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Motivation I

Construction of high-rate regular quasi-cyclic low-density
parity-check (QC LDPC) codes based on a subclass of cyclic
difference families

H. Park, S. Hong, J. No and D. Shin, Construction of
high-rate regular quasi-cyclic LDPC codes based on cyclic
difference families, IEEE Trans. on Communic., 61, no 8,
3108–3113, 2013.
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Motivation II

QC LDPC codes constructed from cyclic difference families
(CDFs) are proposed but they have restricted lengths

S. J. Johnson and S. R. Weller, A family of irregular LDPC codes with
low encoding complexity, IEEE Commun. Lett., 7, no 2, 79–81, 2003.

B. Vasik and O. Milenkovic, Combinatorial constructions of low-density
parity-check codes for iterative decoding, IEEE Trans. on Inform.
Theory, 50, no 6, 1156–1176, 2004.

B. Ammar, B. Honary, Y. Kou, J. Xu and S. Lin, Constructions of
low-density parity-check codes based on balanced incomplete block
designs, IEEE Trans. on Inform. Theory, 50, no 6, 1257–1268, 2004.

M. Fujisava and S. Sakata, A construction of high rate quasi-cyclic
regular LDPC codes from cyclic difference families with girth 8, IEICE
Trans. Fundamentals, E-90A, no 5, 1055–1061, 2007.
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Motivation III

In this work we will focus on PDFs because

QC LDPC codes with various code rates can be
constructed

QC LDPC codes with various code lengths can be
constructed

Constructed QC LDPC codes can achieve the minimum
code length among all possible regular LDPC codes with
girth 6 for given parameters, i.e. are useful in designing
error-correcting systems which require high rate and short
and moderate lengths
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Motivation IV

CDFs and PDFs have many other relations and practical
applications

They are related to one-factorizations of complete graphs
and to cyclically resolvable cyclic Steiner triple systems
Very efficient constructions of new optimal perfect secrecy
systems that are one-fold secure against spoofing are
obtained via CDF
Optimal frequency-hopping sequences can be constructed
from (v , k ,1) CDFs
They can be used for a construction of other types of
combinatorial structures

regular perfect systems of difference sets
optimal difference triangle sets
perfect optimal optical orthogonal codes
cyclic 2-(v,k,1) designs, etc
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Basic definitions and notations I

R. Julian R. Abel and M. Buratti Difference families, in: C.J.
Colbourn, J.H. Dinitz (Eds.), The CRC Handbook of
Combinatorial Designs, CRC Press, Boca Raton, FL,
270–287, 1996.

B is a subset of an additive group G.

∆B is the list of all possible differences b − b′ with (b,b′)
an ordered pair of distinct elements of B.

F = {B1,B2, . . . ,Bn} is a collection of subsets of G.

∆F is the list of differences from F and is the multiset
obtained by joining ∆B1, . . . ,∆Bn.
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Basic definitions and notations II

Definition
F is said to be a (v , k ,1) difference family (DF) if G has order v ,
every Bi is of size k ≥ 3, and ∆F covers every non-zero
element of G exactly once.

Definition
If G = Zv , then the difference family is said to be cyclic (CDF).

Tsonka Baicheva, Svetlana Topalova New perfect difference families



Basic definitions and notations III

Let F be a CDF

Denote by ∆̄B the list of all possible differences b − b′ with
b > b′, where b and b′ are distinct elements of B

Definition

If ∆̄F = {1,2, . . . , (v − 1)/2}, then F is called a perfect
difference family, or briefly, a (v , k ,1) PDF.

Therefore (v , k ,1) PDFs are a subclass of (v , k ,1) CDFs
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Known results for PDFs I

Theorem
1) If v ≡ 1 or 7 (mod 24), then a (v ,3,1) PDF exists.

2) A (12t + 1,4,1) PDF exists for t = 1, 4 ≤ t ≤ 1000.

3) (20t + 1,5,1) PDFs are known for t = 6,8,10 but for no
other values of 1 ≤ t ≤ 50.

4) There are no (v , k ,1) PDF for the following values:
a) k = 3, v ≡ 13 or 19 (mod 24),
b) k = 4, v ∈ {25,37},
c) k = 5, v ≡ 21 (mod 40) or v ∈ {41,81},
d) k ≥ 6.
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Known results for PDFs II

We know classification results only for (121,5,1) PDFs

Ph. Laufer, Regular perfect systems of difference sets
of size 4 and extremal systems of size 3, , Ann.
Discrete Math., 12, 193–201, 1982.

