)q^{k-2} - \sum_{j=0}^{k-4} u_j q^j$$
, $q \ge 2k-3$, $k \ge 4$, $0 \le u_{k-4} \le k-3$, $0 \le u_j \le q-1$ for $j \le k-5$.

♣
$$n_q(k,d) = g_q(k,d)$$
 for $d > (k-2)q^{k-1} - (k-1)q^{k-2}$.

$$\begin{split} n_q(k,d) &> g_q(k,d) \text{ for} \\ \bullet \ d = (k-2)q^{k-1} - (k-1)q^{k-2}(:=d_1) \text{ for} \\ q &\geq k, \ k = 3, 4, 5; \text{ for } q \geq 2k-3, \ k \geq 6 \ (\mathsf{M}, \ 1997). \\ \bullet \ d_1 - q^{k-4} &\leq d \leq d_1 \text{ for } q \geq 2k-3, \ k \geq 4 \ (\mathsf{Klein}, \ 2004). \\ \bullet \ d_1 - (k-2)q^{k-4} + 1 \leq d \leq d_1 \text{ for } q \geq 2k-3, \ k \geq 4 \\ (\mathsf{Klein}\text{-Metsch}, \ 2007). \end{split}$$

To show $n_q(k,d) = g_q(k,d) + 1$ for the above values of d, we construct $[g_q(k,d) + 1, k, d]_q$ codes. Lemma 2. $n_q(k,d) \ge g_q(k,d) + 1$ if $q \ge 2k - 3$, $k \ge 4$ for $d_1 - (k-2)q^{k-4} + 1 \le d \le d_1$.

Lemma 3. There exists a $[g_q(k, d) + 1, k, d]_q$ code with $q \ge k \ge 5$ for $d_1 - (q - k + 1)q^{k-3} + 1 \le d \le d_1$.

Thm 4. $n_q(k,d) = g_q(k,d) + 1$ if $q \ge 2k - 3$, $k \ge 4$ for $d_1 - (k-2)q^{k-4} + 1 \le d \le d_1$.

Lemma 3'. There exists a $[g_q(k,d)+1,k,d]_q$ code with $q \ge k \ge 5$ for $d = d_1 - \sum_{i=1}^{k-3} t_i q^i$ with $0 \le t_{k-3} \le q-k$ and $0 \le t_j \le q-1$ for $1 \le j \le k-4$.

2. Gometric method

PG(r,q): projective space of dim. r over \mathbb{F}_q j-flat: j-dim. projective subspace of PG(r,q) $\theta_j := |PG(j,q)| = q^j + q^{j-1} + \dots + q + 1$ \mathcal{C} : an $[n,k,d]_q$ code with $B_1 = 0$ i.e. with no coordinate which is identically zero G: a generator matrix of \mathcal{C} The columns of G can be considered as a multiset of n points in $\Sigma = PG(k-1,q)$ denoted by $\mathcal{M}_{\mathcal{C}}$.

 $\mathcal{F}_j :=$ the set of *j*-flats of Σ

 $\Sigma \ni P$: *i*-point \Leftrightarrow P has multiplicity *i* in $\mathcal{M}_{\mathcal{C}}$ $\gamma_0 = \max\{i \mid \exists P : i \text{-point in } \Sigma\}$ $C_i = \{P \in \Sigma \mid P : i \text{-point}\}, 0 \le i \le \gamma_0$ $\Delta_1 + \cdots + \Delta_s$: the multiset consisting of the s sets $\Delta_1, \cdots, \Delta_s$ in Σ . $s\Delta = \Delta_1 + \cdots + \Delta_s$ when $\Delta_1 = \cdots = \Delta_s$. Then, $\mathcal{M}_{\mathcal{C}} = C_1 + 2C_2 + \cdots + \gamma_0 C_{\gamma_0}$. For any set S in Σ , $\mathcal{M}_{\mathcal{C}}(S)$ is the multiset $\{P \in \mathcal{M}_{\mathcal{C}} \mid P \in S\}.$ The multiplicity of S, denoted by $m_{\mathcal{C}}(S)$, is defined as $m_{\mathcal{C}}(S) = |\mathcal{M}_{\mathcal{C}}(S)| = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|.$ i = 1

Then it holds that

$$n = m_{\mathcal{C}}(\Sigma),$$

$$n - d = \max\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\}.$$

Conversely, a multiset on Σ satisfying the above equalities gives an $[n, k, d]_q$ code in the natural manner. A line *l* is called an *i*-line if $m_{\mathcal{C}}(l) = i$. An *i*-plane, an *i*-hp and so on are defined similarly.

$$a_i = |\{H \in \mathcal{F}_{k-2} \mid m_{\mathcal{C}}(H) = i\}| = \# \text{ of } i\text{-hps}$$

List of a_i 's: the spectrum of C

An $[n, k, d]_q$ code is called *m*-divisible if all codewords have weights divisible by an integer m > 1. **Lemma 4.** C: *m*-divisible $[n, k, d]_q$ code, $q = p^h$, p prime, $m = p^r$, $1 \le r < h(k-2)$, $\lambda_0 > 0$, with spec.

$$a_{n-d-im} = \alpha_i$$
 for $0 \le i \le w - 1$.

