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Motivation

Construct explicit families of good polarized codes (will be done for R — 1).

No such codes are known to date for error channels.

Design good moderate-length (1000-4000 bits) polarized codes. Polar codes

and LDPC-type codes perform close to channel capacity only on long blocks.

Outline

e Recursive tree-like structure of RM codes.

e Tree paths as channels. Recalculations of channel reliabilities.
e Decoding and polarization on tree structures.

e Incomplete paths with ML decoding on end nodes.

e Design of nested polarized codes.



Reed-Muller (RM) codes R (r,m) of order r = 1, ..., m.
o Messages: polynomials £ (xy, ..., x,) of deg < r in m Boolean variables.
e Codewords: outputs 5 — T, of polynomials f

e Message f® (x1, x2, x3) = xax3 + x; + 1. Codeword: (11100001)
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Full partition of (5,5) RM code into 32 paths
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Plotkin (u, u 4 v) construction for RM codes of order r < m
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Codes R (r,m) map monomials f of deg (f) < r and yield code weights
2= on the paths (i1, ..., in) of weight = deg (f). Any vector (u,u + v)
has weight > min{2wz(u), wr(v)}. Codewords of min weight 2"~" can
generate R(r,m).
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Decoding. Below we couple indices i € [1,n/2] and (i) =i+ n/2,
and use input alphabet {£1}. Thene=( w , uvy )

R(r,m—1) R(r—1,m—1)

Received (y,, () = (u-n;, uv-ng) with noise vectors n;, n.
We will estimate v = yiy(;) - mng) and u = yim; = v-yyng,.
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V * noise;* noise;

R (r,m)

1. Form estimate y’ = yiy(; of v and decode y* = V.
Here yiy(;) has max of ¢ errors with the mean ¢(1 — ¢/n).

2. Form estimate y" of u from y; and vy, . Decode y* = u.
@

e Recursion: Proceed to RM codes of order r — 2, ..., 1 (or r = 0).



Path recalculations for the received vector y = (c,- “m, € - n(,->)
u uv
Consider posterior prob. of symbols ¢;, ¢y and v;, u;
pi £ Pr{ci = 1|y}, poy = Pr{c=1]yu}
pi EP{vi=1y, yot, P 2Pr{ui= 1|y, yu, vi}
Then p! and p}' have a compact form via probability offsets:
g=1=-2p;, gn=1-2p1, &u=8u
g =88, & = (8+38w)/(1+ggw)
The (product) v-channel degrades y-channel and the (repetition)
u-channel improves it. Specific changes depend on a y-channel.

Channel y v u Results

High noise™ | g«1 g ~ 2g | Big penalty for v-path

Lownoise |p< 1| ~2p | ~p* | Biggain for u-path

*To reliably correct noise with offset g, a repetition code needs length > g=~.
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BER of different information bits (channels) in recursive decoding

ALGORITHM D} (gi, ()

1. If r =1, decode R(1,m). Else

2. Recursively decode R(r,m)

Take g' =gig(i); v=D""(g").
Takeg' = ETEO . G i)
1+ glg(O

Output ¢ = (u,uv).

g =05 g = 0.25 — degrading.
Ifv=+1: g =0.80-improving.
fv=—-1: g'=0 :—erasure
(1.1), (1.1)
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BSC, with p=0.25 and g=0.5

How can we improve recursive decoding?

1. Use ML-decoding on the end nodes of order r > 1 if possible;
2. Eliminate the weakest channels (bits) and consider subcodes;
3. Employ lists of code candidates in intermediate decoding steps.



Example. Optimized subcodes with end ML-decoding and
intermediate lists in RM code R (3, 8) [Dumer, Shabunov '2000]
[n =256,k = 93] RM code and its [256, 78] subcode

— = Uncoded
— k=93,L=1
—— k=78,L=1
—— k=78,L=2
—— k=78,L=4
—©- k=78,L=8 |]
—A— k=78,L=16
- k=78,L=32
—— k=78 ML
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RM and Polar codes: R(m,m) has 2" paths; one inform. bit per path.

(5.5)

Polarization Theorem [Arikan '2009]. Recursive decoding of R (m, m)
on a memoryless channel W with (symmetric) capacity /(W) gives

lim [the fraction of good paths with P, — 0] — (W)
lim [the fraction of bad paths with P. - 0] — 1 —1I(W).

The fraction of good paths reaches the symmetric capacity /(W)
(i.e. the Shannon’s capacity for equiprobable alphabets).

Shortcomings of polar codes:
1. Many good paths have slowly declining prob. P. ~ exp{—cy/n).
2. Good paths lack explicit description on a given error channel.



Consider both probability offsets g; = 1 — 2p; and likelihoods 4; = p;/(1 — p;).
To estimate performance of a path,we take ¢ = 1" and assume that

previous paths give correct v; = 1. Then recalculations for #; ;) give

v hi+ha

vo RO e g
! 1+hih(,-)7 @

Any path & = (&1,...,&,) derives h} if& =1 and h if&=0.
We bound error rate via the expectation Ex*(€) of #*(€). Then
. A
Pr{n(¢) > 1} < minEA"(¢)

Theorem 1. For any subpaths € = (&1,...,&), & = (§,1) and & = (£,0)

E (k) <E (1) <E (h

{ ( ) ( ) ( ) if A € (0,1]

E (hy) + E (hY) <2E (1)

Theorem 2. For two neighbor-paths & = (£,0,1) and &w = (£,1,0)

Eha < Ehyy A €[0,1]



Examples. Consider code R(r,m) with r ~ m/2 and rate R € (0, 1). We use
it on a BSC, with offset g = 1 — 2p. To find the worst path £*, we can
replace any uv-segment with vu on any path &.