4800 PDFs have been obtained
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Difference triangles I

For a k -element set B = {b1,b2, ...bk} it is convenient to
present the differences from ∆̄B by a difference triangle D

Elements of D are d j
i = bi+j − bi , for i , j = 1, . . . , k − 1

Difference triangles for k = 3,4 and 5
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Difference triangles II

The most important property of a difference triangle is that the
sum of the elements in the upper half of the triangle is equal to
the sum of the elements in the lower half
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Example I

(25,3,1) PDF
F = {{0,1,6} {0,2,10} {0,3,12} {0,4,11}}

Coresponing difference triangles

6 10 12 11
1 5 2 8 3 9 4 7

(49,4,1) PDF
F = {{0,1,12,18} {0,2,7,22} {0,3,16,24} {0,4,14,23}}

Coresponing difference triangles

18 22 24 23
12 17 7 20 16 21 14 19

1 11 6 2 5 15 3 13 8 4 10 9
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Classification algorithm 1 I

For a (v , k ,1) PDF it holds that v = k(k − 1)m + 1
We first construct a list of all possible k -element subsets of
the set of the integers from 1 to v , such that their
corresponding difference sets do not contain differences
which are greater than k(k − 1)m/2
We sort the list by the minimum (or maximum) differences
of the sets and a lexicographic order defined on the
triangles
We choose the elements of the current PDF by back track
search.
When s sets have been chosen, we add a set containing
the smallest (or biggest) difference which is not contained
in the already chosen difference triangles.
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Classification algorithm 1 II

We calculate Smax - the sum of the biggest m − s (or
3(m − s) for k = 5) differences which are not contained in
the already chosen difference triangles
For k = 4 we calculate Smin - the sum of the smallest
(k − 1)(m − s) differences which are not contained in the
already chosen difference triangles

If Smax ≥ Smin we choose an (s + 1)-st element
If Smax < Smin we replace the s-th element by the next
possible one

For k = 3 and k = 5 the sum of the elements of the m first
(or m first two) rows of the difference triangles equals S:
half of the sum of the first k(k − 1)m/2 integers

If Smax ≥ S we choose an (s + 1)-st element
If Smax < S we replace the s-th element by the next
possible one
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Classification algorithm 1 III

Definition
Two difference families F = {B1,B2, . . . ,Bn} and
F′ = {B′1,B′2, . . . , B′n} over ZV are equivalent if there is an
automorphism α of ZV such that for each i = 1,2, . . . ,n there
exists B′j which is a translate of α(Bi).

With respect to the defined lexicographic order on the
difference triangles, the currently obtained PDF is greater
than the previous ones.
We use this to check each PDF for equivalence to some of
those which were constructed earlier by checking if the
current solution can be mapped to a lexicographically
smaller one by some of the automorphisms of Zv .
This way besides the set of all PDFs, we also obtain a set
of inequivalent PDFs with the given parameters.
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Algorithm 2

We use a modification of our algorithm for construction of
optical orthogonal codes and CDFs
By this algorithm we classify only the inequivalent PDFs
with the given parameters
Algorithm 1 is much faster, but we use Algorithm 2 to
compare part of the obtained results
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Implementation

Our computer implementations of both algorithms are
written in C++
The programmes ran on a PC with an Intel Xeon 2.5 GHz
6 cores processor
With Algorithm 1 the classification of the (121,5,1) PDFs
took 4 days (running in parallel on 12 threads)
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Improvement of Algorithm 1
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We construct only PDFs with d1
1 < d1

k−1 while for each of
them 2m − 1 other PDFs can be obtained in linear time
At each step, for each missing difference we count the
number of possible sets containing it and we add only sets
containing the difference which is in the least number of
possible sets
With the improved Algorithm 1 the classification of the
(121,5,1) PDFs took half an hour on the same computer
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Results

Table : (v , k ,1) perfect difference families.

v k m ineq. CDFs PDFs ineq. PDFs
25 3 4 12 168 12
31 3 5 80 672 68
49 3 8 157340 778240 150788
55 3 9 3027456 10498560 2520064
73 3 12 10567748.212

79 3 13 103372655.213

13 4 1 1 2 1
49 4 4 224 192 80
61 4 5 18132 5568 2544
73 4 6 1426986 200448 94368
85 4 7 9207040 4552504
97 4 8 2633052.28

109 4 9 110905803.29

121 5 6 6624 3296
161 5 8 > 6142.28
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