Low-Density Parity-Check Codes Based on Steiner Quadruple Systems and Permutation Matrices

Fedor Ivanov, Victor Zyablov
Email: fii@iitp.ru, zyablov@iitp.ru

Institute for Information Transmission Problems,
Russian Academy of Science

XIV International Workshop on "Algebraic and Combinatorial Coding Theory"
07-13 September, 2014
Svetlogorsk, Russia

Outline

- Short Introduction
- Main definitions and notation

■ LDPC codes based on $S Q S\left(2^{m}-1\right)$ and permutation matrices
■ Some properties of LDPC codes based on $S Q S\left(2^{m}-1\right)$ and permutation matrices

- Construction of LDPC codes based on $S Q S\left(2^{m}-1\right)$ and permutation matrices with $d \geq 6$
- Simulation results

Introduction

- Random Gallager codes (1960)
- LDPC codes based on permutation matrices (quasi-cyclic codes)
■ LDPC codes based on combinatorial structures (STS (v), latin squares, finite geometries)
- LDPC codes based on Steiner triple systems and permutation matrices (Ivanov, Zyablov, 2013)

Main definitions and notation

Definition

Steiner system $S(v, k, t)$ is the pare (X, B), where X is a set of v elements, and B is a class of k-subsets of X (called blocks), since any t-subset of X is included in exactly one of blocks of class B. System $S(v, 4,2)$ we will call Steiner quadruple system.

■ A system $S(v, 4,2)$ is denoted by $S Q S(v)$.
■ Under $\mathcal{H}(m)$ we will imply binary $\left[2^{m}-1,2^{m}-m-1,3\right]$ Hamming code.

LDPC codes based on $S Q S\left(2^{m}-1\right)$ and permutation

 matrices - base matrix$$
\mathbf{H}_{f}=\left[c_{1}(x) c_{2}(x) \ldots c_{N}(x)\right]
$$

- $N=A\left(3,2^{m}-1\right)=\frac{\left(2^{m}-1\right)\left(2^{m}-2\right)}{6}$
- $c_{i}(x), 1 \leq i \leq N$ - weight- 3 codeword of $\mathcal{H}(m)$

$$
\mathbf{H}^{+}=\left[h_{1}(x) h_{2}(x) \ldots h_{N_{1}}(x)\right]
$$

■ $h_{r}(x)=c_{i}(x)+c_{j}(x) \bmod 2:\left(c_{i}(x), c_{j}(x)\right)=1,1 \leq i<j \leq N$
■ $N_{1}=\left(2^{m}-1\right)\left(2^{m-1}-1\right)\left(2^{m-2}-1\right)$

LDPC codes based on $\operatorname{SQS}\left(2^{m}-1\right)$ and permutation matrices - 4-cycles elimination

1 Represent the matrix \mathbf{H}^{+}in the following form:

$$
\mathbf{H}^{+}=\left(\begin{array}{c}
v_{1}(x) \\
v_{2}(x) \\
\cdots \\
v_{2}^{m}-1(x)
\end{array}\right)
$$

where $s_{j}(x)=\left(s_{j_{1}}, s_{j_{2}}, \ldots, s_{j_{N_{1}}}\right)$ is the vector of the length N_{1} over $G F(2)$.
2 Calculate all elementvise products $<s_{i}(x), s_{j}(x)>$ for all $1 \leq i<j \leq 2^{m}-1$:

$$
s_{i j}=<s_{i}(x), s_{j}(x)>=\left(s_{i j}^{(1)}, s_{i j}^{(2)}, \ldots, s_{i j}^{\left(N_{1}\right)}\right),
$$

where

$$
s_{i j}^{(k)}=s_{i_{k}} s_{j_{k}}, 1 \leq k \leq N_{1}
$$

3 Associate vector $s_{i j}$ with the set

$$
\tilde{S_{i j}}=\left\{k: s_{i j}^{(k)}=1\right\}=\left\{\tilde{s}_{1}, \tilde{s}_{2}, \ldots, \tilde{s}_{v}\right\}, v=\left|\tilde{S_{i j}}\right| .
$$

4 Set to zero all columns $h_{\tilde{s}_{2}}, h_{\tilde{s}_{3}}, \ldots, h_{\tilde{s}_{v}}$ of the \mathbf{H}^{+}.
5 Exclude all zero columns from the \mathbf{H}^{+}. Denote the obtained matrix by $\tilde{\mathbf{H}}_{4}$.

