Polarized Nested Constructions

Ilya Dumer

University of California, Riverside, USA

ACCT 2014

Motivation

Construct explicit families of good polarized codes (will be done for $R \rightarrow 1$). No such codes are known to date for error channels.

Design good moderate-length (1000-4000 bits) polarized codes. Polar codes and LDPC-type codes perform close to channel capacity only on long blocks.

Outline

- Recursive tree-like structure of RM codes.
- Tree paths as channels. Recalculations of channel reliabilities.
- Decoding and polarization on tree structures.
- Incomplete paths with ML decoding on end nodes.
- Design of nested polarized codes.

Reed-Muller (RM) codes $\mathcal{R}(r, m)$ of order r = 1, ..., m.

- Messages: polynomials $f^{(r)}(x_1, \ldots, x_m)$ of deg $\leq r$ in *m* Boolean variables.
- Codewords: outputs $\mathbb{F}_2^m \to \mathbb{F}_2$ of polynomials f
- Message $f^{(2)}(x_1, x_2, x_3) = x_2x_3 + x_1 + 1$. Codeword: (11100001)

Partition:
$$f(x_1, ..., x_m) = f_0(x_2, ..., x_m) + x_1 f_1(x_2, ..., x_m)$$

= $f_{00}(x_3, ..., x_m) + x_2 f_{01}(x_3, ...) + x_1 f_{10}(x_3, ...) + x_1 x_2 f_{11}(x_3, ...)$
= $... = \sum_{i_1, ..., i_m} u_{i_1, ..., i_m} x_1^{i_1} ... x_m^{i_m}$

Full partition of (5,5) RM code into 32 paths

 $x_1^{i_1} x_2^{i_2} \dots x_5^{i_5}$ defines path $\psi = i_1 i_2 \dots i_5$ from u to $u_{i_1 i_2 \dots i_5}$ and row of gen. matrix with Hamming weight $2^{m-wt(\psi)}$ Plotkin $(\mathbf{u}, \mathbf{u} + \mathbf{v})$ construction for RM codes of order r < m

$$\underbrace{f_{0}^{(r)}(x_{1},\ldots,x_{m})}_{\mathbf{c}\in\mathcal{R}(r,m)} = \underbrace{f_{0}^{(r)}(x_{1},\ldots,x_{m-1})}_{\mathbf{u}\in\mathcal{R}(r,m-1)} + \underbrace{x_{1}f_{1}^{(r-1)}(x_{2},\ldots,x_{m})}_{\mathbf{v}\in\mathcal{R}(r-1,m-1)}$$
Generator matrix $G_{r}^{m} = \left[\frac{G_{r}^{m-1}}{0} \left| \frac{G_{r}^{m-1}}{G_{r-1}^{m-1}} \right]$

Codes $\mathcal{R}(r,m)$ map monomials f of deg $(f) \leq r$ and yield code weights $2^{m-\deg(f)}$ on the paths $(i_1, ..., i_m)$ of weight $= \deg(f)$. Any vector $(\mathbf{u}, \mathbf{u} + \mathbf{v})$ has weight $\geq \min\{2wt(\mathbf{u}), wt(\mathbf{v})\}$. Codewords of min weight 2^{m-r} can generate $\mathcal{R}(r, m)$.

Decoding. Below we couple indices $i \in [1, n/2]$ and (i) = i + n/2, and use input alphabet $\{\pm 1\}$. Then $\mathbf{c} = (\underset{R(r,m-1)}{\mathbf{u}}, \underset{R(r-1,m-1)}{\mathbf{uv}})$

Received $(\mathbf{y}_i, \mathbf{y}_{(i)}) = (\mathbf{u} \cdot \mathbf{n}_i, \mathbf{u} \mathbf{v} \cdot \mathbf{n}_{(i)})$ with noise vectors $\mathbf{n}_i, \mathbf{n}_{(i)}$. We will estimate $\mathbf{v} = \mathbf{y}_i \mathbf{y}_{(i)} \cdot \mathbf{n}_i \mathbf{n}_{(i)}$ and $\mathbf{u} = \mathbf{y}_i \mathbf{n}_i = \mathbf{v} \cdot \mathbf{y}_{(i)} \mathbf{n}_{(i)}$.

