On the Hamming-Like Upper Bound on the Minimum Distance of LDPC Codes

Alexey Frolov
Email: alexey.frolov@iitp.ru

Inst. for Information Transmission Problems
Russian Academy of Sciences

ACCT 2014
September 7-13, 2014
Svetlogorsk, Russia

Outline

(1) Task statement

(2) Generalized LDPC codes

(3) Irregular LDPC codes

4 Numerical results

Task statement

In
Y. Ben-Haim and S. Litsyn. Upper Bounds on the Rate of LDPC Codes as a Function of Minimum Distance. IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2092-2100, May 2006.
a Hamming-like upper bound on the minimum distance of regular binary LDPC codes is given. We extend the bound to the case of irregular and generalized LDPC codes over \mathbb{F}_{q}.

Constituent code

We assume \mathcal{C}_{0} to be an $\left[n_{0}, R_{0}, d_{0}\right]$ code over \mathbb{F}_{q}. Let us denote the parity-check matrix of the constituent code by \mathbf{H}_{0}. The matrix has size $m_{0} \times n_{0}$, where $m_{0}=\left(1-R_{0}\right) n_{0}$.

Let $G\left(s, n_{0}, d_{0}\right)$ be the weight enumerator of the code \mathcal{C}_{0}, i.e.

$$
G\left(s, n_{0}, d_{0}\right)=1+\sum_{i=d_{0}}^{n_{0}} A(i) s^{i}
$$

where $A(i)$ is the number of codewords of weight i in a code \mathcal{C}_{0}.

Tanner graph

To check if $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{N}\right) \in \mathbb{F}_{q}^{N}$ is a codeword of \mathcal{C} we associate the symbols of \mathbf{v} to the variable nodes. The word \mathbf{v} is called a codeword of \mathcal{C} if all the constituent codes are satisfied.

Upper bound for generalized LDPC codes

Theorem

Let \mathcal{C} be a generalized LDPC code of length N, rate R, minimum distance δN, with constituent $\left[n_{0}, R_{0}, d_{0}\right]$ code \mathcal{C}_{0} over \mathbb{F}_{q}. Let $G\left(s, n_{0}, d_{0}\right)$ be the weight enumerator of \mathcal{C}_{0}. Then for sufficiently large N the following inequality holds

$$
R \leq 1-\frac{h_{q}(\delta / 2)}{h_{q^{m_{0}}}\left[1-(1-\delta / 2)^{n_{0}} G\left(\frac{\delta / 2}{(1-\delta / 2)(q-1)}\right)\right]}+o(1)
$$

where

$$
h_{Q}(x)=-x \log _{Q} x-(1-x) \log _{Q}(1-x)+x \log _{Q}(Q-1)
$$

is Q-ary entropy function.

Sketch of the proof

Consider all the possible vectors of length N, weight $W=\omega N$ over \mathbb{F}_{q}. We introduce an equiprobable distribution on such vectors. Let us consider the i-th check, by $\mathbf{S}=\left(\mathbf{S}_{1}, \mathbf{S}_{2}, \ldots, \mathbf{S}_{M}\right)$ we denote the resulting syndrome of generalized LDPC code.

$$
\begin{aligned}
p_{0} & =\operatorname{Pr}\left(\mathbf{S}_{i}=\mathbf{0}\right) \\
& =\frac{1}{\binom{N}{W}(q-1)^{W}}\left[\sum_{i=0}^{n_{0}}\left\{A(i)\binom{N-n_{0}}{W-i}(q-1)^{W-i}\right\}\right] .
\end{aligned}
$$

Sketch of the proof

Consider all the possible vectors of length N, weight $W=\omega N$ over \mathbb{F}_{q}. We introduce an equiprobable distribution on such vectors. Let us consider the i-th check, by $\mathbf{S}=\left(\mathbf{S}_{1}, \mathbf{S}_{2}, \ldots, \mathbf{S}_{M}\right)$ we denote the resulting syndrome of generalized LDPC code.

$$
\begin{aligned}
p_{0} & =\operatorname{Pr}\left(\mathbf{S}_{i}=\mathbf{0}\right) \\
& =\frac{1}{\binom{N}{W}(q-1)^{W}}\left[\sum_{i=0}^{n_{0}}\left\{A(i)\binom{N-n_{0}}{W-i}(q-1)^{W-i}\right\}\right] .
\end{aligned}
$$

In what follows we are interesting in asymptotic estimate when $N \rightarrow$ ∞. In this case we have

$$
\begin{aligned}
p_{0} & =\left[\sum_{i=0}^{n_{0}}\left\{A(i) \omega^{i}(1-\omega)^{n_{0}-i}(q-1)^{-i}\right\}\right]+o(1) \\
& =(1-\omega)^{n_{0}} G\left(\frac{\omega}{(1-\omega)(q-1)}, n_{0}, d_{0}\right)+o(1)
\end{aligned}
$$

Sketch of the proof

Let $H(X)$ be the binary entropy of the random variable X,
By the log-sum inequality.

