On the Classificaton of the Binary Self-Dual Codes of Length 40

Iliya Bouyukliev

Mariya Dzhumalieva-Stoeva Bulgarian Academy of Sciences Venelin Monev Veliko Tarnovo University

BULGARIA

Outline

The main problem:

Developing a software for classification of combinatorial objects.

In this case: Binary self-dual codes!

- 1. Definition and history of the problem.
- 2. The obtained results.
- 3. Correctness of the results.
- 4. List of problems which covers our work.
- 5. What more is possible to be done?

Definitions

- \mathbb{F}_q finite field with q elements;
- \mathbb{F}_q^n *n*-dimensional vector space over \mathbb{F}_q ;
- <u>Weight</u> of a vector $x \in \mathbb{F}_q^n$: wt $(x) = |\{i | x_i \neq 0\}|;$
- <u>Linear code</u> of length *n* and dimension *k k*-dimensional subspace of \mathbb{F}_q^n ;
- Minimum weight of a linear code *C*:

$$d(C) = \min\{\operatorname{wt}(x) | x \in C, \ x \neq \mathbf{0}\}$$

•
$$C$$
 - a linear $[n, k, d]_q$ code.

C - a binary linear [n,k,d] code

- *C* self-orthogonal code if $C \subseteq C^{\perp}$
- *C* self-dual code if $C = C^{\perp}$
- Any self-dual code has dimension k = n/2
- All codewords in a binary self-orthogonal code have even weights
- Doubly-even code if $4 \mid wt(v) \; \forall v \in C$
- Singly-even self-dual code if $\exists v \in C$: wt $(v) \equiv 2 \pmod{4}$

Equivalent codes, Aut(C)

- Two binary codes *C* and *C'* are equivalent if there is a permutation $\pi \in S_n$: $C' = \pi(C)$
- Automorphism of C is a permutation of the coordinates that preserves C
- All automorphisms of C form a group Aut(C)
- Extended Golay code: $Aut(g_{24}) = M_{24}$ -5-transitive and $|M_{24}| = 2^{10}.3^3.5.7.11.23$
- Extended quadratic-residue [48,24,12] code: $Aut(q_{48}) = PSL(2,47) - 2$ -transitive and $|PSL(2,47)| = 2^5.3.23.47$

History

- 1975, Vera Pless $n \le 20$
- 1980-90, Conway, Pless, Sloane $n \leq 30$
- 2006, Bilous, Van Rees, -n = 32, 34
- 2008, Melchor, Gaborit n = 36 (Optimal)
- 2011, Harada, Munemasa n = 36
- 2011, Harada, Munemasa; C. Aguilar-Melchor, Ph. Gaborit, Jon-Lark Kim, L. Sok, P. Sole -n = 38 (Optimal)
- 2011, Betsumiya, Harada, Munemasa n = 40(Doubly even)

The number of binary SD codes

n	\ddagger_I	‡11	d _{max,I}	‡max,I	d _{max,II}	‡max,II
24	46	9	6	1	8	1
26	103		6	1		
28	261		6	3		
30	731		6	13		
32	3 210	85	8	3	8	5
34	24 147		6	938		
36	519 492		8	41		
38	38 682 183*BB		8	2 744		
40	8 250 058 081	94 343	8	10 200 655*BBH	8	16 470

*BBH - Bouyuklieva, Bouyukliev, Harada *BDM - Bouyukliev, Dzhumalieva-Stoeva, Monev

n = 40

d	4	6	8
# codes	4 329 329 746	3 871 829 027	10 217 125
# doubly-even codes	77 873	-	16 470
# weight enumerators*	18 460	199	10
# orders of $Aut(C)$	1 112	94	91

d	4	6	8
$ Aut _s$	4	1	1
$ Aut _l$	1275541328062914232320000	14745600	82575360

Correctness

The number of all binary SD codes of even length *n* is

$$N(n) = \prod_{i=1}^{n/2-1} (2^{i}+1) = \sum_{i=1}^{r(n)} \frac{n!}{|\operatorname{Aut}(C_{i})|},$$

 $U = \{C_1, C_2, \dots, C_{r(n)}\}$ - the set of the inequivalent binary SD codes of length *n*

$$\sum_{C \in U} \frac{n!}{|Aut(C)|} |\{x \in C | wt(x) = d\}| = \binom{n}{d} \prod_{i=1}^{n/2-2} (2^i + 1).$$

