Some self-dual codes having an automorphism of order 15

Stefka Bouyuklieva^{1,2} Nikolay Yankov³

¹Veliko Tarnovo University, ²Institute of Mathematics and Informatics, ³Shumen University, Bulgaria

Algebraic and Combinatorial Coding Theory, 2014

Introduction	On the structure of

Outline

2

- Self-dual codes
- Motivation
- On the structure of the codes
 - An automorphism of odd order r

the codes

The automorphism of order 15

3 The case
$$c = 6$$
, $t_5 = 0$

4 The Results

Introduction	On the structure of the codes	The case $c = 6$, $t_5 = 0$	The Results
Self-dual codes			
C - [n,k,d] line	ear code		

- C is a self-orthogonal code, if $C \subseteq C^{\perp}$
- C is a self-dual code, if $C = C^{\perp}$
- Any self-dual code has dimension k = n/2
- All codewords in a binary self-orthogonal code have even weights
- Doubly-even code if $4 \mid \operatorname{wt}(v) \forall v \in C$
- Singly-even self-dual code if ∃v ∈ C : wt(v) ≡ 2 (mod 4)
- Doubly-even self-dual codes exist iff $n \equiv 0 \pmod{8}$

Introduction o●ooo	On the structure of the codes	The case $c = 6, t_5 = 0$	The Results
Self-dual codes			
Extremal self-	dual codes		

If C is a binary self-dual [n, n/2, d] code then

 $d \leq 4[n/24] + 4$

except when $n \equiv 22 \pmod{24}$ when

 $d \leq 4[n/24] + 6$

When *n* is a multiple of 24, any code meeting the bound must be doubly-even.

Introduction	On the structure of the codes	The case $c = 6, t_5 = 0$	The Results
00000			

Motivation

Extremal doubly-even [24m,12m,4m+4] codes

- *m* ≤ 153 (Zhang);
- doubly even;
- a unique weight enumerator;
- combinatorial 5-designs (Assmus, Mattson);
- only two known codes:
 - the extended Golay code g_{24} ;
 - the extended quadratic-residue code q_{48} .
- n=72, d=16 ???

N.J.A. Sloane, Is there a (72,36), d = 16 self-dual code? *IEEE Trans. Info. Theory*, 1973.

- n=96, d=20 ???
- n=120, d=24 ???

Introduction	On the structure of the codes	The case $c = 6, t_5 = 0$	The Results
Motivation			
Optimal self-d	ual codes		

A self-dual code is called optimal if it has the largest minimum weight among all self-dual codes of that length.

- Any extremal self-dual code is optimal.
- For some lengths, no extremal self-dual codes exist!
- There are no extremal self-dual codes of lengths 2, 4, 6, 10, 26, 28, 30, 34, 50, 52, 54, 58, ...

Conjecture:

The optimal self-dual codes of lengths 24m + r for r = 2, 4, 6, and 10 are not extremal.

Ontin	al self-dual codes		
Motivation			
Introductio	n On the structure of the codes	The case $c = 6, t_5 = 0$	The Results

Table: Largest Minimum Weights Of Self-Dual Codes

n	96	98	100	102	104	106
d(n)	16,20	16,18	16,18	18	18,20	16,18

$$\sigma = \underbrace{\Omega_1}_{l_1} \underbrace{\Omega_2}_{l_2} \dots \underbrace{\Omega_m}_{l_m} \Rightarrow \operatorname{lcm}(l_1, \dots, l_m) = r \quad \Rightarrow l_i \mid r$$

- $F_{\sigma}(C) = \{v \in C : \sigma(v) = v\}$ the fixed subcode
- *E*_σ(*C*) = {*v* ∈ *C* : wt(*v*|Ω_i) ≡ 0 (mod 2), *i* = 1,...,*m*} the even subcode

Theorem:

$$C = F_{\sigma}(C) \oplus E_{\sigma}(C)$$

Introduction 00000	On the structure of the codes ○●○○	The case $c = 6, t_5 = 0$	The Results
An automorphism of	odd order r		
The fixed s	ubcode		

$$egin{aligned} \mathcal{F}_{\sigma}(\mathcal{C}) &= \{ \mathbf{v} \in \mathcal{C} : \sigma(\mathbf{v}) = \mathbf{v} \} \ \pi : \mathcal{F}_{\sigma}(\mathcal{C}) &
ightarrow \mathbb{F}_2^m, \ \mathcal{C}_{\pi} &= \pi(\mathcal{F}_{\sigma}(\mathcal{C})) \end{aligned}$$

Theorem:

If *C* is a binary self-dual code then $C_{\pi} = \pi(F_{\sigma}(C))$ is a binary self-dual code of length *m*.

