Some self-dual codes having an automorphism of order 15

Stefka Bouyuklieva ${ }^{1,2}$ Nikolay Yankov ${ }^{3}$

${ }^{1}$ Veliko Tarnovo University,
${ }^{2}$ Institute of Mathematics and Informatics,
${ }^{3}$ Shumen University, Bulgaria

Algebraic and Combinatorial Coding Theory, 2014

Outline

(1) Introduction

- Self-dual codes
- Motivation
(2) On the structure of the codes
- An automorphism of odd order r
- The automorphism of order 15
(3) The case $c=6, t_{5}=0$

4 The Results

- C is a self-orthogonal code, if $C \subseteq C^{\perp}$
- C is a self-dual code, if $C=C^{\perp}$
- Any self-dual code has dimension $k=n / 2$
- All codewords in a binary self-orthogonal code have even weights
- Doubly-even code - if $4 \mid \operatorname{wt}(v) \forall v \in C$
- Singly-even self-dual code - if $\exists v \in C$: $\mathrm{wt}(v) \equiv 2(\bmod 4)$
- Doubly-even self-dual codes exist iff $n \equiv 0(\bmod 8)$

Extremal self-dual codes

If C is a binary self-dual $[n, n / 2, d]$ code then

$$
d \leq 4[n / 24]+4
$$

except when $n \equiv 22(\bmod 24)$ when

$$
d \leq 4[n / 24]+6
$$

When n is a multiple of 24 , any code meeting the bound must be doubly-even.

Extremal doubly-even [24m,12m,4m+4] codes

- $m \leq 153$ (Zhang);
- doubly even;
- a unique weight enumerator;
- combinatorial 5-designs (Assmus, Mattson);
- only two known codes:
- the extended Golay code g_{24};
- the extended quadratic-residue code q_{48}.
- $\mathrm{n}=72, \mathrm{~d}=16$ - ???
N.J.A. Sloane, Is there a $(72,36), d=16$ self-dual code?

IEEE Trans. Info. Theory, 1973.

- $\mathrm{n}=96, \mathrm{~d}=20$ - ???
- $\mathrm{n}=120, \mathrm{~d}=24$ - ???

Optimal self-dual codes

A self-dual code is called optimal if it has the largest minimum weight among all self-dual codes of that length.

- Any extremal self-dual code is optimal.
- For some lengths, no extremal self-dual codes exist!
- There are no extremal self-dual codes of lengths 2, 4, 6, $10,26,28,30,34,50,52,54,58, \ldots$

Conjecture:

The optimal self-dual codes of lengths $24 m+r$ for $r=2,4,6$, and 10 are not extremal.

Motivation

Optimal self-dual codes

Table: Largest Minimum Weights Of Self-Dual Codes

n	96	98	100	102	104	106
$d(n)$	16,20	16,18	16,18	18	18,20	16,18

$$
\sigma=\underbrace{\Omega_{1}}_{I_{1}} \underbrace{\Omega_{2}}_{I_{2}} \cdots \underbrace{\Omega_{m}}_{I_{m}} \Rightarrow \operatorname{lcm}\left(I_{1}, \ldots, I_{m}\right)=r \quad \Rightarrow I_{i} \mid r
$$

- $F_{\sigma}(C)=\{v \in C: \sigma(v)=v\}$ - the fixed subcode
- $E_{\sigma}(C)=\left\{v \in C: \operatorname{wt}\left(v \mid \Omega_{i}\right) \equiv 0(\bmod 2), i=1, \ldots, m\right\}$ the even subcode

Theorem:

$$
C=F_{\sigma}(C) \oplus E_{\sigma}(C)
$$

The fixed subcode

$$
\begin{gathered}
F_{\sigma}(C)=\{v \in C: \sigma(v)=v\} \\
\pi: F_{\sigma}(C) \rightarrow \mathbb{F}_{2}^{m}, C_{\pi}=\pi\left(F_{\sigma}(C)\right)
\end{gathered}
$$

Theorem:

If C is a binary self-dual code then $C_{\pi}=\pi\left(F_{\sigma}(C)\right)$ is a binary self-dual code of length m.