 $\Rightarrow \exists \mathcal{C}^*: t \text{-divisible } [n^*, k, d^*]_q \text{ code with } t = q^{k-2}/m, \\ n^* = \sum_{j=0}^{w-1} j\alpha_j = ntq - \frac{d}{m}\theta_{k-1}, \ d^* = ((n-d)q - n)t, \\ \text{whose spectrum is}$

$$a_{n^*-d^*-it} = \lambda_i$$
 for $0 \le i \le \gamma_0$

where $\lambda_i = |C_i|$ (# of *i*-points for C).

 \mathcal{C}^* is called the projective dual (PD) of \mathcal{C} , see

A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, *Des. Codes Cryptogr.* **11** (1997) 261–266.

Lemma 5. (Maruta-Oya, 2011)

 $\begin{array}{l} \mathcal{C}: \ [n,k,d]_q \text{ code} \\ \cup_{i=0}^{\gamma_0} C_i: \text{ the partition of } \Sigma \text{ obtained from } \mathcal{C}. \\ \text{If } \cup_{i\geq 1} C_i \supset \Delta: \text{ t-flat and } d > q^t \\ \Rightarrow \quad \exists \mathcal{C}': \ [n-\theta_t,k,d']_q \text{ code with } d' \geq d-q^t. \end{array}$

The above C' can be constructed from the multiset $\mathcal{M}_{\mathcal{C}}$ by deleting Δ . We denote the resulting multiset by $\mathcal{M}_{\mathcal{C}'} = \mathcal{M}_{\mathcal{C}} - \Delta$.

Lemma 5. (Maruta-Oya, 2011)

 $\begin{array}{ll} \mathcal{C}\colon \ [n,k,d]_q \ \text{code} \\ \cup_{i=0}^{\gamma_0} C_i \colon \text{the partition of } \Sigma \ \text{obtained from } \mathcal{C}. \\ \text{If } \cup_{i\geq 1} C_i \supset \Delta \colon \ t\text{-flat and } d > q^t \\ \Rightarrow \quad \exists \mathcal{C}' \colon \ [n-\theta_t,k,d']_q \ \text{code with } d' \geq d-q^t. \end{array}$

The puncturing to construct new codes from a given $[n, k, d]_q$ code by deleting the coordinates corresponding to some geometric object in PG(k - 1, q) is called geometric puncturing, see

T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing, **7**, 73–80, 2013. Lemma 5 can be generalized as follows.

Lemma 6.

 $\begin{array}{l} \mathcal{C}: \ [n,k,d]_q \ \text{code}, \ \Sigma = \mathsf{PG}(k-1,q), \ 0 \leq t \leq k-2 \\ \cup_{i=0}^{\gamma_0} C_i: \ \text{the partition of } \Sigma \ \text{obtained from } \mathcal{C}. \\ \text{If } \cup_{i\geq 1} C_i \supset \mathcal{F}: \ \{f,m;k-1,q\}\text{-minihyper} \\ \text{s.t.} \ (C_1 \setminus \mathcal{F}) \cup (\cup_{i\geq 2} C_i) \ \text{spans } \Sigma \\ \Rightarrow \ \exists \mathcal{C}': \ [n-f,k,d+m-f]_q \ \text{code} \end{array}$

An f-set F in PG(r,q) is an $\{f, m; r, q\}$ -minihyper if

$$m = \min\{|F \cap \pi| \mid \pi \in \mathcal{F}_{r-1}\}.$$

Ex. A *j*-flat is a $\{\theta_j, \theta_{j-1}; r, q\}$ -minihyper. A blocking *b*-set in some plane is a $\{b, 1; r, q\}$ -minihyper.

