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Compressed sensing -introduction

The Compressed Sensing (CS) theme was born in papers by
Donoho,”Compressed sensing”, and Candes & Tao, ”Near-Optimal
Signal Recovery From Random Projections: Universal Encoding
Strategies? ”, both in IEEE-IT, 2006.
The CS problem is to reconstruct an n-dimensional t-sparse vector
x ∈ Rn by a few linear measurements si = (hi , x) even if
measurements (hi , x) are known with some errors ei , where
i = 1, . . . , r . Saying in other words, the goal is to find a solution x
the following equation

s = HxT + e, (1)

such that its l0 norm (or Hamming weight), denoted by ||x ||0, is at
most t, if Euclidean length ||e||2 of syndrom error vector
e = (e1, . . . , er ) is small enough, i.e. ||e||2 ≤ ε. Here H denotes an
r × n matrix, whose rows are h1, . . . , hr .
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l1 minimization

CS uses the following popular “trick” replacing hard problem of
finding solution of Eq. (1) with minimal l0 norm on finding
solution with minimal l1 norm. I.e., find arg min

∑
|xi | such that

||s − HxT || ≤ ε.
This problem is LP problem. Moreover it was proved that if matrix
H is RIP-matrix then the solution x∗ of LP problem is a good
approximation to the solution x0 of the original problem and the
corresponding number of measurements r has the same order of
grow as the minimal possible number of measurements, namely,

rmin = O(t log
n

t
) (2)
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Double sparse

The compressed sensing problem is usually investigated under
assumption that the error vector e = (e1, . . . , er ) has relatively
small Euclidean norm (length) ||e||2. We consider another
assumption, namely, that the error vector e is also sparse, say
||e||0 ≤ t, but in return its Euclidean norm can be arbitrary large
and we find not an approximation but exact solution of (1)!
We call these assumptions: ||x ||0 ≤ l and ||e||0 ≤ t, as double
sparse.
Our main result is that for double sparse CS problem

rmin = 2(t + l)

Double Sparse Compressed Sensing Problem Grigory Kabatiansky, IITP RAS, Russia Cédric Tavernier, Assystem, France.



Double sparse - formal statement

Definition

A real r × n matrix H called a (t, l)-double sparse compressed
sensing (DSCS) matrix if

||HxT − HyT ||0 ≥ 2l + 1 (3)

for any two distinct vectors x , y ∈ Rn such that ||x ||0 ≤ t and
||y ||0 ≤ t.

This definition immediately leads to the following
Proposition A real r × n matrix H is a (t, l)-DSCS matrix iff

||HzT ||0 ≥ 2l + 1 (4)

for any nonzero vector z ∈ Rn such that ||z ||0 ≤ 2t.
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MDS codes for DSCS

Construction of MDS codes for DSCS

H = GT H̃, (5)

where a real r̃ × n matrix H̃ be a parity-check matrix of an
(n, n − r̃)-code code over R, correcting t errors, and G be a
generator (systematic) matrix of an (r , r̃)-code over R of length r ,
correcting l errors.
Saying in words, we encode columns of parity-check matrix H̃,
which already capable to correct t errors, by a code, correcting l
errors, in order to restore correctly syndrom of H̃.

Theorem

Matrix H = GT H̃ is a (t, l)-DSCS matrix.
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Why it works?

Proof. According to Proposition it is enough to prove that
||HzT ||0 ≥ 2l + 1 for any nonzero vector z ∈ Rn such that
||z ||0 ≤ 2t. Indeed, u = H̃zT 6= 0 since any 2t columns of H̃ are
linear independent. Then HzT = GT H̃zT = GTu = (uTG )T and
uTG is a nonzero vector of a code over R, correcting l errors.
Hence ||HzT ||0 = ||uTG ||0 ≥ 2l + 1. �

How to decode? First we decode vector ŝ = s + e by a decoding
algorithm of the code with generator matrix G . Since ||e||0 ≤ l
this algorithm outputs the correct syndrome s. Then we form a
syndrome s̃ by selecting first r̃ coordinates of s and apply syndrom
decoding algorithm for the corresponding syndrom equation

s̃ = H̃xT . (6)
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Why not just MDS??

It is a very natural question why do not use just a single RS-code
with extra redudancy in order to correct possible errors in
measurements, i.e., in its syndrom?!
It is rather old question, which goes back to time of the French
Revolution, when R.Prony (J. de Ecole Polytechnique 1, pp.24-76,
1795) asked how to reconstruct a polynomial of a given degree by
its value in some points, when at most l of these values could be
incorrect. The modern solution was given in M.T. Comer, E.L.
Kaltofen, C.Pernet, ”Sparse Polynomial Interpolationb and
Berlekamp-Massey Algorithms That Correct Outlier Errors in Input
Values”, namely, it was shown that it is possible to solve equation
(1) by RS-code iff its redudancy r ≥ 2t(2l + 1).
We see that it is too much expensive solution for double sparse
CS-problem.
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Capacity problem of CS

The minimal possible number of measurements to solve equation

s = HxT + e, (7)

has the order
rmin = O(t log

n

t
) (8)

if the solution is enough good approximation, namely, if

||x∗ − x0|| ≤ C ||e||2 (9)

For t-constant it is OK, but for t = λn it gives r = O(n) and we
want to know constant which stands in this O(n)!
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