An automorphism of odd order r

The even subcode $E_{\sigma}(C)$

$$
\begin{aligned}
& \text { If } v \in E_{\sigma}(C) \text { then } v=(v_{1}, \ldots, v_{n-f}, \underbrace{0, \ldots, 0}_{f}) \\
& E_{\sigma}(C)^{\prime}=\left\{v^{\prime}=\left(v_{1}, \ldots, v_{n-f}\right), v \in E_{\sigma}(C)\right\} \\
& v \mid \Omega_{i}=\left(v_{0}, v_{1}, \cdots, v_{s-1}\right) \mapsto v_{0}+v_{1} x+\cdots+v_{s-1} x^{s-1}=v^{(i)}(x) \\
& \phi: v^{\prime} \rightarrow\left(v^{(1)}(x), \ldots, v^{(m-f)}(x)\right)
\end{aligned}
$$

$r=3$
If $r=3$ then $\phi\left(E_{\sigma}(C)^{\prime}\right)$ is a Hermitian quaternary self-dual code over the filed $\mathcal{P}_{4}=\left\{0, x+x^{2}, 1+x^{2}, 1+x\right\}$ of length $c=m-f$.

If $r=5$

then $\phi\left(E_{\sigma}(C)^{\prime}\right)$ is a Hermitian self-dual code over the filed $\mathcal{P}_{16}=\left\{a_{0}+a_{1} x+\cdots+a_{4} x^{4}, \operatorname{wt}\left(a_{0}, \ldots, a_{4}\right)=0,2,4\right\}$ of length $c=m-f$.

The automorphism of order 15

```
\sigma\in\operatorname{Aut}(C), |\sigma| = 15
```

$$
\begin{gathered}
\sigma=\Omega_{1} \Omega_{2} \ldots \Omega_{m} \\
m=c+t_{5}+t_{3}+f, \quad n=15 c+5 t_{5}+3 t_{3}+f
\end{gathered}
$$

c cycles of length $15, f$ fixed points
t_{5} cycles of length $5, t_{3}$ cycles of length 3

- σ^{3} - type $5-\left(3 c+t_{5}, 3 t_{3}+f\right)$;
- σ^{5} - type $3-\left(5 c+t_{3}, 5 t_{5}+f\right)$.
$d \geq 18 \Rightarrow 3 c+t_{5} \geq 16,5 c+t_{3} \geq 28$
- If $n=96$ then $\left(c, t_{5}, t_{3}, f\right)=(6,0,0,6)$ or $(6,0,2,0)$.
- If $n=98$ then $\left(c, t_{5}, t_{3}, f\right)=(6,0,0,8)$ or $(6,0,2,2)$.
- If $n=100$ then $\left(c, t_{5}, t_{3}, f\right)=(6,0,0,10),(6,0,2,4)$, $(6,2,0,0)$ or $(5,3,3,1)$.

The fixed subcode, $t_{3}=0$

$$
\begin{gathered}
\left(c, t_{5}, t_{3}, f\right)=(6,0,0, f), \quad f=6,8,10 \\
F_{\sigma}(C)=\{v \in C: \sigma(v)=v\} \\
\pi: F_{\sigma}(C) \rightarrow \mathbb{F}_{2}^{m}, C_{\pi}=\pi\left(F_{\sigma}(C)\right)
\end{gathered}
$$

Theorem:

If C is a binary self-dual code then $C_{\pi}=\pi\left(F_{\sigma}(C)\right)$ is a binary self-dual $[f+6, f / 2+3, \geq 2]$ code.

The fixed subcode, $t_{3}=0$

$$
\begin{gathered}
G=\left(\begin{array}{cc}
{\left[6, k_{1}, \geq 2\right]} & O \\
O & {\left[f, k_{2}, \geq 18\right]} \\
E & F
\end{array}\right) \\
k_{2}=k_{1}+\frac{f-6}{2} \Rightarrow k_{1}=k_{2}=0, f=6
\end{gathered}
$$

If $c=f=6$ then C_{π} is the self-dual $[12,6,4]$ code generated by the matrix $\left(I_{6} \mid I_{6}+J_{6}\right)$.

The even subcode $E_{\sigma}(C)$

If $v \in E_{\sigma}(C)$ then $v=(v_{1}, \ldots, v_{n-f}, \underbrace{0, \ldots, 0}_{f})$
$v \mid \Omega_{i}=\left(v_{0}, v_{1}, \cdots, v_{s-1}\right) \mapsto v_{0}+v_{1} x+\cdots+v_{s-1} x^{s-1}$
Let $E_{\sigma}(C)^{*}$ be the shortened code of $E_{\sigma}(C)$ obtained by removing the last $5 t_{5}+3 t_{3}+f$ coordinates from the codewords having 0 's there, and let $C_{\phi}=\phi\left(E_{\sigma}(C)^{*}\right)$.
$E_{\sigma}(C)^{*}$ - linear code of length $15 c$
$x^{15}-1=$
$(x-1) \underbrace{\left(1+x+x^{2}\right)}_{Q_{3}(x)} \underbrace{\left(1+x+x^{2}+x^{3}+x^{4}\right)}_{Q_{5}(x)} \underbrace{\left(1+x+x^{4}\right)}_{h(x)} \underbrace{\left(1+x^{3}+x^{4}\right)}_{h^{*}(x)}$