LDPC codes based on $\operatorname{SQS}\left(2^{m}-1\right)$ and permutation matrices - lifted matrix

The matrix $\tilde{\mathbf{H}}_{4}$ has the size $\left(2^{m}-1\right) \times N_{2}$.

$$
\left\{\text { Set of columns of } \tilde{\mathbf{H}}_{4}\right\} \subset S\left(2^{m}, 4,2\right)
$$

m	$N=A\left(3,2^{m}-1\right)$	N_{2}
5	155	44
6	651	214
7	2667	970
8	10795	4120

Choose an arbitrary natural number K such that $2^{m}-1<K \leq N_{2}$. Form a matrix \mathbf{H}_{4} by choosing an arbitrary K-element, $2^{m}-1<K \leq N_{2}$ ordered subset of the set of the columns of the matrix $\tilde{\mathbf{H}}_{4}$. The matrix \mathbf{H}_{4} thus obtained is of size $t\left(2^{m}-1\right) \times N_{2} t$, the column weight is 4 .

LDPC codes based on $S Q S\left(2^{m}-1\right)$ and permutation matrices - ensemble definition

By choosing an arbitrary numbers $m>4,2^{m}-1<K \leq N_{2}$ and choosing random $t \times t$ permutation matrices, $t>1$, we define an ensemble of irregular low-density parity-check codes of length $n=K t$. We denote the obtained ensemble by $\mathcal{E}_{S Q S}(m, K, t)$.

Definition

An arbitrary code $\mathcal{C} \in \mathcal{E}_{S Q S}(m, K, t)$ will be called a low-density parity-check code based on permutation matrices and $S Q S\left(2^{m}-1\right)$.

Some properties of LDPC codes based on $S Q S\left(2^{m}-1\right)$ and permutation matrices - rate

Theorem

Let $R_{S Q S}$ be the rate of a code $\mathcal{C} \in \mathcal{E}_{S Q S}(m, K, t)$, then

$$
\frac{1}{2^{m}} \leq R_{S Q S}<1-\frac{6}{2^{m-1}-1}
$$

m	$R_{S Q S}^{\text {upper }}$	$R_{S Q S}$
5	0.6	0.2955
6	0.8065	0.7056
7	0.9048	0.8691
8	0.9528	0.9381

- $R_{S Q S}$ - the maximal achievable rate for codes in the $\mathcal{E}_{S Q S}(m, K, t)$
- $R_{S Q S}^{\text {upper }}$ - the upper bound for $R_{S Q S}$

Some properties of LDPC codes based on $S Q S\left(2^{m}-1\right)$

 and permutation matrices - girth and minimum distance
Theorem

Let g is a girth of parity-check matrix \mathbf{H}_{4} of code $\mathcal{C} \in \mathcal{E}_{S Q S}(m, K, t)$, then

$$
g \geq 6
$$

Theorem

Let $d_{\text {min }}$ be a minimum distance of an LDPC code $\mathcal{C} \in \mathcal{E}_{S Q S}(m, K, t)$, then

$$
5 \leq d_{\min } \leq 5 t
$$

Some properties of LDPC codes based on $S Q S\left(2^{m}-1\right)$ and permutation matrices: minimum distance increasing - main theorem

Theorem

Let the minimum distance \widetilde{d} of a code with parity-check matrix $\tilde{\mathbf{H}}_{4}$ is 5 . Extend $\tilde{\mathbf{H}}_{4}$ to a matrix \mathbf{H}_{4} by employing a permutation matrices. Then, if at least one cycle of length 6 is transformed into a cycle of greater length in every combination of five linearly dependent columns of \mathbf{H}_{4}, then the minimum distance of the code with parity-check matrix \mathbf{H} is at least 6 .

Construction of LDPC codes based on $\operatorname{SQS}\left(2^{m}-1\right)$ and permutation matrices with $d \geq 6$

$$
\mathbf{B}=\left(\begin{array}{ccccc}
0 & a_{0} & 2 a_{0} & \ldots & \left(n_{0}-1\right) a_{0} \\
0 & a_{1} & 2 a_{1} & \ldots & \left(n_{0}-1\right) a_{1} \\
\ldots \ldots \ldots \ldots \ldots \ldots & \ldots \ldots & \ldots \ldots \ldots \\
0 & a_{l-1} & 2 a_{l-1} & \ldots & \left(n_{0}-1\right) a_{l-1}
\end{array}\right)
$$

where $0 \leq a_{0}<a_{1}<a_{2}<\ldots<a_{l-1}$ is a sequence of natural numbers.

