A method of finding explicit equation for optimal curve of genus 4

E. Alekseenko
Immanuel Kant Baltic Federal University
Kaliningrad

September 11, 2014 ACCT-2014

Introduction

Curves over \mathbb{F}_{q} with many rational points \longmapsto long AG-codes.

Introduction

Curves over \mathbb{F}_{q} with many rational points \longmapsto long AG-codes.

Definition

A curve C / \mathbb{F}_{q} is a non-singular projective absolutely irreducible algebraic variety of dimension 1 over \mathbb{F}_{q}.

Introduction

Curves over \mathbb{F}_{q} with many rational points \longmapsto long AG-codes.

Definition

A curve C / \mathbb{F}_{q} is a non-singular projective absolutely irreducible algebraic variety of dimension 1 over \mathbb{F}_{q}.

Definition

C / \mathbb{F}_{q} is called a curve with many rational points if $\# C\left(\mathbb{F}_{q}\right)$ is close to $N_{q}(g):=\max \left\{\# C\left(\mathbb{F}_{q}\right) \mid C / \mathbb{F}_{q}\right.$ - curve of genus $\left.g\right\}$.

Introduction

Elliptic curves

M. Deuring

Curves of genus 2

J.-P. Serre

Curves of genus 3
J. Top, J.-P. Serre, K. Lauter.

Introduction

Hasse-Weil-Serre bound

$$
\# C\left(\mathbb{F}_{q}\right) \leq q+1 \pm\lfloor 2 \sqrt{q}\rfloor g .
$$

Introduction

Hasse-Weil-Serre bound

$$
\# C\left(\mathbb{F}_{q}\right) \leq q+1 \pm\lfloor 2 \sqrt{q}\rfloor g .
$$

Definition

If a number of rational points of C / \mathbb{F}_{q} satisfies one of the conditions

$$
\# C\left(\mathbb{F}_{q}\right)=q+1 \pm\lfloor 2 \sqrt{q}\rfloor g
$$

then the curve is called an optimal curve (maximal or minimal respectively).

Introduction

Explicit equations of optimal curves of genus 3 over some finite fields

- E. Alekseenko, S. Aleshnikov, N. Markin, A. Zaytsev. Optimal curves over finite fields with discriminant -19. Finite Fields and Their Applications, 17, 2011, 350-358.
- E. Alekseenko, A. Zaytsev.

New method of constructing optimal curves of genus 3 over certain finite fields.
AGCT-14, 2013.

Introduction

Explicit equations of optimal curves of genus 3 over some finite fields

- E. Alekseenko, S. Aleshnikov, N. Markin, A. Zaytsev. Optimal curves over finite fields with discriminant -19. Finite Fields and Their Applications, 17, 2011, 350-358.
- E. Alekseenko, A. Zaytsev.

New method of constructing optimal curves of genus 3 over certain finite fields.
AGCT-14, 2013.

Definition

$d\left(\mathbb{F}_{q}\right)=\lfloor 2 \sqrt{q}\rfloor^{2}-4 q$ is called the discriminant of \mathbb{F}_{q}.

Introduction

Explicit equations of optimal curves of genus 3 over some finite fields

- E. Alekseenko, S. Aleshnikov, N. Markin, A. Zaytsev. Optimal curves over finite fields with discriminant -19. Finite Fields and Their Applications, 17, 2011, 350-358.
- E. Alekseenko, A. Zaytsev.

New method of constructing optimal curves of genus 3 over certain finite fields.
AGCT-14, 2013.

Definition

$d\left(\mathbb{F}_{q}\right)=\lfloor 2 \sqrt{q}\rfloor^{2}-4 q$ is called the discriminant of \mathbb{F}_{q}.
What about optimal curves of genus 4?

Notation

$E / \mathbb{F}_{q}: y^{2}=x^{3}+a x+b$ - optimal elliptic curve.