- 1. Form estimate $\mathbf{y}^{v} = \mathbf{y}_{i}\mathbf{y}_{(i)}$ of \mathbf{v} and decode $\mathbf{y}^{\mathbf{v}} \Rightarrow \widetilde{\mathbf{v}}$. Here $\mathbf{y}_{i}\mathbf{y}_{(i)}$ has max of *t* errors with the mean t(1 - t/n).
- 2. Form estimate $y^{\prime\prime}$ of u from $y_{\it i}$ and $\widetilde{v}y_{(\it i)}$. Decode $y^u \Rightarrow \widetilde{u}.$
- Recursion: Proceed to RM codes of order r 2, ..., 1 (or r = 0).

Path recalculations for the received vector $\mathbf{y} = \begin{pmatrix} \mathbf{c}_i \cdot \mathbf{n}_i, & \mathbf{c}_{(i)} \cdot \mathbf{n}_{(i)} \\ \mathbf{u} & \mathbf{u} \end{pmatrix}$

Consider posterior prob. of symbols c_i , $c_{(i)}$ and v_i , u_i

$$\begin{aligned} p_i &\triangleq \Pr\{c_i = 1 \mid y_i\}, \qquad p_{(i)} &\triangleq \Pr\{c = 1 \mid y_{(i)}\} \\ p_i^{\mathbf{v}} &\triangleq \Pr\{v_i = 1 \mid y_i, y_{(i)}\}, \qquad p_i^{\mathbf{u}} &\triangleq \Pr\{u_i = 1 \mid y_i, y_{(i)}, v_i\} \end{aligned}$$

Then $p_i^{\mathbf{v}}$ and $p_i^{\mathbf{u}}$ have a compact form via **probability offsets**:

$$g_i = 1 - 2p_i, \quad g_{(i)} = 1 - 2p_{(i)}, \qquad \widetilde{g}_{(i)} \triangleq g_{(i)}\widetilde{v}_i$$
$$g_i^{\mathbf{v}} = g_i g_{(i)}, \qquad g_i^{\mathbf{u}} = \left(g_i + \widetilde{g}_{(i)}\right) / \left(1 + g_i \widetilde{g}_{(i)}\right)$$

The (product) v-channel degrades y-channel and the (repetition) \mathbf{u} -channel improves it. Specific changes depend on a y-channel.

Channel	У	v	u	Results
High noise*	<i>g</i> ≪1	g^2	$\simeq 2g$	Big penalty for v-path
Low noise	$p \ll 1$	$\simeq 2p$	$\simeq p^2$	Big gain for \mathbf{u} -path

*To reliably correct noise with offset g, a repetition code needs length $\geq g^{-2}$.

BER of different information bits (channels) in recursive decoding

How can we improve recursive decoding?

- 1. Use ML-decoding on the end nodes of order $r \ge 1$ if possible;
- 2. Eliminate the weakest channels (bits) and consider subcodes;
- 3. Employ lists of code candidates in intermediate decoding steps.

Example. Optimized subcodes with end ML-decoding and intermediate lists in RM code $\mathcal{R}(3, 8)$ [Dumer, Shabunov '2000] [n = 256, k = 93] RM code and its [256, 78] subcode

RM and Polar codes: $\mathcal{R}(m, m)$ has 2^m paths; one inform. bit per path.

Polarization Theorem [Arikan '2009]. Recursive decoding of $\mathcal{R}(m,m)$ on a memoryless channel *W* with (symmetric) capacity *I*(*W*) gives

$$\begin{split} &\lim_{n\to\infty} [\text{the fraction of good paths with } P_e \to 0] \quad \to \quad I(W) \\ &\lim_{n\to\infty} [\text{the fraction of bad paths with } P_e \nrightarrow 0] \quad \to \quad 1-I(W). \end{split}$$

The fraction of good paths reaches the symmetric capacity I(W) (i.e. the Shannon's capacity for equiprobable alphabets).

Shortcomings of polar codes:

- 1. Many good paths have slowly declining prob. $P_e \sim \exp\{-c\sqrt{n}\}$.
- 2. Good paths lack explicit description on a given error channel.