Lemma 7.

$$\begin{array}{l} \mathcal{C}: \ s\text{-fold simplex } [s\theta_{k-1},k,sq^{k-1}]_q \ \text{code, } s \geq 1, \\ \text{i.e., } C_s = \Sigma = \mathsf{PG}(k-1,q). \\ \text{If there exist } F_1, ..., F_t \ (F_j \in \mathcal{F}_{m_j}, \ 0 \leq m_j \leq k-2) \ \text{s.t.} \\ \bullet \ m_1 \geq \cdots \geq m_t \ \text{with } m_{i+q-1} < m_i \ \text{for any } i \\ \bullet \ \bigcap_{i \in I} F_i = \emptyset \ \text{for any } (s+1) \text{-set } I \subset \{1, \cdots, t\} \\ \Rightarrow \ \mathcal{M}_{\mathcal{C}} - (F_1 + \cdots + F_t) \ \text{generates a } [g_q(k,d),k,d]_q \\ \text{code with } d = sq^{k-1} - \Sigma_{i=1}^t q^{m_i}. \end{array}$$

The Griesmer codes constructed in this way is said to be of Belov type.

For the existence of Griesmer codes of Belov type, the following is known.

Thm 8. $\exists C: [g_q(k,d),k,d]_q$ code of Belov type iff

$$d = sq^{k-1} - \sum_{i=1}^{t} q^{u_i-1}, \quad \sum_{i=1}^{\min\{s+1,t\}} u_i \le sk,$$

where $s = \lfloor d/q^{k-1} \rfloor$, $k > u_1 \ge u_2 \ge \cdots \ge u_t \ge 1$ with $u_i > u_{i+q-1}$ for $1 \le i \le t-q+1$.

Thm 8 was first proved by Belov, Logachev, Sandimirov (1974) for binary codes, and generalized to non-binary codes by Dodunekov (1985) and Hill (1992). For q = 2, see

F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 1977. Thm 8. $\exists C: [g_q(k,d),k,d]_q$ code of Belov type iff

$$d = sq^{k-1} - \sum_{i=1}^{t} q^{u_i-1}, \quad \sum_{i=1}^{\min\{s+1,t\}} u_i \le sk,$$

where $s = \lfloor d/q^{k-1} \rfloor$, $k > u_1 \ge u_2 \ge \cdots \ge u_t \ge 1$ with $u_i > u_{i+q-1}$ for $1 \le i \le t-q+1$.

Cor. $n_q(k,d) = g_q(k,d)$ for all d when k = 1,2 and for $d > d_1 = (k-2)q^{k-1} - (k-1)q^{k-2}$ for $q \ge k \ge 3$.

Thm 8 was proved by geometric puncturing from *s*fold simplex code as Lemma 7, and the following lemma can be proved similarly.

Lemma 9. Let Π be a *t*-flat in $\Sigma = PG(k - 1, q)$, $2 \le t \le k - 1$ and let u_1, \cdots, u_r be integers with $0 \le u_r \le u_{r-1} \le \cdots \le u_1 \le t - 1$ and $u_i > u_{i+q-1}$ ($\forall i$). $\Rightarrow \exists \Delta_{u_j}: u_j$ -flat in Π ($1 \le j \le r$) s.t. the multiset $s\Pi$ contains $\Delta_{u_1} + \cdots + \Delta_{u_r}$ if

$$\sum_{i=1}^{s+1} u_i \le st - 1.$$

3. Construction of new codes 1

Lemma 3'. There exists a $[g_q(k,d)+1,k,d]_q$ code with $q \ge k \ge 5$ for $d = (k-2)q^{k-1} - (k-1)q^{k-2} - \sum_{i=1}^{k-3} t_i q^i$ with $0 \le t_{k-3} \le q-k$ and $0 \le t_j \le q-1$ for $1 \le j \le k-4$.

s-arc in PG(r,q)

- set of s points in PG(r,q).
- no r + 1 points are on a hyperplane.

When $q \ge r$, it is known that there exists a (q+1)-arc. A set of s hps is an s-arc of hps if it forms an s-arc in the dual space.

3. Construction of new codes 1

Lemma 3'. There exists a $[g_q(k,d)+1,k,d]_q$ code with $q \ge k \ge 5$ for $d = (k-2)q^{k-1} - (k-1)q^{k-2} - \sum_{i=1}^{k-3} t_i q^i$ with $0 \le t_{k-3} \le q-k$ and $0 \le t_j \le q-1$ for $1 \le j \le k-4$.

