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Self-dual codes

C - [n,k,d] linear code

C is a self-orthogonal code, if C ⊆ C⊥

C is a self-dual code, if C = C⊥

Any self-dual code has dimension k = n/2

All codewords in a binary self-orthogonal code have even
weights

Doubly-even code - if 4 | wt(v) ∀v ∈ C

Singly-even self-dual code - if ∃v ∈ C :
wt(v) ≡ 2 (mod 4)

Doubly-even self-dual codes exist iff n ≡ 0 (mod 8)
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Self-dual codes

Extremal self-dual codes

If C is a binary self-dual [n,n/2,d ] code then

d ≤ 4[n/24] + 4

except when n ≡ 22 (mod 24) when

d ≤ 4[n/24] + 6

When n is a multiple of 24, any code meeting the bound must
be doubly-even.
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Motivation

Extremal doubly-even [24m,12m,4m+4] codes

m ≤ 153 (Zhang);

doubly even;

a unique weight enumerator;

combinatorial 5-designs (Assmus, Mattson);

only two known codes:
– the extended Golay code g24;
– the extended quadratic-residue code q48.

n=72, d=16 - ???
N.J.A. Sloane, Is there a (72,36), d = 16 self-dual code?
IEEE Trans. Info. Theory, 1973.

n=96, d=20 - ???

n=120, d=24 - ???
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Motivation

Optimal self-dual codes

A self-dual code is called optimal if it has the largest minimum
weight among all self-dual codes of that length.

Any extremal self-dual code is optimal.

For some lengths, no extremal self-dual codes exist!

There are no extremal self-dual codes of lengths 2, 4, 6,
10, 26, 28, 30, 34, 50, 52, 54, 58, ...

Conjecture:

The optimal self-dual codes of lengths 24m + r for r = 2, 4, 6,
and 10 are not extremal.



Introduction On the structure of the codes The case c = 6, t5 = 0 The Results

Motivation

Optimal self-dual codes

Table: Largest Minimum Weights Of Self-Dual Codes

n 96 98 100 102 104 106
d(n) 16,20 16,18 16,18 18 18,20 16,18
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An automorphism of odd order r

σ ∈ Aut(C), |σ| = r

σ = Ω1
︸︷︷︸

l1

Ω2
︸︷︷︸

l2

. . . Ωm
︸︷︷︸

lm

⇒ lcm(l1, . . . , lm) = r ⇒ li | r

Fσ(C) = {v ∈ C : σ(v) = v} - the fixed subcode

Eσ(C) = {v ∈ C : wt(v |Ωi) ≡ 0 (mod 2), i = 1, . . . ,m} -
the even subcode

Theorem:

C = Fσ(C)⊕ Eσ(C)
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An automorphism of odd order r

The fixed subcode

Fσ(C) = {v ∈ C : σ(v) = v}

π : Fσ(C) → F
m
2 , Cπ = π(Fσ(C))

Theorem:
If C is a binary self-dual code then Cπ = π(Fσ(C)) is a binary
self-dual code of length m.
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An automorphism of odd order r

The even subcode Eσ(C)

If v ∈ Eσ(C) then v = (v1, . . . , vn−f ,0, . . . ,0
︸ ︷︷ ︸

f

)

Eσ(C)′ = {v ′ = (v1, . . . , vn−f ), v ∈ Eσ(C)}

v |Ωi = (v0, v1, · · · , vs−1) 7→ v0 + v1x + · · · + vs−1xs−1 = v (i)(x)

φ : v ′ → (v (1)(x), . . . , v (m−f )(x))

r = 3

If r = 3 then φ(Eσ(C)′) is a Hermitian quaternary self-dual code
over the filed P4 = {0, x + x2,1+ x2,1+ x} of length c = m − f .

If r = 5

then φ(Eσ(C)′) is a Hermitian self-dual code over the filed
P16 = {a0 + a1x + · · ·+ a4x4,wt(a0, . . . ,a4) = 0,2,4} of length
c = m − f .
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The automorphism of order 15

σ ∈ Aut(C), |σ| = 15

σ = Ω1Ω2 . . .Ωm

m = c + t5 + t3 + f , n = 15c + 5t5 + 3t3 + f

c cycles of length 15, f fixed points
t5 cycles of length 5, t3 cycles of length 3

σ3 - type 5-(3c + t5,3t3 + f );

σ5 - type 3-(5c + t3,5t5 + f ).

d ≥ 18 ⇒ 3c + t5 ≥ 16,5c + t3 ≥ 28

If n = 96 then (c, t5, t3, f ) = (6,0,0,6) or (6,0,2,0).