Notation

$E / \mathbb{F}_{q}: y^{2}=x^{3}+a x+b-$ optimal elliptic curve.
H / \mathbb{F}_{q} - curve of genus 2.

Notation

$E / \mathbb{F}_{q}: y^{2}=x^{3}+a x+b-$ optimal elliptic curve.
H / \mathbb{F}_{q} - curve of genus 2.
$f: H \rightarrow E$ - double covering of E :

$$
H: z^{2}=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\beta y
$$

Main result

$$
H: z^{2}=f, \quad f \in \mathbb{F}_{q}(E) .
$$

Main result

$$
H: z^{2}=f, \quad f \in \mathbb{F}_{q}(E) .
$$

- H is ramified over two points $P_{1}, P_{2} \in E\left(\mathbb{F}_{q}\right)$:

$$
\operatorname{div}(f)=P_{1}+P_{2}+2 D,
$$

$D \in \operatorname{Div}(E), \operatorname{deg} D=-1$.

Main result

$$
H: z^{2}=f, \quad f \in \mathbb{F}_{q}(E) .
$$

- H is ramified over two points $P_{1}, P_{2} \in E\left(\mathbb{F}_{q}\right)$:

$$
\operatorname{div}(f)=P_{1}+P_{2}+2 D
$$

$D \in \operatorname{Div}(E), \operatorname{deg} D=-1$.

- $\exists Q \in E\left(\mathbb{F}_{q}\right)$ and $\exists g \in \mathbb{F}_{q}(E)$:

$$
\operatorname{div}(g)=Q-D-2 \mathcal{O}
$$

Main result

$$
H: z^{2}=f, \quad f \in \mathbb{F}_{q}(E) .
$$

- H is ramified over two points $P_{1}, P_{2} \in E\left(\mathbb{F}_{q}\right)$:

$$
\operatorname{div}(f)=P_{1}+P_{2}+2 D,
$$

$D \in \operatorname{Div}(E), \operatorname{deg} D=-1$.

- $\exists Q \in E\left(\mathbb{F}_{q}\right)$ and $\exists g \in \mathbb{F}_{q}(E)$:

$$
\operatorname{div}(g)=Q-D-2 \mathcal{O}
$$

$$
z^{2}=f \Rightarrow(z g)^{2}=f g^{2}
$$

Main result

$$
H: z^{2}=f, \quad f \in \mathbb{F}_{q}(E) .
$$

- H is ramified over two points $P_{1}, P_{2} \in E\left(\mathbb{F}_{q}\right)$:

$$
\operatorname{div}(f)=P_{1}+P_{2}+2 D,
$$

$D \in \operatorname{Div}(E), \operatorname{deg} D=-1$.

- $\exists Q \in E\left(\mathbb{F}_{q}\right)$ and $\exists g \in \mathbb{F}_{q}(E)$:

$$
\operatorname{div}(g)=Q-D-2 \mathcal{O}
$$

-

$$
z^{2}=f \Rightarrow(z g)^{2}=f g^{2}
$$

$$
\operatorname{div}\left(f g^{2}\right)=\operatorname{div}(f)+2 \operatorname{div}(g)=P_{1}+P_{2}+2 Q-4 \mathcal{O}
$$

Main result

- If

$$
f g^{2} \mapsto h, \quad z g \mapsto w,
$$

Main result

- If

$$
f g^{2} \mapsto h, \quad z g \mapsto w,
$$

- then

$$
H: w^{2}=h .
$$

Main result

- If

$$
f g^{2} \mapsto h, \quad z g \mapsto w,
$$

- then

$$
H: w^{2}=h .
$$

-

$$
\begin{gathered}
\operatorname{div}\left(w^{2}\right)=\operatorname{div}(h)=P_{1}+P_{2}+2 Q-4 \mathcal{O} . \\
\Downarrow \\
h \in L(4 \mathcal{O})=\left\{1, x, x^{2}, y\right\} .
\end{gathered}
$$

Main result

- Any genus 2 double cover H of curve E is given by equation

$$
z^{2}=f, \quad \operatorname{div}(f)=P_{1}+P_{2}-2 R,
$$

$R \in E\left(\mathbb{F}_{q}\right)$.