Proof. $\Sigma = PG(k - 1, q)$ $\{H_1, H_2, \dots, H_k\}$: a *k*-arc of hps in Σ Let *P* be the point $P = H_1 \cap \dots \cap H_{k-1} \notin H_k$. $S = (k - 2)\Sigma + P - (H_1 + \dots + H_{k-1})$ *C* : the code with $\mathcal{M}_{\mathcal{C}} = S$. $\Rightarrow C$ is a $[g_q(k, d_1) + 1, k, d_1]_q$ code with $d_1 = (k - 2)q^{k-1} - (k - 1)q^{k-2}$.

The set of 0-points in Σ consists of k-1 lines through P meeting H_k in k-1 points.

Let $\pi_i = H_k \cap H_i$ for $1 \leq i \leq k-1$. $\Rightarrow \{\pi_1, \dots, \pi_{k-1}\}$ is a (k-1)-arc of (k-3)-flats in H_k and $\mathcal{M}_{\mathcal{C}}(H_k) = (k-2)H_k - (\pi_1 + \dots + \pi_{k-1}).$ Since (k-1)-arcs in a (k-2)-flat are unique up to projective equivalence, it follows from Lemma 9 that the multiset $\mathcal{M}_{\mathcal{C}}(H_k)$ contains $\Delta_{u_1} + \cdots + \Delta_{u_r}$, where Δ_{u_i} is a u_j -flat in H_k for $1 \leq j \leq r$ with $u_r \leq \cdots \leq u_1 \leq u_1$ k-2 s.t. $u_i > u_{i+q-1}$ and $\Delta_{u_i} = \pi_i$ for $1 \le j \le k-1$ since $\sum_{i=1}^{k-1} u_i \le (k-2)(k-1)$. So, the multiset $\mathcal{M}_{\mathcal{C}} - (\Delta_{u_k} + \Delta_{u_{k+1}} + \cdots + \Delta_{u_r})$ gives a $[g_q(k,d) + 1, k, d]_q$ code for $d = d_1 - \sum_{i=1}^r q^{u_i}$.

Remark. For k = 5, Lemma 3 implies $\exists [g_q(5,d)+1,5,d]_q$ code for $d_1 - q^3 + 4q^2 + 1 \le d \le d_1$. We can improve this as follows.

Thm 10. There exists a $[g_q(k,d) + 1, k, d]_q$ code for $d_1 - q^{k-2} + 1 \le d \le d_1$ for k = 4, 5.

Problem 3. Does a $[g_q(k,d) + 1, k, d]_q$ code exist for $d_1 - q^{k-2} + 1 \le d \le d_1 = (k-2)q^{k-1} - (k-1)q^{k-2}$ for $k \ge 6$?

4. Construction of new codes 2

Lemma 11. There exists a *q*-divisible $[q^2+q, 5, q^2-q]_q$ code C with spectrum $(a_0, a_q, a_{2q}) = (\frac{q^2-q}{2}, q^4-q^2+q+1, \frac{2q^3+3q^2+q}{2}).$

We need the above lemma to prove the following.

Thm 1. There exists a $[g_q(5,d) + 1, 5, d]_q$ code for $q^4 - q^3 - q^2 + 1 \le d \le q^4 - q^3 - 2q$.

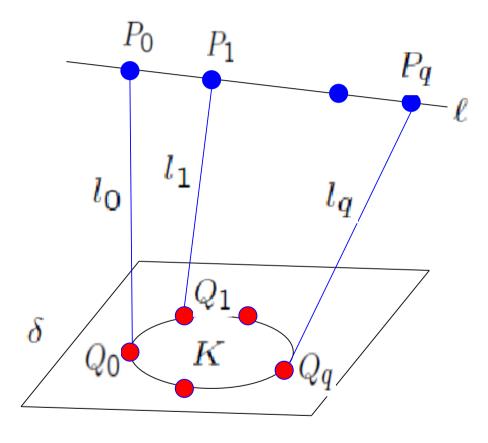
4. Construction of new codes 2

Lemma 11. There exists a *q*-divisible $[q^2+q, 5, q^2-q]_q$ code C with spectrum $(a_0, a_q, a_{2q}) = (\frac{q^2-q}{2}, q^4-q^2+q+1, \frac{2q^3+3q^2+q}{2}).$

Construction

 ℓ : line, δ : plane with $\ell \cap \delta = \emptyset$ in $\Sigma = PG(4,q)$ $K = \{Q_0, Q_1, \dots, Q_q\}$: a (q+1)-arc in δ $\ell = \{P_0, P_1, \dots, P_q\}, l_i = \langle P_i, Q_i \rangle.$

Setting $C_1 = (\bigcup_{i=0}^q l_i) \setminus \ell$ and $C_0 = \Sigma \setminus C_1$, we get a q-divisible $[q^2 + q, 5, q^2 - q]_q$ code C.