Full Paths: let decoding end on single bits R(0,0). Then £* = 170" ~".
Prefix 1" gives offset (1 — 2p)>" ~ exp{—2"*'p}. Suffix 0" " is a
repetition code [d = 27", 1,d]. lts error rate P(§) — 0O if

exp{—2"""p} < d/2, pn < (dInd)/4.
1-Truncated paths: let decoding end on biorthogonal end nodes R(1, ¢).

Then ¢* = 1""'0™" and we obtain similar estimate pn < (dInd)/2.
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Codes of length 2" with rate R — 1 and error probability p ~ 1/m.

Bound all paths by a zigzag with v-paths of increasing length £; = 2> logm
and u—paths with ¢ = 3. £;-path has length (logm)/2. It gives offset

(1 —2/m)* ~ 1 —2/+/m. Then ¢-path is a repetition code of length d = 8.

It has error rate of order (1/y/m)%? = m™2. The next section of £, and ¢
gives error rate of order m~* and so on. Thus, P(¢) — 0. The overall

rateisR > 1 — cH(6/logm) — 1. Generally, codes have R = 1 — c¢;H(c2p)
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Zigzag polar code from (8,8) RM code




Codes R(r,m) with r = m/2 have rate R — 1, and include polar codes.
RM codes optimize path’ choice w.r.t. distance d, and polar codes do it
w.r.t. error probability P,. This choice depends on specific decoding.

Consider a subcode C¢ of R(m,m) that takes one path & =(ii, ..., in—¢) Of
length m — £ and extends it with some end node R¢ (s, ¢) of dimension k..
C¢ has distance d: = 2"~*~""()_ To enhance polar codes, we use some
subset of paths T and ML-decode the corresponding end nodes Re (s, ).
Then we obtain code C(m, T) = UgcrC(€) with various end nodes.

Lemma. C(m,T)hasn=2", k(m,T) =3 ..y ke, d(m,T) = minger de.
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Paths: (0,0)/RM(3,3), (0,1,0)/RM(1,2), and 1/RM(0,4)



Let codes C¢(m, T) have all end nodes R¢ (s, b) with parameters b < ¢.
For small £, ML-decoding of R¢(s, b) only slightly increases complexity.

Lemma. Recursive decoding of any code C¢(m, T') with ML-decoding of
end nodes has complexity < n'*'/™™ if ¢/log, m < 1 (codes C, give nlnn).

ML-decoding of short nodes R (s, b) also retains the asymptotic BER.
Lemma. For m — oo, polar codes Cy(m, T) of rate R yield some seg-ce
of polarized codes Ce(m, T") of similar rate p — R if £ < log, m.

Node R¢(s, £) includes all paths (&, n) with a common prefix £ and all
suffixes n of length ¢ and weight > s. ML-decoding of R¢ (s, ¢) replaces
recursive decoding of various subpaths 1 with the single subpath 0°—*
that passes the upgraded u-channel ¢ — s times.

Lemma. Recursive decoding of code C(¢) with ML-decoding of
its end node R(s, £) has error probability P(¢) < 2%¢p (£) , where
p (&) is the error probability of the extended path £ = £,0°".



Open questions
Fore > 0and n = 2" let I(p,m, ¢) be a set of 2"(°~<) recursive paths

that achieve P. — 0 on BSC, of capacity C =1 — H(p) asm — oo

We call the sets I(p, m, €) weakly embedded if 1(g,m,€) C I(p, m, €)
forall (p,q) : p < g < 1/2 as m — 0. They are strongly embedded
if I(q, m, €) is the subset of the "best" channels in I(p, m, ¢).

1. Are subsets I(p, m, ¢) weakly embedded forallp < g < 1/27?
2. Can subsets I(p, m, €) be strongly embedded for some channels?
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Block ER

Block ER vs SNR for RM code n = 512, k = 130 and its subcode n = 512, k = 101

- = Uncot‘ied
Majority: RM

Recursive: RM
k=101,L=1
k=101,L

k=101,L=16
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Decoding performance of RM codes of fixed rate R (order r ~ m/2)

Majority Decoding [Reed '54, Krichevskiy '70]

Corrects ~ (dInd)/4 errors Complexity O(nk)

Distance-based recursive decoding
[Litsyn '88, Kabatyanski '90, Schnabl-Bossert '95]

Corrects d/2 errors

(up to ~ (dInd)/4 errors) Complexity O(nlogn)

Probabilistic recursive decoding [Dumer '99]

Corrects ~ (dInd)/2 errors

(= n(1-0(1))/2 for const order r) Complexity O(nlogn)

Probabilistic recursive decoding is analyzed as follows.

1. Separate decoding for different information bits;
2. End recursion on biorthogonal codes instead of repetition codes;
3. Find and eliminate the most error-prone information bits.