Main result

- Any genus 2 double cover H of curve E is given by equation

$$
z^{2}=f, \quad \operatorname{div}(f)=P_{1}+P_{2}-2 R
$$

$R \in E\left(\mathbb{F}_{q}\right)$.
-

$$
\begin{gathered}
R \mapsto \mathcal{O}, \\
P_{1} \mapsto P_{1}-R+\mathcal{O}, \\
P_{2} \mapsto-P_{1}-R+\mathcal{O} \\
\Downarrow
\end{gathered}
$$

$\left\{\right.$ double cover $\left.z^{2}=f\right\} \cong\left\{\right.$ double cover $\left.w^{2}=g\right\}$,

$$
\operatorname{div}(g)=P+(-P)-2 \mathcal{O}
$$

Main result

$-$
\{genus 2 double covers of E \}
$\mathfrak{\imath}$
\{pairs of points $\{P,-P\} \notin E[2]\}$

Main result

\{genus 2 double covers of E \}

\uparrow

$$
\{\text { pairs of points }\{P,-P\} \notin E[2]\}
$$

- If $\{H \rightarrow E\} \longleftrightarrow\{P,-P\}$, then

$$
H: z^{2}=f, \quad \operatorname{div}(f)=(R+P)+(R-P)-2 R
$$

$R \in E\left(\mathbb{F}_{q}\right)$.

Main result

$H_{1} \leftrightarrow\left\{P_{1},-P_{1}\right\}, \quad H_{2} \leftrightarrow\left\{P_{2},-P_{2}\right\}, \quad H_{3} \leftrightarrow\left\{P_{3},-P_{3}\right\}$.

Main result

$$
H_{1} \leftrightarrow\left\{P_{1},-P_{1}\right\}, \quad H_{2} \leftrightarrow\left\{P_{2},-P_{2}\right\}, \quad H_{3} \leftrightarrow\left\{P_{3},-P_{3}\right\} .
$$

$$
\begin{array}{ll}
H_{1}: z_{1}^{2}=f_{1}, & \operatorname{div}\left(f_{1}\right)=\left(R_{1}+P_{1}\right)+\left(R_{1}-P_{1}\right)-2 R_{1} ; \\
H_{2}: z_{2}^{2}=f_{2}, & \operatorname{div}\left(f_{2}\right)=\left(R_{2}+P_{2}\right)+\left(R_{2}-P_{2}\right)-2 R_{2} ; \\
H_{3}: z_{3}^{2}=f_{3}, & \operatorname{div}\left(f_{3}\right)=\left(R_{3}+P_{3}\right)+\left(R_{3}-P_{3}\right)-2 R_{3} .
\end{array}
$$

Main result

$$
H_{1} \leftrightarrow\left\{P_{1},-P_{1}\right\}, \quad H_{2} \leftrightarrow\left\{P_{2},-P_{2}\right\}, \quad H_{3} \leftrightarrow\left\{P_{3},-P_{3}\right\} .
$$

$$
\begin{array}{ll}
H_{1}: z_{1}^{2}=f_{1}, & \operatorname{div}\left(f_{1}\right)=\left(R_{1}+P_{1}\right)+\left(R_{1}-P_{1}\right)-2 R_{1} ; \\
H_{2}: z_{2}^{2}=f_{2}, & \operatorname{div}\left(f_{2}\right)=\left(R_{2}+P_{2}\right)+\left(R_{2}-P_{2}\right)-2 R_{2} ; \\
H_{3}: z_{3}^{2}=f_{3}, & \operatorname{div}\left(f_{3}\right)=\left(R_{3}+P_{3}\right)+\left(R_{3}-P_{3}\right)-2 R_{3} .
\end{array}
$$

$$
\left.\begin{array}{l}
R_{1}+P_{1}=R_{2}-P_{2} \\
R_{2}+P_{2}=R_{3}-P_{3} \\
R_{3}+P_{3}=R_{1}-P_{1}
\end{array}\right\} \Rightarrow 2\left(P_{1}+P_{2}+P_{3}\right)=\mathcal{O} .
$$

Main result

- Consider an elliptic curve E with $d(E)=-19$. This curve is unique up to isomorphism.