Consider both probability offsets $g_i = 1 - 2p_i$ and likelihoods $h_i = p_i/(1 - p_i)$. To estimate performance of a path,we take $\mathbf{c} = \mathbf{1}^n$ and assume that previous paths give correct $v_i = 1$. Then recalculations for $h_{i,(i)}$ give

$$h_i^{\mathbf{v}} = rac{h_i + h_{(i)}}{1 + h_i h_{(i)}}, \qquad h^{\mathbf{u}} = h_i h_{(i)}$$

Any path $\xi = (\xi_1, \dots, \xi_m)$ derives $h_i^{\mathbf{v}}$ if $\xi_i = 1$ and $h_i^{\mathbf{u}}$ if $\xi_i = 0$. We bound error rate via the expectation $\mathbb{E}h^{\lambda}(\xi)$ of $h^{\lambda}(\xi)$. Then

 $\Pr\{h(\xi) > 1\} \le \min_{\lambda > 0} \mathbb{E}h^{\lambda}(\xi)$

Theorem 1. For any subpaths $\bar{\xi} = (\xi_1, \dots, \xi_i), \bar{\xi}_v = (\bar{\xi}, 1)$ and $\bar{\xi}_u = (\bar{\xi}, 0)$

$$\begin{cases} \mathbb{E}\left(h_{\mathbf{u}}^{\lambda}\right) < \mathbb{E}\left(h^{\lambda}\right) \leq \mathbb{E}\left(h_{\mathbf{v}}^{\lambda}\right) \\ \mathbb{E}\left(h_{\mathbf{u}}^{\lambda}\right) + \mathbb{E}\left(h_{\mathbf{v}}^{\lambda}\right) \leq 2\mathbb{E}\left(h^{\lambda}\right) \end{cases} \quad \text{if } \lambda \in (0,1]$$

Theorem 2. For two neighbor-paths $\xi_{uv} = (\bar{\xi}, 0, 1)$ and $\xi_{vu} = (\bar{\xi}, 1, 0)$

 $\mathbb{E}h_{\mathbf{uv}}^{\lambda} \leq \mathbb{E}h_{\mathbf{vu}}^{\lambda} \quad \lambda \in [0, 1]$

Examples. Consider code $\mathcal{R}(r,m)$ with $r \sim m/2$ and rate $R \in (0,1)$. We use it on a BSC_{*p*} with offset g = 1 - 2p. To find the worst path ξ^* , we can replace any **uv**-segment with **vu** on any path ξ .

Full Paths: let decoding end on single bits $\mathcal{R}(0,0)$. Then $\xi^* = 1^r 0^{m-r}$. Prefix 1^{*r*} gives offset $(1 - 2p)^{2^r} \sim \exp\{-2^{r+1}p\}$. Suffix 0^{m-r} is a repetition code $[d = 2^{m-r}, 1, d]$. Its error rate $P(\xi) \to 0$ if $\exp\{-2^{r+1}p\} \lesssim d/2, \ pn \lesssim (d \ln d)/4.$

1-Truncated paths: let decoding end on biorthogonal end nodes $\mathcal{R}(1, \ell)$.

Then $\xi^* = 1^{r-1} 0^{m-r}$ and we obtain similar estimate $pn \leq (d \ln d)/2$.

$$r = 0$$

$$r = 1$$

Codes of length 2^m with rate $R \to 1$ and error probability $p \sim 1/m$.

Bound all paths by a zigzag with v-paths of increasing length $\mathcal{L}_i = 2^{i-2} \log m$ and u-paths with $\ell = 3$. \mathcal{L}_1 -path has length $(\log m)/2$. It gives offset $(1 - 2/m)^{\mathcal{L}_1} \sim 1 - 2/\sqrt{m}$. Then ℓ -path is a repetition code of length d = 8. It has error rate of order $(1/\sqrt{m})^{d/2} = m^{-2}$. The next section of \mathcal{L}_2 and ℓ gives error rate of order m^{-4} and so on. Thus, $P(\xi) \to 0$. The overall rate is $R \ge 1 - cH(6/\log m) \to 1$. Generally, codes have $R = 1 - c_1H(c_2p)$

Codes $\mathcal{R}(r,m)$ with $r \succ m/2$ have rate $R \to 1$, and include polar codes. RM codes optimize path' choice w.r.t. distance *d*, and polar codes do it w.r.t. error probability P_e . This choice depends on specific decoding.