If n = 98 then (c, t5, t3, f ) = (6,0,0,8) or (6,0,2,2).

If n = 100 then (c, t5, t3, f ) = (6,0,0,10), (6,0,2,4),
(6,2,0,0) or (5,3,3,1).
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The fixed subcode, t3 = 0

(c, t5, t3, f ) = (6,0,0, f ), f = 6,8,10

Fσ(C) = {v ∈ C : σ(v) = v}

π : Fσ(C) → F
m
2 , Cπ = π(Fσ(C))

Theorem:
If C is a binary self-dual code then Cπ = π(Fσ(C)) is a binary
self-dual [f + 6, f/2 + 3,≥ 2] code.
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The fixed subcode, t3 = 0

G =





[6, k1,≥ 2] O
O [f , k2,≥ 18]
E F





k2 = k1 +
f − 6

2
⇒ k1 = k2 = 0, f = 6

If c = f = 6 then Cπ is the self-dual [12,6,4] code generated by
the matrix (I6|I6 + J6).
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The even subcode Eσ(C)

If v ∈ Eσ(C) then v = (v1, . . . , vn−f ,0, . . . ,0
︸ ︷︷ ︸

f

)

v |Ωi = (v0, v1, · · · , vs−1) 7→ v0 + v1x + · · · + vs−1xs−1

Let Eσ(C)∗ be the shortened code of Eσ(C) obtained by
removing the last 5t5 + 3t3 + f coordinates from the codewords
having 0’s there, and let Cφ = φ(Eσ(C)∗).

Eσ(C)∗ - linear code of length 15c

x15 − 1 =

(x−1) (1 + x + x2)
︸ ︷︷ ︸

Q3(x)

(1 + x + x2 + x3 + x4)
︸ ︷︷ ︸

Q5(x)

(1 + x + x4)
︸ ︷︷ ︸

h(x)

(1 + x3 + x4)
︸ ︷︷ ︸

h∗(x)



Introduction On the structure of the codes The case c = 6, t5 = 0 The Results

The even subcode Eσ(C)

x15 − 1 =

(x−1) (1 + x + x2)
︸ ︷︷ ︸

Q3(x)

(1 + x + x2 + x3 + x4)
︸ ︷︷ ︸

Q5(x)

(1 + x + x4)
︸ ︷︷ ︸

h(x)

(1 + x3 + x4)
︸ ︷︷ ︸

h∗(x)

⇒ Cφ = M1 ⊕ M2 ⊕ M ′ ⊕ M ′′,

M1 - Hermitian self-orthogonal code over the field G1
∼= F4,

G1 = 〈(x15 − 1)/Q3(x)〉;
M2 - Hermitian self-orthogonal codes over the field
G2

∼= F16, G2 = 〈(x15 − 1)/Q5(x)〉;
M ′ is a linear [6, k ′,d ′] code over H ∼= F16,
H = 〈(x15 − 1)/h(x)〉;
M ′′ ⊆ (M ′)⊥ with respect to the Euclidean inner product.
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The even subcode Eσ(C)

x15 − 1 =

(x−1) (1 + x + x2)
︸ ︷︷ ︸

Q3(x)

(1 + x + x2 + x3 + x4)
︸ ︷︷ ︸

Q5(x)

(1 + x + x4)
︸ ︷︷ ︸

h(x)

(1 + x3 + x4)
︸ ︷︷ ︸

h∗(x)

⇒ Cφ = M1 ⊕ M2 ⊕ M ′ ⊕ M ′′,

dim Eσ(C)∗ = 2 dim M1
︸ ︷︷ ︸

≤3

+4 dim M2
︸ ︷︷ ︸

≤3

+4(dim M ′ + dim M ′′

︸ ︷︷ ︸

≤6

) ≤ 42.

