Polarized Nested Constructions

Ilya Dumer

University of California, Riverside, USA

ACCT 2014

Motivation

Construct explicit families of good polarized codes (will be done for $R \rightarrow 1$).
No such codes are known to date for error channels.

Design good moderate-length (1000-4000 bits) polarized codes. Polar codes and LDPC-type codes perform close to channel capacity only on long blocks.

Outline

- Recursive tree-like structure of RM codes.
- Tree paths as channels. Recalculations of channel reliabilities.
- Decoding and polarization on tree structures.
- Incomplete paths with ML decoding on end nodes.
- Design of nested polarized codes.

Reed-Muller (RM) codes $\mathcal{R}(r, m)$ of order $r=1, \ldots, m$.

- Messages: polynomials $f^{(r)}\left(x_{1}, \ldots, x_{m}\right)$ of deg $\leq r$ in m Boolean variables.
- Codewords: outputs $\mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}$ of polynomials f
- Message $f^{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{2} x_{3}+x_{1}+1$. Codeword: (11100001)

Length $n=2^{m}$.
Dimension $k=\sum_{i=0}^{r}\binom{m}{i}$.
Minimum distance $d=2^{m-r}$.

Partition: $f\left(x_{1}, \ldots, x_{m}\right)=f_{0}\left(x_{2}, \ldots, x_{m}\right)+x_{1} f_{1}\left(x_{2}, \ldots, x_{m}\right)$
$=f_{00}\left(x_{3}, \ldots, x_{m}\right)+x_{2} f_{01}\left(x_{3}, \ldots\right)+x_{1} f_{10}\left(x_{3}, \ldots\right)+x_{1} x_{2} f_{11}\left(x_{3}, \ldots\right)$
$=\ldots=\Sigma_{i_{1}, \ldots, i_{m}} u_{i_{1}, \ldots, i_{m}} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}}$

Full partition of (5,5) RM code into 32 paths
\mathbf{u}_{11111}

$$
\mathbf{i}_{1}=1
$$

$$
u=\left(u_{0}, u_{0}+u_{1}\right)
$$

$x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{5}^{i_{5}}$ defines path $\psi=i_{1} i_{2} \ldots i_{5}$ from u to $u_{i_{1} i_{2} \ldots i_{5}}$ and row of gen. matrix with Hamming weight $2^{m-w t(\psi)}$

Plotkin ($\mathbf{u}, \mathbf{u}+\mathbf{v}$) construction for RM codes of order $r<m$

$$
\underbrace{f^{(r)}\left(x_{1}, \ldots, x_{m}\right)}_{\mathbf{c} \in \mathcal{R}(r, m)}=\underbrace{f_{0}^{(r)}\left(x_{1}, \ldots, x_{m-1}\right)}_{\mathbf{u} \in \mathcal{R}(r, m-1)}+x_{\mathbf{v} \in \mathcal{R}(r-1, m-1)}^{x_{1}^{f^{(r-1)}\left(x_{2}, \ldots, x_{m}\right)}}
$$

Generator matrix $G_{r}^{m}=\left[\begin{array}{c|c}G_{r}^{m-1} & G_{r}^{m-1} \\ \hline 0 & G_{r-1}^{m-1}\end{array}\right]$
Codes $\mathcal{R}(r, m)$ map monomials f of $\operatorname{deg}(f) \leq r$ and yield code weights $2^{m-\operatorname{deg}(f)}$ on the paths $\left(i_{1}, \ldots, i_{m}\right)$ of weight $=\operatorname{deg}(f)$. Any vector $(\mathbf{u}, \mathbf{u}+\mathbf{v})$ has weight $\geq \min \{2 w t(\mathbf{u}), w t(\mathbf{v})\}$. Codewords of min weight 2^{m-r} can generate $\mathcal{R}(r, m)$.

