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Motivation

Construct explicit families of good polarized codes (will be done for R → 1).

No such codes are known to date for error channels.

Design good moderate-length (1000-4000 bits) polarized codes. Polar codes

and LDPC-type codes perform close to channel capacity only on long blocks.

Outline

• Recursive tree-like structure of RM codes.

• Tree paths as channels. Recalculations of channel reliabilities.

• Decoding and polarization on tree structures.

• Incomplete paths with ML decoding on end nodes.

• Design of nested polarized codes.



Reed-Muller (RM) codes R(r,m) of order r = 1, ...,m.

• Messages: polynomials f (r)(x1, . . . , xm) of deg ≤ r in m Boolean variables.

• Codewords: outputs Fm
2 → F2 of polynomials f

• Message f (2)(x1, x2, x3) = x2x3 + x1 + 1. Codeword: (11100001)

Length n = 2m.

Dimension k =
r∑

i=0

(m
i

)
.

Minimum distance d = 2m−r.

Partition: f (x1, ..., xm) = f0(x2, ..., xm) + x1f1(x2, ..., xm)

= f00(x3, ..., xm) + x2 f01(x3, ...) + x1f10(x3, ...) + x1x2 f11(x3, ...)

= ... = Σi1,...,im ui1,...,im xi1
1 ... xim

m



Full partition of (5,5) RM code into 32 paths
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Plotkin (u, u + v) construction for RM codes of order r < m

f (r)(x1, . . . , xm)︸ ︷︷ ︸ = f (r)
0 (x1, . . . , xm−1)︸ ︷︷ ︸ + x1 f (r−1)

1 (x2, . . . , xm)︸ ︷︷ ︸
c ∈ R(r,m) u ∈ R(r,m − 1) v ∈ R(r − 1,m − 1)

Generator matrix Gm
r =

[
Gm−1

r Gm−1
r

0 Gm−1
r−1

]
Codes R (r,m) map monomials f of deg (f ) ≤ r and yield code weights

2m−deg(f ) on the paths (i1, ..., im) of weight = deg (f ). Any vector (u, u + v)

has weight ≥ min{2wt(u),wt(v)}. Codewords of min weight 2m−r can

generate R(r,m).
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Decoding. Below we couple indices i ∈ [1, n/2] and (i) = i + n/2,

and use input alphabet {±1}. Then c = ( ui
R(r,m−1)

, uv(i)
R(r−1,m−1)

)

Received (yi, y(i)) =
(
u · ni, uv · n(i)

)
with noise vectors ni, n(i).

We will estimate v = yiy(i) · nin(i) and u = yini = v·y(i)n(i).

1. Form estimate yv = yiy(i) of v and decode yv ⇒ ṽ.
Here yiy(i) has max of t errors with the mean t(1 − t/n).

2. Form estimate yu of u from yi and ṽy(i) . Decode yu ⇒ ũ.

• Recursion: Proceed to RM codes of order r − 2, ..., 1 (or r = 0).



Path recalculations for the received vector y =

(
ci
u
· ni, c(i)

uv
· n(i)

)
Consider posterior prob. of symbols ci, c(i) and vi, ui

pi , Pr{ci = 1 | yi}, p(i) , Pr{c = 1 | y(i)}

pv
i , Pr{vi = 1 | yi, y(i)}, pu

i , Pr{ui = 1 | yi, y(i), vi}

Then pv
i and pu

i have a compact form via probability offsets:

gi = 1 − 2pi, g(i) = 1 − 2p(i), g̃(i) , g(i)ṽi

gv
i = gig(i), gu

i =
(
gi + g̃(i)

) /(
1 + gig̃(i)

)
The (product) v-channel degrades y-channel and the (repetition)

u-channel improves it. Specific changes depend on a y-channel.

Channel y v u Results
High noise∗ g≪1 g2 ≃ 2g Big penalty for v-path

Low noise p ≪ 1 ≃ 2p ≃ p2 Big gain for u-path

∗To reliably correct noise with offset g, a repetition code needs length ≽ g−2.



BER of different information bits (channels) in recursive decoding

ALGORITHM Dm
r (gi, g(i))

1. If r = 1, decode R(1,m). Else

2. Recursively decode R(r,m)

Take gv =gig(i); ṽ = Dm−1
r−1 (g

v).