Main result

- Consider an elliptic curve E with $d(E)=-19$. This curve is unique up to isomorphism.
- Let $H \cong E \times E^{\prime}, E^{\prime} \cong E$.

Main result

- Consider an elliptic curve E with $d(E)=-19$. This curve is unique up to isomorphism.
- Let $H \cong E \times E^{\prime}, E^{\prime} \cong E$.
- If $E / \mathbb{F}_{p}: y^{2}=f(x)$, then $E^{\prime} / \mathbb{F}_{p}: y^{2}=(\alpha x+\beta) f(x)$.

Main result

- Consider an elliptic curve E with $d(E)=-19$. This curve is unique up to isomorphism.
- Let $H \cong E \times E^{\prime}, E^{\prime} \cong E$.
- If $E / \mathbb{F}_{p}: y^{2}=f(x)$, then $E^{\prime} / \mathbb{F}_{p}: y^{2}=(\alpha x+\beta) f(x)$.
- $\exists \varphi \in \operatorname{Aut}_{\mathbb{F}_{p}}(E), \varphi: E \rightarrow E^{\prime}$:

$$
\varphi:\left(\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\infty
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{0} \\
-\beta / \alpha
\end{array}\right) \quad \text { or } \quad \varphi:\left(\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\infty
\end{array}\right)=\left(\begin{array}{c}
x_{2} \\
x_{0} \\
x_{1} \\
-\beta / \alpha
\end{array}\right) .
$$

Therefore there are at most two coverings $H \rightarrow E$ up to isomorphism.

Main result

- $\left\{P_{1},-P_{1}\right\}$ and $\left\{P_{2},-P_{2}\right\}$ give this covers.

Main result

- $\left\{P_{1},-P_{1}\right\}$ and $\left\{P_{2},-P_{2}\right\}$ give this covers.
-

- $\left\{P_{1},-P_{1}\right\}$ and $\left\{P_{2},-P_{2}\right\}$ give this covers.
-

$$
\left.\begin{array}{rl}
6 P_{1} & =\mathcal{O} \\
6 P_{2} & =\mathcal{O} \\
4 P_{1}+2 P_{2} & =\mathcal{O} \\
2 P_{1}+4 P_{2} & =\mathcal{O}
\end{array}\right\} \Rightarrow \begin{aligned}
P_{1}=Q+S, & \operatorname{ord} Q=3, \operatorname{ord} S=2 \\
P_{2}=Q+T, & \operatorname{ord} Q=3, \operatorname{ord} T=2
\end{aligned}
$$

Example

- $E / \mathbb{F}_{5}: y^{2}=x^{3}+2 x+4$.
- $H_{1} / \mathbb{F}_{5}: w^{2}=x, H_{2} / \mathbb{F}_{5}: z^{2}=y+x^{2}+2 x+3$.

Example

- $E / \mathbb{F}_{5}: y^{2}=x^{3}+2 x+4$.
- $H_{1} / \mathbb{F}_{5}: w^{2}=x, H_{2} / \mathbb{F}_{5}: z^{2}=y+x^{2}+2 x+3$.
- Optimal curve of genus 4 over \mathbb{F}_{57} :

$$
z^{4}+3 z^{2} w^{4}+z^{2} w^{2}+4 z^{2}+w^{8}+3 w^{6}=0
$$

Thank you for your attention!