Decoding. Below we couple indices $i \in[1, n / 2]$ and $(i)=i+n / 2$, and use input alphabet $\{ \pm 1\}$. Then $\mathbf{c}=\left(\underset{R(r, m-1)}{\mathbf{u}_{i}}, \underset{R(r-1, m-1)}{\mathbf{u v}_{(i)}}\right)$

Received $\left(\mathbf{y}_{i}, \mathbf{y}_{(i)}\right)=\left(\mathbf{u} \cdot \mathbf{n}_{i}, \quad \mathbf{u v} \cdot \mathbf{n}_{(i)}\right)$ with noise vectors $\mathbf{n}_{i}, \mathbf{n}_{(i)}$. We will estimate $\mathbf{v}=\mathbf{y}_{i} \mathbf{y}_{(i)} \cdot \mathbf{n}_{i} \mathbf{n}_{(i)}$ and $\mathbf{u}=\mathbf{y}_{i} \mathbf{n}_{i}=\mathbf{v} \cdot \mathbf{y}_{(i)} \mathbf{n}_{(i)}$.

1. Form estimate $\mathbf{y}^{v}=\mathbf{y}_{i} \mathbf{y}_{(i)}$ of \mathbf{v} and decode $\mathbf{y}^{\mathbf{v}} \Rightarrow \widetilde{\mathbf{v}}$. Here $\mathbf{y}_{i} \mathbf{y}_{(i)}$ has max of t errors with the mean $t(1-t / n)$.
2. Form estimate \mathbf{y}^{u} of \mathbf{u} from \mathbf{y}_{i} and $\widetilde{\mathbf{v}} \mathbf{y}_{(i)}$. Decode $\mathbf{y}^{\mathbf{u}} \Rightarrow \widetilde{\mathbf{u}}$.

- Recursion: Proceed to RM codes of order $r-2, \ldots, 1$ (or $r=0$).

Path recalculations for the received vector $\mathbf{y}=\left(\begin{array}{cc}\mathbf{c}_{i} \cdot \\ \mathbf{u} \\ \mathbf{u} \\ \mathbf{n}_{i}, & \mathbf{c}_{(i)} \cdot \mathbf{n}_{(i)} \\ \text { uv }\end{array}\right)$
Consider posterior prob. of symbols $c_{i}, c_{(i)}$ and v_{i}, u_{i}

$$
\begin{array}{ll}
p_{i} \triangleq \operatorname{Pr}\left\{c_{i}=1 \mid y_{i}\right\}, & p_{(i)} \triangleq \operatorname{Pr}\left\{c=1 \mid y_{(i)}\right\} \\
p_{i}^{\mathbf{v}} \triangleq \operatorname{Pr}\left\{v_{i}=1 \mid y_{i}, y_{(i)}\right\}, & p_{i}^{\mathbf{u}} \triangleq \operatorname{Pr}\left\{u_{i}=1 \mid y_{i}, y_{(i)}, v_{i}\right\}
\end{array}
$$

Then p_{i}^{v} and p_{i}^{u} have a compact form via probability offsets:

$$
\begin{array}{ll}
g_{i}=1-2 p_{i}, & g_{(i)}=1-2 p_{(i)},
\end{array} \quad \widetilde{g}_{(i)} \triangleq g_{(i)} \tilde{v}_{i} .
$$

The (product) \mathbf{v}-channel degrades \mathbf{y}-channel and the (repetition)
\mathbf{u}-channel improves it. Specific changes depend on a \mathbf{y}-channel.

Channel	\mathbf{y}	\mathbf{v}	\mathbf{u}	Results
High noise *	$g \ll 1$	g^{2}	$\simeq 2 g$	Big penalty for v-path
Low noise	$p \ll 1$	$\simeq 2 p$	$\simeq p^{2}$	Big gain for u-path

*To reliably correct noise with offset g, a repetition code needs length $\succeq g^{-2}$.