Consider a subcode C_{ξ} of $\mathcal{R}(m,m)$ that takes one path $\xi = (i_1, ..., i_{m-\ell})$ of length $m - \ell$ and extends it with some end node $R_{\xi}(s, \ell)$ of dimension k_{ξ} . C_{ξ} has distance $d_{\xi} = 2^{m-s-wt(\xi)}$. To enhance polar codes, we use some subset of paths *T* and ML-decode the corresponding end nodes $R_{\xi}(s, \ell)$. Then we obtain code $C(m, T) = \bigcup_{\xi \in T} C(\xi)$ with various end nodes.

Lemma. C(m,T) has $n = 2^m$, $k(m,T) = \sum_{\xi \in T} k_{\xi}$, $d(m,T) = \min_{\xi \in T} d_{\xi}$.

Paths: (0,0)/RM(3,3), (0,1,0)/RM(1,2), and 1/RM(0,4)

Let codes $C_{\ell}(m,T)$ have all end nodes $R_{\xi}(s,b)$ with parameters $b \leq \ell$. For small ℓ , ML-decoding of $R_{\xi}(s,b)$ only slightly increases complexity.

Lemma. Recursive decoding of any code $C_{\ell}(m, T)$ with ML-decoding of end nodes has complexity $\prec n^{1+1/\ln m}$ if $\ell/\log_2 m < 1$ (codes C_0 give $n \ln n$).

ML-decoding of short nodes $R_{\xi}(s, b)$ also retains the asymptotic BER. Lemma. For $m \to \infty$, polar codes $C_0(m, T)$ of rate R yield some seq-ce of polarized codes $C_{\ell}(m, T')$ of similar rate $\rho \to R$ if $\ell \leq \log_2 m$.

Node $R_{\xi}(s, \ell)$ includes all paths (ξ, η) with a common prefix ξ and all suffixes η of length ℓ and weight $\geq s$. ML-decoding of $R_{\xi}(s, \ell)$ replaces recursive decoding of various subpaths η with the single subpath $\mathbf{0}^{\ell-s}$ that passes the upgraded *u*-channel $\ell - s$ times.

Lemma. Recursive decoding of code $C(\xi)$ with ML-decoding of its end node $R(s, \ell)$ has error probability $P(\xi) \leq 2^{k_{\xi}} p(\overline{\xi})$, where $p(\overline{\xi})$ is the error probability of the extended path $\overline{\xi} = \xi, \mathbf{0}^{\ell-s}$.

Open questions

For $\epsilon > 0$ and $n = 2^m$ let $I(p, m, \epsilon)$ be a set of $2^{n(C-\epsilon)}$ recursive paths that achieve $P_e \to 0$ on BSC_p of capacity C = 1 - H(p) as $m \to \infty$

We call the sets $I(p, m, \epsilon)$ weakly embedded if $I(q, m, \epsilon) \subset I(p, m, \epsilon)$ for all (p, q) : p < q < 1/2 as $m \to \infty$. They are strongly embedded if $I(q, m, \epsilon)$ is the subset of the "best" channels in $I(p, m, \epsilon)$.

- 1. Are subsets $I(p, m, \epsilon)$ weakly embedded for all p < q < 1/2 ?
- 2. Can subsets $I(p, m, \epsilon)$ be strongly embedded for some channels?

Decoding performance of RM codes of fixed rate R (order $r \sim m/2$)

Majority Decoding [Reed '54, Krichevskiy '70]

Corrects $\simeq (d \ln d)/4$ errors Complexity O(nk)

Distance-based recursive decoding [Litsyn '88, Kabatyanski '90, Schnabl-Bossert '95]

> Corrects d/2 errors (up to $\simeq (d \ln d)/4$ errors) Complexity $O(n \log n)$

Probabilistic recursive decoding [Dumer '99]

Corrects $\simeq (d \ln d)/2$ errors $(\simeq n(1-o(1))/2$ for const order r)

Complexity $O(n \log n)$

Probabilistic recursive decoding is analyzed as follows.

- 1. Separate decoding for different information bits;
- 2. End recursion on biorthogonal codes instead of repetition codes;
- 3. Find and eliminate the most error-prone information bits.