$$\Sigma = PG(4,q)$$

$$\ell \cap \delta = \emptyset$$

$$K: a (q + 1) \text{-arc in } \delta$$

$$l_i = \langle P_i, Q_i \rangle$$

$$C_1 = (\bigcup_{i=0}^{q} l_i) \setminus \ell$$

$$C_0 = \Sigma \setminus C_1$$

$$\Rightarrow C \text{ is a } q \text{-divisible}$$

$$[q^2 + q, 5, q^2 - q]_q \text{ code.}$$

Note. A q-divisible $[q^2 + q, 5, q^2 - q]_q$ code was first found for q = 5 by the package Q-Extension, see

I.G. Bouyukliev, What is Q-Extension?, *Serdica J. Computing* **1** (2007) 115–130.

As for recent results on optimal codes over \mathbb{F}_5 , see

Y. Kageyama, T. Maruta, I. Bouyukliev, On the minimum length of linear codes over \mathbb{F}_5 , submitted for publication.

Setting $C_1 = (\bigcup_{i=0}^{q} l_i) \setminus \ell$ and $C_0 = \Sigma \setminus C_1$, we get a q-divisible $[q^2 + q, 5, q^2 - q]_q$ code C. C: q-divisible $[q^2 + q, 5, q^2 - q]_q$ code \downarrow projective dual C^* : q^2 -divisible $[q^4 + 1, 5, q^4 - q^3]_q$ code.

${\mathcal C}$	\mathcal{C}^*	$ m \cap K \langle m, \ell \rangle$
2q-solid	0-point	$\frac{ m +K }{2} \frac{\langle m, \chi \rangle}{2q-\text{solid}}$
<i>q</i> -solid	1-point	1
0-solid	2-point	- 90000
line ℓ	plane ℓ^*	0 0-solid
line l_i	plane l_i^*	m : a line on δ

- Every 0-point in Σ^* for \mathcal{C}^* is a point on some plane l_i^* or on the plane ℓ^* .
- From a counting argument, one can take q-1 skew lines containing no 0-point for C^* .

Hence, from our code C^* , one can construct a $[q^4 + 1 - t(q+1), 5, q^4 - q^3 - tq]_q$ code for $1 \le t \le q-1$ by geometric puncturing.

Remark. We constructed a q^2 -div. $[q^4+1, 5, q^4-q^3]_q$ code from a q-div. $[q^2+q, 5, q^2-q]_q$ code by PD. The PD of a q^{k-3} -div. $[q^{k-1}+1, k, q^{k-1}-q^{k-2}]_q$ code

is a q-div. $[q^2 + q, k, q^2 - q]_q$ code for $k \ge 4$.

• For
$$k = 4$$
, $\exists q$ -div. $[q^2 + q, 4, q^2 - q]_q$ code (take q skew lines in PG(3, q)).

- For k = 5, $\exists q$ -div. $[q^2 + q, 5, q^2 q]_q$ code.
- For $k \ge 6$, existence of a q-div. $[q^2 + q, k, q^2 q]_q$ code is unknown except for

Remark. We constructed a q^2 -div. $[q^4+1, 5, q^4-q^3]_q$ code from a q-div. $[q^2+q, 5, q^2-q]_q$ code by PD. The PD of a q^{k-3} -div. $[q^{k-1}+1, k, q^{k-1}-q^{k-2}]_q$ code

is a q-div. $[q^2 + q, k, q^2 - q]_q$ code for $k \ge 4$.

• For
$$k = 4$$
, $\exists q$ -div. $[q^2 + q, 4, q^2 - q]_q$ code (take q skew lines in PG(3, q)).

- For k = 5, $\exists q$ -div. $[q^2 + q, 5, q^2 q]_q$ code.
- For $k \ge 6$, existence of a q-div. $[q^2 + q, k, q^2 q]_q$ code is unknown except for the extended ternary Golay [12, 6, 6]₃ code (k = 6 and q = 3).

References

- [1] A. Klein and K. Metsch, Parameters for which the Griesmer bound is not sharp, *Discrete Math.*, **307**, 2695–2703, 2007.
- [2] T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing, 7, 73–80, 2013.
- [3] T. Maruta, I.N. Landjev and A. Rousseva, On the minimum size of some minihypers and related linear codes, *Des. Codes Cryptogr.*, **34**, 5–15, 2005.
- [4] T. Maruta and Y. Oya, On optimal ternary linear codes of dimension 6, *Adv. Math. Commun.*, **5** (2011) 505–520.

Thank you for your attention!