BER of different information bits (channels) in recursive decoding

ALGORITHM $\mathcal{D}_{r}^{m}\left(\mathbf{g}_{i}, \mathbf{g}_{(i)}\right)$

1. If $r=1$, decode $\mathcal{R}(1, m)$. Else
2. Recursively decode $\mathcal{R}(r, m)$

Take $\mathbf{g}^{\mathbf{v}}=\mathbf{g}_{i} \mathbf{g}_{(i)} ; \quad \widetilde{\mathbf{v}}=\mathcal{D}_{r-1}^{m-1}\left(\mathbf{g}^{\mathbf{v}}\right)$.
Take $\mathbf{g}^{\mathbf{u}}=\frac{\mathbf{g}_{i}+\widetilde{\mathbf{g}}_{(i)}}{1+\mathbf{g}_{i} \widetilde{\mathbf{g}}_{(i)}} ; \widetilde{\mathbf{u}}=\mathcal{D}_{r}^{m-1}\left(\mathbf{g}^{\mathbf{u}}\right)$.
Output $\widetilde{\mathbf{c}}=(\widetilde{\mathbf{u}}, \widetilde{\mathbf{u}})$.

$$
\begin{array}{ll}
g_{i}^{y}=0.5 & g_{i}^{\mathbf{v}}=0.25 \text { - degrading. } \\
\text { If } \widetilde{\mathbf{v}}=+1: & g_{i}^{\mathbf{u}}=0.80 \text { - improving } \\
\text { If } \widetilde{\mathbf{v}}=-1: & g_{i}^{\mathbf{u}}=0 \quad: \text { - erasure }
\end{array}
$$

BSC_{p} with $\mathrm{p}=0.25$ and $\mathrm{g}=0.5$

How can we improve recursive decoding?

1. Use ML-decoding on the end nodes of order $r \geq 1$ if possible;
2. Eliminate the weakest channels (bits) and consider subcodes;
3. Employ lists of code candidates in intermediate decoding steps.

Example. Optimized subcodes with end ML-decoding and intermediate lists in RM code $\mathcal{R}(3,8)$ [Dumer, Shabunov '2000] [$n=256, k=93]$ RM code and its [256, 78] subcode

RM and Polar codes: $\mathcal{R}(m, m)$ has 2^{m} paths; one inform. bit per path.

Polarization Theorem [Arikan '2009]. Recursive decoding of $\mathcal{R}(m, m)$ on a memoryless channel W with (symmetric) capacity $I(W)$ gives

$$
\begin{array}{lll}
\lim _{n \rightarrow \infty}\left[\text { the fraction of good paths with } P_{e} \rightarrow 0\right] & \rightarrow I(W) \\
\lim _{n \rightarrow \infty}\left[\text { the fraction of bad paths with } P_{e} \nrightarrow 0\right] & \rightarrow 1-I(W) .
\end{array}
$$

The fraction of good paths reaches the symmetric capacity $I(W)$ (i.e. the Shannon's capacity for equiprobable alphabets).

Shortcomings of polar codes:

1. Many good paths have slowly declining prob. $P_{e} \sim \exp \{-c \sqrt{n})$.
2. Good paths lack explicit description on a given error channel.

Consider both probability offsets $g_{i}=1-2 p_{i}$ and likelihoods $h_{i}=p_{i} /\left(1-p_{i}\right)$.
To estimate performance of a path,we take $\mathbf{c}=\mathbf{1}^{n}$ and assume that previous paths give correct $v_{i}=1$. Then recalculations for $h_{i,(i)}$ give

$$
h_{i}^{\mathrm{v}}=\frac{h_{i}+h_{(i)}}{1+h_{i} h_{(i)}}, \quad h^{\mathrm{u}}=h_{i} h_{(i)}
$$