Main construction

If *C* is a binary [n = 2k > 2, k, d] SD code (child code), then *C* is equivalent to a code with a generator matrix

G =	$\left(\begin{array}{c} x_1 \dots x_{k-1} \end{array} \right)$	000	1	0	
			x_1	x_1	
0 –	I_{k-1}	A	•	•	
			x_{k-1}	x_{k-1}	

where the matrix $(I_{k-1}|A)$ generates a self-dual code (parent code) of length n-2.

d = 2

There is one-to-one correspondence between the set of all inequivalent self-dual [n, n/2] codes and the set of all inequivalent self-dual [n+2, n/2+1, 2] codes

$$C \mapsto (00|C) \cup (11|C)$$

r(n,d) - the number of the inequivalent binary [n,n/2,d] self-dual codes

$$\Rightarrow r(n+2,2) = r(n)$$

d = 4

If *C* is a binary [n = 2k > 2, k, 4] SD code, then *C* is equivalent to a code with a generator matrix

$$G = \begin{pmatrix} 11 & 00 \cdots 0 & 00 \cdots 0 & 1 & 1 \\ 01 & 00 \cdots 0 & v & 0 & 1 \\ \hline 00 & I_{k-2} & A & a^T & a^T \end{pmatrix}$$

where the matrix $(I_{k-2}|A)$ generates a self-dual code of length n-4.

List of problems which cover our work

- 1. Isomorph free generation.
- 2. Canonical form $\rho(C)$, canonization and automorphism group Aut(C).
- 3. Coordinate (column) and codeword invariants.
- 4. Finding "Proper set of codewords for canonization"
- 5. Implementation, check for correctness and parallelization.

Isomorph Free Generation (IFG)

We want to construct all inequivalent [n,k] SD codes starting from all inequivalent [n-2, k-1] SD codes without using an equivalence test.

- 1. How to construct only inequivalent child-codes of one [n-2, k-1] code?
- 2. How to construct a child [n,k] SD code only from one parent code [n-2, k-1]?

IFG is based on the concept for a canonical map.

Canonical map

- *G* finite group
- *G* acts on a set Ω and defines an equivalence relation:

$$g(a) \cong a; g \in G$$

• $\rho: \ \Omega \mapsto \Omega$ - canonical map

$$b \cong a \Rightarrow \rho(b) \equiv \rho(a) \equiv r_a \in \Omega$$

- *r_a* canonical representative of the equivalence class
- $\rho(a)$ canonical form (labeling) of a

The standard case

If C is a binary [n, k, d] code (child code), then C is equivalent to a code with a generator matrix

$$G = \left(egin{array}{ccc|c} I_k & A & x_1 \ dots & dots \ x_k & x_k \end{array}
ight),$$

where the matrix $(I_k|A)$ generates a code (parent code) of length n-1.

Canonical map for codes

- C a linear [n,k] code
 - the canonical map is a permutation of the coordinates (since $G \cong S_n$);
 - $\rho(C) = \{c_{\rho} = (c_{\rho(1)}, c_{\rho(2)}, \dots, c_{\rho(n)}), c \in C\};$
 - this permutation is unique up to an automorphism of *C*;

Canonical map and Aut(C)

- *Aut*(*C*) defines a set of orbits of the coordinates $O = \{O_{i1}, O_{i2} \dots O_{il}\}$
- The canonical map of *C* gives an ordering of the orbits $\rho(O) = (O_1, O_2, \dots, O_l)$
- A **special** orbit say O_1 or O_l

Orbits and parent codes

- Aut(C) defines a set of orbits of the coordinates $O = \{O_{i1}, O_{i2} \dots O_{il}\}$
- Two coordinates from the same orbit O_j give equivalent parent codes.
- The (child) code *C* can be obtained from exactly *l* (number of orbits) inequivalent parent codes.
- One of these parent codes (Special parent code) corresponds to the **Special orbit**.

Key idea for a canonical augmentation

We want to construct the child codes *C* which come from the **Special parent code**.

Parent test:

- the child code C passes the parent test iff the last added coordinate c_n is in the **Special orbit**.
- we consider only the child codes which pass the parent test.