Construction of LDPC codes based on $\operatorname{SQS}\left(2^{m}-1\right)$ and permutation matrices with $d \geq 6$

Theorem

If in the matrix \mathbf{B} every $b_{i j}=(j-1) a_{i-1}$ is replaced by the matrix of $b_{i j}$ multiple cyclic shift of columns of identity matrix \mathbf{I} with size $t \times t$, and the following condition is performed for any ordered triple $\left\{a_{i}, a_{j}, a_{k}\right\}, i<j<k$, of the sequence $\left\{a_{0}, a_{1}, \ldots, a_{l-1}\right\}$

$$
\frac{a_{k}-a_{i}}{\left(a_{k}-a_{i}, a_{j}-a_{i}\right)} \geq n_{0}
$$

where (\cdot, \cdot) is a greatest common divisor, then the matrix

$$
\widetilde{\mathbf{B}}=\left(\begin{array}{ccccc}
\mathbf{I} & \mathbf{I}_{\mathbf{a}_{0}} & \mathbf{I}_{2 a_{0}} & \ldots & \mathbf{I}_{\left(\mathbf{n}_{0}-\mathbf{1}\right) \mathbf{a}_{0}} \\
\mathbf{I} & \mathbf{I}_{\mathbf{a}_{1}} & \mathbf{I}_{2 a_{1}} & \ldots & \mathbf{I}_{\left(\mathbf{n}_{0}-\mathbf{1}\right) \mathbf{a}_{1}} \\
\ldots & \ldots \ldots & \ldots & \ldots \ldots & \ldots \\
\mathbf{I} & \mathbf{I}_{\mathbf{a}_{1-1}} & \mathbf{I}_{2 \mathbf{a}_{1-1}} & \cdots & \ldots \\
\mathbf{I}_{\left(\mathbf{n}_{0}-\mathbf{1}\right) \mathbf{a}_{1-1}}
\end{array}\right)
$$

does not contain any cycle of length 6 for any value of parameter

$$
t \geq\left(a_{l-1}-a_{0}\right)\left(n_{0}-1\right)+1
$$

Construction of LDPC codes based on $\operatorname{SQS}\left(2^{m}-1\right)$ and permutation matrices with $d \geq 6$

Consider $\left\{0,1, n_{0}, n_{0}^{2}, \ldots, n_{0}^{l-2}\right\}$.

Lemma

The following inequality is held for any ordered triple $\left\{n_{0}^{x}, n_{0}^{y}, n_{0}^{z}\right\}$ when $0 \leq x<y<z \leq l-2$

$$
\frac{n_{0}^{z}-n_{0}^{x}}{\left(n_{0}^{z}-n_{0}^{x}, n_{0}^{y}-n_{0}^{x}\right)} \geq n_{0}
$$

Construction of LDPC codes based on $\operatorname{SQS}\left(2^{m}-1\right)$ and permutation matrices with $d \geq 6$

Theorem

The matrix
does not contain any cycle of length 6 for any value of the parameter $t \geq n_{0}^{l-2}\left(n_{0}-1\right)+1$, where t is the size of identity matrix \mathbf{I}.

Thus, choosing four parameters l, n_{0}, m, k so that the following system of inequalities is held

$$
\left\{\begin{array}{l}
t \geq n_{0}^{l-2}\left(n_{0}-1\right)+1 \\
\ln _{0} \geq 4 K
\end{array}\right.
$$

one can construct the parity-check matrix \mathbf{H} of LDPC code based on $S Q S\left(2^{m}-1\right)$ and permutation matrices with length $n=K t$ and minimum distance $d \geq 6$. It is sufficient to select the unique circulants which are formed the matrix $\widehat{\mathbf{B}}$ as the permutation matrices.

Simulation setup

- AWGN channel
- BPSK modulation

■ Sum-Product decoding algorithm
■ Soft input
■ Maximal number of iterations - 50

Simulation results - $R=0.5, N \approx 2000$

Simulation results - $R=0.8, N \approx 30000$

Simulation results $-R \approx 0.938, N \approx 33000$

Conclusion

1 New ensemble of structured LDPC codes is presented
2 Some properties of proposed codes are obtained
3 Some conditions that guarantee strict increasing in minimum distance are received.

Thank you for the attention!