The even subcode $E_{\sigma}(C)$

$$
\begin{gathered}
x^{15}-1= \\
(x-1) \underbrace{\left(1+x+x^{2}\right)}_{Q_{3}(x)} \underbrace{\left(1+x+x^{2}+x^{3}+x^{4}\right)}_{Q_{5}(x)} \underbrace{\left(1+x+x^{4}\right)}_{h(x)} \underbrace{\left(1+x^{3}+x^{4}\right)}_{h^{*}(x)} \\
\Rightarrow C_{\phi}=M_{1} \oplus M_{2} \oplus M^{\prime} \oplus M^{\prime \prime},
\end{gathered}
$$

- M_{1} - Hermitian self-orthogonal code over the field $G_{1} \cong \mathbb{F}_{4}$,

$$
G_{1}=\left\langle\left(x^{15}-1\right) / Q_{3}(x)\right\rangle ;
$$

- M_{2} - Hermitian self-orthogonal codes over the field

$$
G_{2} \cong \mathbb{F}_{16}, G_{2}=\left\langle\left(x^{15}-1\right) / Q_{5}(x)\right\rangle ;
$$

- M^{\prime} is a linear $\left[6, k^{\prime}, d^{\prime}\right]$ code over $H \cong \mathbb{F}_{16}$, $H=\left\langle\left(x^{15}-1\right) / h(x)\right\rangle ;$
- $M^{\prime \prime} \subseteq\left(M^{\prime}\right)^{\perp}$ with respect to the Euclidean inner product.

The even subcode $E_{\sigma}(C)$

$$
\begin{gathered}
\begin{array}{c}
x^{15}-1=
\end{array} \\
(x-1) \underbrace{\left(1+x+x^{2}\right)}_{Q_{3}(x)} \underbrace{\left(1+x+x^{2}+x^{3}+x^{4}\right)}_{Q_{5}(x)} \underbrace{\left(1+x+x^{4}\right)}_{h(x)} \underbrace{\left(1+x^{3}+x^{4}\right)}_{h^{*}(x)} \\
\Rightarrow C_{\phi}=M_{1} \oplus M_{2} \oplus M^{\prime} \oplus M^{\prime \prime},
\end{gathered}
$$

$\operatorname{dim} E_{\sigma}(C)^{*}=2 \underbrace{\operatorname{dim} M_{1}}_{\leq 3}+4 \underbrace{\operatorname{dim} M_{2}}_{\leq 3}+4(\underbrace{\operatorname{dim} M^{\prime}+\operatorname{dim} M^{\prime \prime}}_{\leq 6}) \leq 42$.

$$
* * * t_{5}=t_{3}=0 \Rightarrow \operatorname{dim} E_{\sigma}(C)^{*}=42 * * *
$$

$\Rightarrow \operatorname{dim} M_{1}=3, \operatorname{dim} M_{2}=3, \operatorname{dim} M^{\prime}+\operatorname{dim} M^{\prime \prime}=6$

The even subcode $E_{\sigma}(C)$

$$
* * * t_{5}=t_{3}=0 \Rightarrow \operatorname{dim} E_{\sigma}(C)^{*}=42 * * *
$$

$\Rightarrow \operatorname{dim} M_{1}=3, \operatorname{dim} M_{2}=3, \operatorname{dim} M^{\prime}+\operatorname{dim} M^{\prime \prime}=6$

- 33 codes $M^{\prime} \oplus M^{\prime \prime}$ with $\operatorname{dim} M^{\prime}+\operatorname{dim} M^{\prime \prime}=6$ and $d\left(\phi^{-1}\left(M^{\prime} \oplus M^{\prime \prime}\right) \geq 20\right.$ $\phi^{-1}\left(M^{\prime} \oplus M^{\prime \prime}\right)-[90,24, \geq 20]$ doubly-even code;
- 675 inequivalent doubly-even $[90,36,20$] codes $\phi^{-1}\left(M^{\prime} \oplus M^{\prime \prime} \oplus M_{2}\right)$ with $\operatorname{dim} M_{2}=3$;
- no doubly-even $[90,42,20]$ codes $E_{\sigma}(C)^{*}$