Any path $\xi=\left(\xi_{1}, \ldots, \xi_{m}\right)$ derives $h_{i}^{\text {V }}$ if $\xi_{i}=1$ and $h_{i}^{\mathrm{u}} \quad$ if $\xi_{i}=0$.
We bound error rate via the expectation $\mathbb{E} h^{\lambda}(\xi)$ of $h^{\lambda}(\xi)$. Then

$$
\operatorname{Pr}\{h(\xi)>1\} \leq \min _{\lambda>0} \mathbb{E} h^{\lambda}(\xi)
$$

Theorem 1. For any subpaths $\bar{\xi}=\left(\xi_{1}, \ldots, \xi_{i}\right), \bar{\xi}_{\mathrm{v}}=(\bar{\xi}, 1)$ and $\bar{\xi}_{\mathrm{u}}=(\bar{\xi}, 0)$

Theorem 2. For two neighbor-paths $\xi_{\mathrm{uv}}=(\bar{\xi}, 0,1)$ and $\xi_{\mathrm{vu}}=(\bar{\xi}, 1,0)$

$$
\mathbb{E} h_{\mathrm{uv}}^{\lambda} \leq \mathbb{E} h_{\text {vu }}^{\lambda} \quad \lambda \in[0,1]
$$

Examples. Consider code $\mathcal{R}(r, m)$ with $r \sim m / 2$ and rate $R \in(0,1)$. We use it on a BSC_{p} with offset $g=1-2 p$. To find the worst path ξ^{*}, we can replace any uv-segment with vu on any path ξ.

Full Paths: let decoding end on single bits $\mathcal{R}(0,0)$. Then $\xi^{*}=1^{r} 0^{m-r}$.
Prefix 1^{r} gives offset $(1-2 p)^{2^{r}} \sim \exp \left\{-2^{r+1} p\right\}$. Suffix 0^{m-r} is a repetition code $\left[d=2^{m-r}, 1, d\right]$. Its error rate $P(\xi) \rightarrow 0$ if

$$
\exp \left\{-2^{r+1} p\right\} \lesssim d / 2, p n \lesssim(d \ln d) / 4 .
$$

1 -Truncated paths: let decoding end on biorthogonal end nodes $\mathcal{R}(1, \ell)$.
Then $\xi^{*}=1^{r-1} 0^{m-r}$ and we obtain similar estimate $p n \lesssim(d \ln d) / 2$.

Codes of length 2^{m} with rate $R \rightarrow 1$ and error probability $p \sim 1 / m$.
Bound all paths by a zigzag with v-paths of increasing length $\mathcal{L}_{i}=2^{i-2} \log m$ and \mathbf{u}-paths with $\ell=3$. \mathcal{L}_{1}-path has length $(\log m) / 2$. It gives offset $(1-2 / m)^{\mathcal{L}_{1}} \sim 1-2 / \sqrt{m}$. Then ℓ-path is a repetition code of length $d=8$. It has error rate of order $(1 / \sqrt{m})^{d / 2}=m^{-2}$. The next section of \mathcal{L}_{2} and ℓ gives error rate of order m^{-4} and so on. Thus, $P(\xi) \rightarrow 0$. The overall rate is $R \geq 1-c H(6 / \log m) \rightarrow 1$. Generally, codes have $R=1-c_{1} H\left(c_{2} p\right)$

Codes $\mathcal{R}(r, m)$ with $r \succ m / 2$ have rate $R \rightarrow 1$, and include polar codes. RM codes optimize path' choice w.r.t. distance d, and polar codes do it w.r.t. error probability P_{e}. This choice depends on specific decoding.

Consider a subcode C_{ξ} of $\mathcal{R}(m, m)$ that takes one path $\xi=\left(i_{1}, \ldots, i_{m-\ell}\right)$ of length $m-\ell$ and extends it with some end node $R_{\xi}(s, \ell)$ of dimension k_{ξ}. C_{ξ} has distance $d_{\xi}=2^{m-s-w t(\xi)}$. To enhance polar codes, we use some subset of paths T and ML-decode the corresponding end nodes $R_{\xi}(s, \ell)$. Then we obtain code $C(m, T)=\cup_{\xi \in T} C(\xi)$ with various end nodes.