Take gu =
gi + g̃(i)

1 + gig̃(i)
; ũ = Dm−1

r (gu).

Output c̃ = (ũ, ũṽ).

gy
i = 0.5 gv

i = 0.25 – degrading.
If ṽ = +1: gu

i = 0.80 – improving.

If ṽ = −1: gu
i = 0 : – erasure

(2,5) (3,5)

(2,4) (3,4)(1,4)

(0,3) (1,3) (2,3)

(0,2)

(0,1)

(1,2)

(1,1)

(2,2)

(1,1)

(3,3)
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How can we improve recursive decoding?

1. Use ML-decoding on the end nodes of order r ≥ 1 if possible;

2. Eliminate the weakest channels (bits) and consider subcodes;

3. Employ lists of code candidates in intermediate decoding steps.



Example. Optimized subcodes with end ML-decoding and
intermediate lists in RM code R(3, 8) [Dumer, Shabunov ’2000]
[n = 256, k = 93] RM code and its [256, 78] subcode
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RM and Polar codes: R(m,m) has 2m paths; one inform. bit per path.

Polarization Theorem [Arikan ’2009]. Recursive decoding of R(m,m)

on a memoryless channel W with (symmetric) capacity I(W) gives

lim
n→∞

[the fraction of good paths with Pe → 0] → I(W)

lim
n→∞

[the fraction of bad paths with Pe 9 0] → 1 − I(W).

The fraction of good paths reaches the symmetric capacity I(W)
(i.e. the Shannon’s capacity for equiprobable alphabets).

Shortcomings of polar codes:

1. Many good paths have slowly declining prob. Pe ∼ exp{−c
√

n).

2. Good paths lack explicit description on a given error channel.



Consider both probability offsets gi = 1 − 2pi and likelihoods hi = pi/(1 − pi).

To estimate performance of a path,we take c = 1n and assume that

previous paths give correct vi = 1. Then recalculations for hi,(i) give

hv
i =

hi + h(i)

1 + hih(i)
, hu = hih(i)

Any path ξ = (ξ1, . . . , ξm) derives hv
i if ξi = 1 and hu

i if ξi = 0.

We bound error rate via the expectation Ehλ(ξ) of hλ(ξ). Then

Pr{h(ξ) > 1} ≤ min
λ>0

Ehλ(ξ)

Theorem 1. For any subpaths ξ̄ = (ξ1, . . . , ξi), ξ̄v =
(
ξ̄, 1

)
and ξ̄u =

(
ξ̄, 0

)
{

E
(
hλ

u
)
< E

(
hλ

)
≤ E

(
hλ

v
)

E
(
hλ

u
)
+ E

(
hλ

v
)
≤ 2E

(
hλ

) if λ ∈ (0, 1]

Theorem 2. For two neighbor-paths ξuv =
(
ξ̄, 0, 1

)
and ξvu =

(
ξ̄, 1, 0

)
Ehλ

uv ≤ Ehλ
vu λ ∈ [0, 1]



Examples. Consider code R(r,m) with r ∼ m/2 and rate R ∈ (0, 1). We use

it on a BSCp with offset g = 1 − 2p. To find the worst path ξ∗, we can

replace any uv-segment with vu on any path ξ.

Full Paths: let decoding end on single bits R(0, 0). Then ξ∗ = 1r0m−r.

Prefix 1r gives offset (1 − 2p)2r
∼ exp{−2r+1p}. Suffix 0m−r is a

repetition code [d = 2m−r, 1, d]. Its error rate P(ξ) → 0 if

exp{−2r+1p} . d/2, pn . (d ln d)/4.

1-Truncated paths: let decoding end on biorthogonal end nodes R(1, ℓ).

Then ξ∗ = 1r−10m−r and we obtain similar estimate pn . (d ln d)/2.

r = 0

Decoding for (4,8) RM code

r = 1



Codes of length 2m with rate R → 1 and error probability p ∼ 1/m.

Bound all paths by a zigzag with v-paths of increasing length Li = 2i−2 log m

and u–paths with ℓ = 3. L1-path has length (log m)/2. It gives offset

(1 − 2/m)L1 ∼ 1 − 2/
√

m. Then ℓ-path is a repetition code of length d = 8.