The even subcode $E_{\sigma}(C)$

$$
\begin{gathered}
x^{15}-1= \\
(x-1) \underbrace{\left(1+x+x^{2}\right)}_{Q_{3}(x)} \underbrace{\left(1+x+x^{2}+x^{3}+x^{4}\right)}_{Q_{5}(x)} \underbrace{\left(1+x+x^{4}\right)}_{h(x)} \underbrace{\left(1+x^{3}+x^{4}\right)}_{h^{*}(x)} \\
\Rightarrow C_{\phi}=M_{1} \oplus M_{2} \oplus M^{\prime} \oplus M^{\prime \prime},
\end{gathered}
$$

$\operatorname{dim} E_{\sigma}(C)^{*}=2 \underbrace{\operatorname{dim} M_{1}}_{\leq 3}+4 \underbrace{\operatorname{dim} M_{2}}_{\leq 3}+4(\underbrace{\operatorname{dim} M^{\prime}+\operatorname{dim} M^{\prime \prime}}_{\leq 6}) \leq 42$.

$$
* * * t_{3}=2 \Rightarrow \operatorname{dim} E_{\sigma}(C)^{*}=40 * * *
$$

$\Rightarrow \operatorname{dim} M_{1}=2, \operatorname{dim} M_{2}=3, \operatorname{dim} M^{\prime}+\operatorname{dim} M^{\prime \prime}=6$

The even subcode $E_{\sigma}(C)$

$$
* * * t_{3}=2 \Rightarrow \operatorname{dim} E_{\sigma}(C)^{*}=40 * * *
$$

$\Rightarrow \operatorname{dim} M_{1}=2, \operatorname{dim} M_{2}=3, \operatorname{dim} M^{\prime}+\operatorname{dim} M^{\prime \prime}=6$

- 33 codes $M^{\prime} \oplus M^{\prime \prime}$ with $\operatorname{dim} M^{\prime}+\operatorname{dim} M^{\prime \prime}=6$ and $d\left(\phi^{-1}\left(M^{\prime} \oplus M^{\prime \prime}\right) \geq 20\right.$ $\phi^{-1}\left(M^{\prime} \oplus M^{\prime \prime}\right)-[90,24, \geq 20]$ doubly-even code;
- 675 inequivalent doubly-even $[90,36,20]$ codes $\phi^{-1}\left(M^{\prime} \oplus M^{\prime \prime} \oplus M_{2}\right)$ with $\operatorname{dim} M_{2}=3$;
- no self-orthogonal $[96,44,20]$ codes $E_{\sigma}(C)^{\prime}$

The even subcode $E_{\sigma}(C)$

$$
* * * t_{3}=2 \Rightarrow \operatorname{dim} E_{\sigma}(C)^{*}=40 * * *
$$

$\Rightarrow \operatorname{dim} M_{1}=2, \operatorname{dim} M_{2}=3, \operatorname{dim} M^{\prime}+\operatorname{dim} M^{\prime \prime}=6$
No self-orthogonal $[96,44,20]$ codes $E_{\sigma}(C)^{\prime}$ exist:

$$
\phi^{-1}\left(\begin{array}{cc}
\text { genM } & 0 \\
\text { genM } & 0 \\
\hline \text { genM } & 0 \\
\hline \text { genM } & 0 \\
v & 011011 \\
\sigma(v) & 101101
\end{array}\right) \begin{array}{cc}
\frac{33}{} \text { codes } \\
\begin{array}{ccc}
675 & \text { codes } \\
0 & \text { codes }
\end{array} \\
\\
\hline
\end{array}
$$

Lengths 96 and 98

- If $n=96$ then $\left(c, t_{5}, t_{3}, f\right)=(6,0,0,6)$ or $(6,0,2,0)$.
- If $n=98$ then $\left(c, t_{5}, t_{3}, f\right)=(6,0,0,8)$ or $(6,0,2,2)$.

Length 96

An extremal binary doubly-even $[96,48,20]$ self-dual code with an automorphism of order 15 does not exist.

Length 98

An optimal binary self-dual [$98,49,18$] self-dual code with an automorphism of order 15 does not exist.

Length 100

If $n=100$ then $\left(c, t_{5}, t_{3}, f\right)=(6,0,0,10),(6,0,2,4),(6,2,0,0)$ or $(5,3,3,1)$.

Self-dual $[100,50,18]$ codes with
$\left(c, t_{5}, t_{3}, f\right)=(6,0,0,10),(6,0,2,4)$, or $(5,3,3,1)$ do not exist
The case $\left(c, t_{5}, t_{3}, f\right)=(6,2,0,0)$ is still running!