Introd	uction
0000	0

On the structure of the codes

The case $c = 6, t_5 = 0$

The Results

An automorphism of odd order r

The even subcode $E_{\sigma}(C)$

If
$$v \in E_{\sigma}(C)$$
 then $v = (v_1, ..., v_{n-f}, \underbrace{0, ..., 0}_{f})$
 $E_{\sigma}(C)' = \{v' = (v_1, ..., v_{n-f}), v \in E_{\sigma}(C)\}$
 $v | \Omega_i = (v_0, v_1, ..., v_{s-1}) \mapsto v_0 + v_1 x + ... + v_{s-1} x^{s-1} = v^{(i)}(x)$
 $\phi : v' \to (v^{(1)}(x), ..., v^{(m-f)}(x))$

r = 3

If r = 3 then $\phi(E_{\sigma}(C)')$ is a Hermitian quaternary self-dual code over the filed $\mathcal{P}_4 = \{0, x + x^2, 1 + x^2, 1 + x\}$ of length c = m - f.

If r = 5

then $\phi(E_{\sigma}(C)')$ is a Hermitian self-dual code over the filed $\mathcal{P}_{16} = \{a_0 + a_1x + \cdots + a_4x^4, \operatorname{wt}(a_0, \ldots, a_4) = 0, 2, 4\}$ of length c = m - f.

Introduction
 On the structure of the codes
 The case
$$c = 6, t_5 = 0$$
 The Results

 The automorphism of order 15
 $\sigma \in Aut(C), |\sigma| = 15$

$$\sigma = \Omega_1 \Omega_2 \dots \Omega_m$$
$$m = c + t_5 + t_3 + f, \quad n = 15c + 5t_5 + 3t_3 + f$$

c cycles of length 15, *f* fixed points t_5 cycles of length 5, t_3 cycles of length 3

•
$$\sigma^3$$
 - type 5-(3 c + t_5 , 3 t_3 + f);
• σ^5 - type 3-(5 c + t_3 , 5 t_5 + f).

 $\textit{d} \geq 18 \Rightarrow 3\textit{c} + \textit{t}_5 \geq 16, 5\textit{c} + \textit{t}_3 \geq 28$

• If n = 96 then $(c, t_5, t_3, f) = (6, 0, 0, 6)$ or (6, 0, 2, 0).

• If n = 98 then $(c, t_5, t_3, f) = (6, 0, 0, 8)$ or (6, 0, 2, 2).

• If
$$n = 100$$
 then $(c, t_5, t_3, f) = (6, 0, 0, 10), (6, 0, 2, 4), (6, 2, 0, 0)$ or $(5, 3, 3, 1)$.

Introduction 00000	On the structure of the codes	The case $c = 6$, $t_5 = 0$	The Results
The fixed s	subcode. $t_2 = 0$		

$$egin{aligned} &(m{c}, t_5, t_3, f) = (6, 0, 0, f), & f = 6, 8, 10 \ & & F_\sigma(m{C}) = \{m{v} \in m{C} : \sigma(m{v}) = m{v}\} \ & & \pi : F_\sigma(m{C}) o \mathbb{F}_2^m, & m{C}_\pi = \pi(F_\sigma(m{C})) \end{aligned}$$

Theorem:

If *C* is a binary self-dual code then $C_{\pi} = \pi(F_{\sigma}(C))$ is a binary self-dual $[f + 6, f/2 + 3, \ge 2]$ code.