Computing canonical form of codes

Specific algorithms

- CODECAN by Thomas Feulner
- Kris Coolsaet

Computing canonical form of codes

Reduction to canonical form of graph:

- NAUTY by Brendan McKay
- TRACES by Adolfo Piperno
- BLISS by Tommi Junttila and Petteri Kaski.
- NISHE by Greg Tener

or $\{0,1\}$ matrix: Q-EXTENTION (my program)

Computing canonical form of codes

New version of Q-EXTENTION written in C /C++ (not in Pascal/Delphi)

- input $\{0,1\}$ matrix or colored $\{0,1\}$ matrix *A*;
- output $\rho(A)$ the canonical form of *A*.

The efficiency depends on:

- the size of the matrix;
- coloring the number of colors;
- regularity.

Coloring and invariants

- *A* a matrix which generates the code *C*
- Aut(C) acts on the columns of A (Aut(A) = Aut(C))
- The invariant of a coordinate (column) for the matrix *A* is a function $f: f(a) \in \mathbb{Z}$
 - if *b* and *c* are in the same orbit then f(b) = f(c)
 - for any permutation $\sigma \in S_n$ we have $f(a) = f(\sigma(a))$ for $a \in A$ and $\sigma(a) \in \sigma(A)$

Coloring and invariants

- All columns of *A* with the same value of *f* define a set of columns which consists of one or more orbits. We call this set a **pseudoorbit**.
- The values of *f* give an ordering of the pseudoorbits and a coloring of the columns.
- The column *a* of the matrix *A* has color f(a).
- We define a **special** color say the color corresponding to the largest value of *f*.
- We set the special orbit to be with the special color.

Coloring and parent test

- If the last column have color different from the special color the parent test gives a negative answer.
- If the color of the last coordinate correspond to a pseudoorbit with size 1 then the parent test gives an exact answer in the coloring's step.
- In both cases we skip canonization.
- The number of codes, considered in our case (SD codes with n = 40) is:
- d=4) all codes 20 614 314 107, only for 5 226 244 513 of them, a canonical form is computed;
- d>4) all codes 131 822 097 145, only for 6 563 895 920 of them, a canonical form is computed;

Finding Proper set of codewords

We define the following properties for the set M(C) of codewords of the code C

- M(C) generates the code *C*;
- M(C) is stable with respect to Aut(C);
- M(C) is close to minimal;
- if $C' \cong C'' : \sigma(C') = C''$ then $\sigma(M(C')) \equiv M(C'')$

Finding Proper set of codewords

We chose list (vector) of invariants $F = (f_1, f_2, ..., f_s)$ The algorithm:

- 1. M(C) is empty
- 2. generate the set *D* of all codeword with smallest not considered weight
- 3. find and order pseoudoorbits $\{O_{i1}, O_{i2}, \dots, O_{il}\}$ of *D* by size (in the case of the same size by colors) $(O_1, O_2 \dots O_l)$
- 4. for *r* from 1 to *l* do if $rank(M(C) \bigcup O_r) > rank(M(C))$ then $M(C) = M(C) \bigcup O_r$
- 5. if rank(M(C) < rank(C) goto point 2.

What is done and more...

- 1. The classification of the SD codes of length 38 using the general construction (BB).
- 2. The classification of the optimal SD codes of length 40 (BBH).
- 3. The algorithm for d = 4.
- 4. The classification of all SD codes of length 40 using both algorithms.
- 5. The classification of the optimal SD codes of length 42 using the optimal [40,20,8] codes.

The algorithm

Procedure Augmentation(A: self-dual code; k: dimension); { If the dimension of A is equal to k then { $U_k := \{U_k \cup A\}; \text{ PRINT } (A, |Aut(A)|); \};$ If the dimension of A is less than k then { find the set *Child*(*A*) of all inequivalent children of *A*; (using already known Aut(A)) For all codes *B* from the set Child(A) do the following: if B passes the parent test then Augmentation(B,k); } Procedure Main; INPUT: U_r – all NBSDC [2r, r]; OUTPUT: U_k – all NBSDC [2k, k];

 $U_k :=$ (the empty set);

for all codes $A \in U_r$ do the following:

{ find the automorphism group of *A*; Augmentation(*A*,*k*);}

Advantages of the algorithm

- Construction and test for equivalence in one.
- Possibilities for use of invariants in the search of canonical representative and canonical permutation.
- Easy for parallelization.
- Recursive construction (we can start from the trivial code).