It has error rate of order (1/
√

m)d/2 = m−2. The next section of L2 and ℓ

gives error rate of order m−4 and so on. Thus, P(ξ) → 0. The overall

rate is R ≥ 1 − cH(6/ log m) → 1. Generally, codes have R = 1 − c1H(c2p)

L1

ℓ

L2

ℓ

L3

ℓ

Zigzag polar code from (8,8) RM code



Codes R(r,m) with r ≻ m/2 have rate R → 1, and include polar codes.
RM codes optimize path’ choice w.r.t. distance d, and polar codes do it
w.r.t. error probability Pe. This choice depends on specific decoding.

Consider a subcode Cξ of R(m,m) that takes one path ξ =(i1, ..., im−ℓ) of
length m − ℓ and extends it with some end node Rξ(s, ℓ) of dimension kξ.

Cξ has distance dξ = 2m−s−wt(ξ). To enhance polar codes, we use some
subset of paths T and ML-decode the corresponding end nodes Rξ(s, ℓ).
Then we obtain code C(m, T) = ∪ξ∈T C(ξ) with various end nodes.

Lemma. C(m, T) has n = 2m, k(m, T) =
∑

ξ∈T kξ, d(m, T) = minξ∈T dξ.

Paths: (0,0)/RM(3,3), (0,1,0)/RM(1,2), and 1/RM(0,4)

(0,4)

(3,3)

(1,2)

1 0

*

*



Let codes Cℓ(m, T) have all end nodes Rξ(s, b) with parameters b ≤ ℓ.

For small ℓ, ML-decoding of Rξ(s, b) only slightly increases complexity.

Lemma. Recursive decoding of any code Cℓ(m, T) with ML-decoding of

end nodes has complexity ≺ n1+1/ ln m if ℓ/ log2 m < 1 (codes C0 give n ln n).

ML-decoding of short nodes Rξ(s, b) also retains the asymptotic BER.

Lemma. For m → ∞, polar codes C0(m, T) of rate R yield some seq-ce

of polarized codes Cℓ(m, T ′) of similar rate ρ → R if ℓ ≤ log2 m.

Node Rξ(s, ℓ) includes all paths (ξ, η) with a common prefix ξ and all

suffixes η of length ℓ and weight ≥ s. ML-decoding of Rξ(s, ℓ) replaces

recursive decoding of various subpaths η with the single subpath 0ℓ−s

that passes the upgraded u-channel ℓ− s times.

Lemma. Recursive decoding of code C(ξ) with ML-decoding of

its end node R(s, ℓ) has error probability P(ξ) ≤ 2kξp
(
ξ
)
, where

p
(
ξ
)

is the error probability of the extended path ξ = ξ, 0ℓ−s.



Open questions
For ϵ > 0 and n = 2m let I(p,m, ϵ) be a set of 2n(C−ϵ) recursive paths

that achieve Pe → 0 on BSCp of capacity C = 1 − H(p) as m → ∞

We call the sets I(p,m, ϵ) weakly embedded if I(q,m, ϵ) ⊂ I(p,m, ϵ)

for all (p, q) : p < q < 1/2 as m → ∞. They are strongly embedded

if I(q,m, ϵ) is the subset of the "best" channels in I(p,m, ϵ).

1. Are subsets I(p,m, ϵ) weakly embedded for all p < q < 1/2 ?

2. Can subsets I(p,m, ϵ) be strongly embedded for some channels?
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Decoding performance of RM codes of fixed rate R (order r ∼ m/2)

Majority Decoding [Reed ’54, Krichevskiy ’70]

Corrects ≃ (d ln d)/4 errors Complexity O(nk)

Distance-based recursive decoding
[Litsyn ’88, Kabatyanski ’90, Schnabl-Bossert ’95]

Corrects d/2 errors
(up to ≃ (d ln d)/4 errors) Complexity O(n log n)

Probabilistic recursive decoding [Dumer ’99]

Corrects ≃ (d ln d)/2 errors
(≃ n(1-o(1))/2 for const order r)

Complexity O(n log n)

Probabilistic recursive decoding is analyzed as follows.

1. Separate decoding for different information bits;

2. End recursion on biorthogonal codes instead of repetition codes;

3. Find and eliminate the most error-prone information bits.