Introduction	On the structure of the codes	The case $c = 6$, $t_5 = 0$	The Results

The fixed subcode, $t_3 = 0$

$$G = \begin{pmatrix} [6, k_1, \ge 2] & O \\ O & [f, k_2, \ge 18] \\ E & F \end{pmatrix}$$
$$k_2 = k_1 + \frac{f - 6}{2} \Rightarrow k_1 = k_2 = 0, \ f = 6$$

If c = f = 6 then C_{π} is the self-dual [12, 6, 4] code generated by the matrix $(I_6|I_6 + J_6)$.

If
$$v \in E_{\sigma}(C)$$
 then $v = (v_1, \dots, v_{n-f}, \underbrace{0, \dots, 0}_{f})$
 $v | \Omega_i = (v_0, v_1, \dots, v_{s-1}) \mapsto v_0 + v_1 x + \dots + v_{s-1} x^{s-1}$

Let $E_{\sigma}(C)^*$ be the shortened code of $E_{\sigma}(C)$ obtained by removing the last $5t_5 + 3t_3 + f$ coordinates from the codewords having 0's there, and let $C_{\phi} = \phi(E_{\sigma}(C)^*)$.

 $E_{\sigma}(C)^*$ - linear code of length 15*c*

$$x^{15} - 1 =$$

$$(x-1)\underbrace{(1+x+x^{2})}_{Q_{3}(x)}\underbrace{(1+x+x^{2}+x^{3}+x^{4})}_{Q_{5}(x)}\underbrace{(1+x+x^{4})}_{h(x)}\underbrace{(1+x^{3}+x^{4})}_{h^{*}(x)}$$

Introduction	On the structure of the codes	The case $c = 6, t_5 = 0$	The Result

$$\begin{aligned} x^{15} - 1 &= \\ (x - 1)\underbrace{(1 + x + x^2)}_{Q_3(x)}\underbrace{(1 + x + x^2 + x^3 + x^4)}_{Q_5(x)}\underbrace{(1 + x + x^4)}_{h(x)}\underbrace{(1 + x^3 + x^4)}_{h^*(x)} \\ &\Rightarrow C_{\phi} = M_1 \oplus M_2 \oplus M' \oplus M'', \end{aligned}$$

- M_1 Hermitian self-orthogonal code over the field $G_1 \cong \mathbb{F}_4$, $G_1 = \langle (x^{15} - 1)/Q_3(x) \rangle$;
- M_2 Hermitian self-orthogonal codes over the field $G_2 \cong \mathbb{F}_{16}, G_2 = \langle (x^{15} 1)/Q_5(x) \rangle;$
- M' is a linear [6, k', d'] code over $H \cong \mathbb{F}_{16}$, $H = \langle (x^{15} - 1)/h(x) \rangle;$
- $M'' \subseteq (M')^{\perp}$ with respect to the Euclidean inner product.

Introduction	On the structure of the codes	The ca

$$x^{15} - 1 =$$

$$(x-1)\underbrace{(1+x+x^{2})}_{Q_{3}(x)}\underbrace{(1+x+x^{2}+x^{3}+x^{4})}_{Q_{5}(x)}\underbrace{(1+x+x^{4})}_{h(x)}\underbrace{(1+x^{3}+x^{4})}_{h^{*}(x)}$$

$$\Rightarrow C_{\phi} = M_{1} \oplus M_{2} \oplus M' \oplus M'',$$

$$\dim E_{\sigma}(C)^{*} = 2\underbrace{\dim M_{1}}_{\leq 3} + 4\underbrace{\dim M_{2}}_{\leq 3} + 4\underbrace{(\dim M' + \dim M'')}_{\leq 6} \le 42.$$

$$* * * t_{5} = t_{3} = 0 \Rightarrow \dim E_{\sigma}(C)^{*} = 42 * **$$

$$\Rightarrow \dim M_{1} = 3, \ \dim M_{2} = 3, \ \dim M' + \dim M'' = 6$$

$$***t_5 = t_3 = 0 \Rightarrow \dim E_{\sigma}(C)^* = 42 ***$$

 $\Rightarrow \dim M_1 = 3, \dim M_2 = 3, \dim M' + \dim M'' = 6$

- 33 codes $M' \oplus M''$ with dim $M' + \dim M'' = 6$ and $d(\phi^{-1}(M' \oplus M'') \ge 20 \phi^{-1}(M' \oplus M'')$ [90, 24, ≥ 20] doubly-even code;
- 675 inequivalent doubly-even [90, 36, 20] codes
 φ⁻¹(M' ⊕ M'' ⊕ M₂) with dim M₂ = 3;
- no doubly-even [90, 42, 20] codes *E*_σ(*C*)*