$$
\begin{aligned}
H\left(\mathbf{S}_{i}\right) & =-\sum_{j=0}^{q^{m_{0}}-1} \operatorname{Pr}\left(\mathbf{S}_{i}=j\right) \log _{2} \operatorname{Pr}\left(\mathbf{S}_{i}=j\right) \\
& \leq-p_{0} \log _{2} p_{0}-\left(1-p_{0}\right) \log _{2} \frac{1-p_{0}}{q^{m_{0}}-1} \\
& =h_{q^{m_{0}}}\left(1-p_{0}\right) \log _{2} q^{m_{0}}
\end{aligned}
$$

Sketch of the proof

For $\omega<\delta / 2$

$$
\frac{1}{N} H(\mathbf{S})=h_{q}(\omega) \log _{2} q+o(1)
$$

as all the syndromes corresponding to such vectors are different.

$$
H(\mathbf{S}) \leq \sum_{i=1}^{M} H\left(\mathbf{S}_{i}\right)=M h_{q^{m_{0}}}\left(1-p_{0}\right) \log _{2} q^{m_{0}}
$$

Notation

The constituent code in this case is a single parity-check (SPC) code over \mathbb{F}_{q}. Thus the enumerator of an SPC code over \mathbb{F}_{q} is as follows

$$
G\left(s, d_{0}=2, n_{0}\right)=\frac{1}{q}(1+(q-1) s)^{n_{0}}+\frac{q-1}{q}(1-s)^{n_{0}} .
$$

To formulate a theorem we need a notion of row degree polynomial

$$
\rho(x)=\sum_{i=r_{\min }}^{r_{\max }} \rho_{i} x^{i},
$$

where ρ_{i} is a fraction of rows of the parity check matrix of weight i, $r_{\text {min }}$ and $r_{\text {max }}$ are the minimal and maximal row weights accordingly.

Upper bound for irregular LDPC codes

Theorem

Let \mathcal{C} be an LDPC code of length N, rate R, minimum distance δN, with row degree polynomial $\rho(x)$. Then for sufficiently large N the following inequality holds

$$
R \leq \bar{R}(q, \rho(x))=1-\frac{h_{q}(\delta / 2)}{h_{q}\left[\frac{q-1}{q}\left(1-\rho\left(1-\frac{q}{q-1} \delta / 2\right)\right)\right]}+o(1)
$$

Proof

$$
\begin{aligned}
& \frac{1}{\log _{2} q} \sum_{i=1}^{M} H\left(\mathbf{S}_{i}\right) \\
& =(1-R) \sum_{i=r_{\text {min }}}^{r_{\text {max }}} \rho_{i} h_{q}\left[1-(1-\omega)^{n_{0}} G\left(\frac{\omega}{(1-\omega)(q-1)}\right)\right] \\
& =(1-R) \sum_{i=r_{\text {min }}}^{r_{\text {max }}} \rho_{i} h_{q}\left[\frac{q-1}{q}-\frac{q-1}{q}\left(1-\frac{q}{q-1} \omega\right)^{i}\right] \\
& \leq(1-R) h_{q}\left[\frac{q-1}{q}-\frac{q-1}{q} \rho\left(1-\frac{q}{q-1} \omega\right)\right] .
\end{aligned}
$$

Analysis

Proposition

Let $\ell>0$ be an integer, let $\rho(x)$ be the row degree distribution of irregular code, such that $\sum_{i=r_{\text {min }}}^{r_{\text {max }}} i \rho_{i}=\ell$ and let $\rho_{\text {reg }}=x^{\ell}$, then

$$
\bar{R}(q, \rho(x)) \leq \bar{R}\left(q, \rho_{r e g}(x)\right) .
$$

Numerical results for $q=8$

As an example we choose regular $\left(\ell=3, n_{0}\right)$ LDPC codes. We see that at very high rates $(R>0.994)$ the bound lies below the Varshamov-Gilbert bound. We note that the interval of rates in which we observe this behavior is decreasing when q grows. For $q=2$ the interval is $R>0.985$, for $q=16$ the interval is $R>0.997$.

$\left(\ell, n_{0}\right) ; R$	$(3,10) ; 0.7$	$(3,50) ; 0.94$	$(3,100) ; 0.97$	$(3,200) ; 0.985$	$(3,500) ; 0.994$	$(3,600) ; 0.995$
VG	0.1260	0.0179	0.0080	0.0036	$\mathbf{0 . 0 0 1 3}$	$\mathbf{0 . 0 0 1 1}$
New	0.2282	0.0263	0.0106	0.0043	$\mathbf{0 . 0 0 1 3}$	$\mathbf{0 . 0 0 1 0}$
PL	0.2625	0.0525	0.0262	0.0131	0.0052	0.0044
BE	0.2338	0.0355	0.0160	0.0073	0.0026	0.0021
MRRW	0.2494	0.0545	0.0281	0.0144	0.0059	0.0050

Thank you for the attention!