∗ ∗ ∗ t5 = t3 = 0 ⇒ dim Eσ(C)∗ = 42 ∗ ∗∗

⇒ dim M1 = 3, dim M2 = 3, dim M ′ + dim M ′′ = 6
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The even subcode Eσ(C)

∗ ∗ ∗ t5 = t3 = 0 ⇒ dim Eσ(C)∗ = 42 ∗ ∗∗

⇒ dim M1 = 3, dim M2 = 3, dim M ′ + dim M ′′ = 6

33 codes M ′ ⊕ M ′′ with dim M ′ + dim M ′′ = 6 and
d(φ−1(M ′ ⊕ M ′′) ≥ 20
φ−1(M ′ ⊕ M ′′) - [90,24,≥ 20] doubly-even code;

675 inequivalent doubly-even [90,36,20] codes
φ−1(M ′ ⊕ M ′′ ⊕ M2) with dim M2 = 3;

no doubly-even [90,42,20] codes Eσ(C)∗
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The even subcode Eσ(C)

x15 − 1 =

(x−1) (1 + x + x2)
︸ ︷︷ ︸

Q3(x)

(1 + x + x2 + x3 + x4)
︸ ︷︷ ︸

Q5(x)

(1 + x + x4)
︸ ︷︷ ︸

h(x)

(1 + x3 + x4)
︸ ︷︷ ︸

h∗(x)

⇒ Cφ = M1 ⊕ M2 ⊕ M ′ ⊕ M ′′,

dim Eσ(C)∗ = 2 dim M1
︸ ︷︷ ︸

≤3

+4 dim M2
︸ ︷︷ ︸

≤3

+4(dim M ′ + dim M ′′

︸ ︷︷ ︸

≤6

) ≤ 42.

∗ ∗ ∗ t3 = 2 ⇒ dim Eσ(C)∗ = 40 ∗ ∗∗

⇒ dim M1 = 2, dim M2 = 3, dim M ′ + dim M ′′ = 6
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The even subcode Eσ(C)

∗ ∗ ∗ t3 = 2 ⇒ dim Eσ(C)∗ = 40 ∗ ∗∗

⇒ dim M1 = 2, dim M2 = 3, dim M ′ + dim M ′′ = 6

33 codes M ′ ⊕ M ′′ with dim M ′ + dim M ′′ = 6 and
d(φ−1(M ′ ⊕ M ′′) ≥ 20
φ−1(M ′ ⊕ M ′′) - [90,24,≥ 20] doubly-even code;

675 inequivalent doubly-even [90,36,20] codes
φ−1(M ′ ⊕ M ′′ ⊕ M2) with dim M2 = 3;

no self-orthogonal [96,44,20] codes Eσ(C)′



Introduction On the structure of the codes The case c = 6, t5 = 0 The Results

The even subcode Eσ(C)

∗ ∗ ∗ t3 = 2 ⇒ dim Eσ(C)∗ = 40 ∗ ∗∗

⇒ dim M1 = 2, dim M2 = 3, dim M ′ + dim M ′′ = 6

No self-orthogonal [96,44,20] codes Eσ(C)′ exist:

φ−1











genM ′ 0
genM ′′ 0
genM2 0
genM1 0

v 011011
σ(v) 101101











33 codes
675 codes

0 codes



Introduction On the structure of the codes The case c = 6, t5 = 0 The Results

Lengths 96 and 98

If n = 96 then (c, t5, t3, f ) = (6,0,0,6) or (6,0,2,0).

If n = 98 then (c, t5, t3, f ) = (6,0,0,8) or (6,0,2,2).

Length 96

An extremal binary doubly-even [96,48,20] self-dual code with
an automorphism of order 15 does not exist.

Length 98

An optimal binary self-dual [98,49,18] self-dual code with an
automorphism of order 15 does not exist.
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Length 100

If n = 100 then (c, t5, t3, f ) = (6,0,0,10), (6,0,2,4), (6,2,0,0)
or (5,3,3,1).

Self-dual [100,50,18] codes with
(c, t5, t3, f ) = (6,0,0,10), (6,0,2,4), or (5,3,3,1) do not exist

The case (c, t5, t3, f ) = (6,2,0,0) is still running!
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