Introduction	On the structure of the codes	The cas

$$x^{15} - 1 =$$

$$(x-1)\underbrace{(1+x+x^{2})}_{Q_{3}(x)}\underbrace{(1+x+x^{2}+x^{3}+x^{4})}_{Q_{5}(x)}\underbrace{(1+x+x^{4})}_{h(x)}\underbrace{(1+x^{3}+x^{4})}_{h^{*}(x)}$$

$$\Rightarrow C_{\phi} = M_{1} \oplus M_{2} \oplus M' \oplus M'',$$

$$\dim E_{\sigma}(C)^{*} = 2\underbrace{\dim M_{1}}_{\leq 3} + 4\underbrace{\dim M_{2}}_{\leq 3} + 4\underbrace{(\dim M' + \dim M'')}_{\leq 6} \le 42.$$

$$* * * t_{3} = 2 \Rightarrow \dim E_{\sigma}(C)^{*} = 40 * **$$

$$\Rightarrow \dim M_{1} = 2, \ \dim M_{2} = 3, \ \dim M' + \dim M'' = 6$$

$$* * * t_3 = 2 \Rightarrow \dim E_{\sigma}(C)^* = 40 * **$$

 \Rightarrow dim $M_1 = 2$, dim $M_2 = 3$, dim M' + dim M'' = 6

- 33 codes $M' \oplus M''$ with dim $M' + \dim M'' = 6$ and $d(\phi^{-1}(M' \oplus M'') \ge 20 \phi^{-1}(M' \oplus M'')$ [90, 24, ≥ 20] doubly-even code;
- 675 inequivalent doubly-even [90, 36, 20] codes
 φ⁻¹(M' ⊕ M'' ⊕ M₂) with dim M₂ = 3;
- no self-orthogonal [96, 44, 20] codes E_σ(C)[']

Introduction 00000	On the structure of the codes	The case $c = 6, t_5 = 0$	The Results
The even s	ubcode $E_{\sigma}(C)$		

$$* * * t_3 = 2 \Rightarrow \dim E_{\sigma}(C)^* = 40 * **$$
$$\Rightarrow \dim M_1 = 2, \dim M_2 = 3, \dim M' + \dim M'' = 6$$
No self-orthogonal [96, 44, 20] codes $E_{\sigma}(C)'$ exist:

$$\phi^{-1} \begin{pmatrix} genM' & 0 \\ genM'' & 0 \\ \hline genM_2 & 0 \\ \hline genM_1 & 0 \\ v & 011011 \\ \sigma(v) & 101101 \end{pmatrix} = \frac{33 \ codes}{675 \ codes}$$

Introduction	On the structure of the codes	The case $c = 6, t_5 = 0$	The Results

Lengths 96 and 98

- If n = 96 then $(c, t_5, t_3, f) = (6, 0, 0, 6)$ or (6, 0, 2, 0).
- If n = 98 then $(c, t_5, t_3, f) = (6, 0, 0, 8)$ or (6, 0, 2, 2).

Length 96

An extremal binary doubly-even [96, 48, 20] self-dual code with an automorphism of order 15 does not exist.

Length 98

An optimal binary self-dual [98, 49, 18] self-dual code with an automorphism of order 15 does not exist.

Introduction	On the structure of the codes	The case $c = 6$, $t_5 = 0$	The Results
00000	0000		

Length 100

If n = 100 then $(c, t_5, t_3, f) = (6, 0, 0, 10), (6, 0, 2, 4), (6, 2, 0, 0)$ or (5, 3, 3, 1).

Self-dual [100, 50, 18] codes with $(c, t_5, t_3, f) = (6, 0, 0, 10), (6, 0, 2, 4)$, or (5, 3, 3, 1) do not exist

The case $(c, t_5, t_3, f) = (6, 2, 0, 0)$ is still running!