Lemma. $C(m, T)$ has $n=2^{m}, k(m, T)=\sum_{\xi \in T} k_{\xi}, d(m, T)=\min _{\xi \in T} d_{\xi}$.

Let codes $C_{\ell}(m, T)$ have all end nodes $R_{\xi}(s, b)$ with parameters $b \leq \ell$. For small ℓ, ML-decoding of $R_{\xi}(s, b)$ only slightly increases complexity.

Lemma. Recursive decoding of any code $C_{\ell}(m, T)$ with ML-decoding of end nodes has complexity $\prec n^{1+1 / \ln m}$ if $\ell / \log _{2} m<1$ (codes C_{0} give $n \ln n$).

ML -decoding of short nodes $R_{\xi}(s, b)$ also retains the asymptotic BER.
Lemma. For $m \rightarrow \infty$, polar codes $C_{0}(m, T)$ of rate R yield some seq-ce of polarized codes $C_{\ell}\left(m, T^{\prime}\right)$ of similar rate $\rho \rightarrow R$ if $\ell \leq \log _{2} m$.

Node $R_{\xi}(s, \ell)$ includes all paths (ξ, η) with a common prefix ξ and all suffixes η of length ℓ and weight $\geq s$. ML-decoding of $R_{\xi}(s, \ell)$ replaces recursive decoding of various subpaths η with the single subpath $\boldsymbol{0}^{\ell-s}$ that passes the upgraded u-channel $\ell-s$ times.

Lemma. Recursive decoding of code $C(\xi)$ with ML-decoding of its end node $R(s, \ell)$ has error probability $P(\xi) \leq 2^{k} \xi(\bar{\xi})$, where $p(\bar{\xi})$ is the error probability of the extended path $\bar{\xi}=\xi, \boldsymbol{0}^{\ell-s}$.

Open questions

For $\epsilon>0$ and $n=2^{m}$ let $I(p, m, \epsilon)$ be a set of $2^{n(C-\epsilon)}$ recursive paths that achieve $P_{e} \rightarrow 0$ on BSC_{p} of capacity $C=1-H(p)$ as $m \rightarrow \infty$

We call the sets $I(p, m, \epsilon)$ weakly embedded if $I(q, m, \epsilon) \subset I(p, m, \epsilon)$ for all $(p, q): p<q<1 / 2$ as $m \rightarrow \infty$. They are strongly embedded if $I(q, m, \epsilon)$ is the subset of the "best" channels in $I(p, m, \epsilon)$.

1. Are subsets $I(p, m, \epsilon)$ weakly embedded for all $p<q<1 / 2$?
2. Can subsets $I(p, m, \epsilon)$ be strongly embedded for some channels?

Decoding performance of RM codes of fixed rate R (order $r \sim m / 2$)
Majority Decoding [Reed '54, Krichevskiy '70]

$$
\text { Corrects } \simeq(d \ln d) / 4 \text { errors } \quad \text { Complexity } O(n k)
$$

Distance-based recursive decoding
[Litsyn '88, Kabatyanski '90, Schnabl-Bossert '95]
Corrects $d / 2$ errors (up to $\simeq(d \ln d) / 4$ errors)

Complexity $O(n \log n)$

Probabilistic recursive decoding [Dumer '99]

$$
\begin{aligned}
& \text { Corrects } \simeq(d \ln d) / 2 \text { errors } \\
& (\simeq n(1-\mathrm{o}(1)) / 2 \text { for const order } \mathrm{r}) \quad \text { Complexity } O(n \log n)
\end{aligned}
$$

Probabilistic recursive decoding is analyzed as follows.

1. Separate decoding for different information bits;
2. End recursion on biorthogonal codes instead of repetition codes;
3. Find and eliminate the most error-prone information bits.
