On Hadamard Modulo Prime p Matrices of Size at most $2 p+1$

Yuri Borissov

Institute of Mathematics and Informatics, BAS, Bulgaria

> joint work with Moon Ho Lee

Chonbuk National University, R. of Korea ACCT-14 Svetlogorsk, Russia 2014

Outline

- Introduction \& Motivation

Outline

- Introduction \& Motivation
- Preliminaries

Outline

- Introduction \& Motivation
- Preliminaries
- Results and Sketch of Proofs

Introduction \& Motivation

Definition 1.

A Hadamard Modulo Prime (HMP) matrix \mathbf{H} of size n is an $n \times n$ non-singular over $\mathbb{Z}_{p}, p>2$, matrix of ± 1 's such that:

$$
\mathbf{H H}^{T}=n(\bmod p) \mathbf{I}_{n}
$$

where \mathbf{I}_{n} is the identity matrix of the same size.

- Let $\operatorname{HMP}(n, p)$ be the set of HMP modulo p matrices of size n.

Introduction \& Motivation

- The HMP matrices could be considered in a wider context of modular Hadamard matrices introduced by Marrero and Butson in [MarBut72];

Introduction \& Motivation

- The HMP matrices could be considered in a wider context of modular Hadamard matrices introduced by Marrero and Butson in [MarBut72];
- The concept has recently resurfaced in the engineering literature - jacket transforms (JT): introduced in [Lee00];

Introduction \& Motivation

- The HMP matrices could be considered in a wider context of modular Hadamard matrices introduced by Marrero and Butson in [MarBut72];
- The concept has recently resurfaced in the engineering literature - jacket transforms (JT): introduced in [Lee00];
- The HMP matrices are applicable to constructing some linear all-or-nothing transforms (AONT) - a remarkable cryptographic technique for strengthening modern block ciphers: introduced in [Riv97], elaborated in [Sti01], and recently extended in [LeeBorDod10].

Preliminaries

- Necessary and sufficient condition for invertibility of size n matrix with modular Hadamard property is that $p \nmid n$.

Preliminaries

- Necessary and sufficient condition for invertibility of size n matrix with modular Hadamard property is that $p \nmid n$.
- Each ordinary real Hadamard matrix belongs to $\operatorname{HMP}(n, p)$ for arbitrary prime $p>2$, provided $p \nmid n$.

Preliminaries

- Necessary and sufficient condition for invertibility of size n matrix with modular Hadamard property is that $p \nmid n$.
- Each ordinary real Hadamard matrix belongs to $\operatorname{HMP}(n, p)$ for arbitrary prime $p>2$, provided $p \nmid n$.
- The simplest nontrivial example for HMP matrix is obtained when $n=7$ and $p=3$, e.g.,

$$
\left(\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & - & 1 & 1 & 1 & 1 & - \\
1 & 1 & - & 1 & 1 & 1 & - \\
1 & 1 & 1 & - & 1 & 1 & - \\
1 & 1 & 1 & 1 & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - \\
1 & - & - & - & - & - & 1
\end{array}\right) .
$$

Definition 2.

The matrix A is called equivalent to the matrix B of $\pm 1 \mathrm{~s}$ when A can be obtained from \mathbf{B} by the following transformations:

- permuting the set of rows/columns of \mathbf{B};
- multiplying each row/column from a certain subset of rows/columns in \mathbf{B} by $\mathbf{- 1}$.
- When performing these transformations one can apply, firstly, all permutations, and then the transformations of second kind.

Definition 3.

The (Hamming) distance between two vectors \mathbf{x} and \mathbf{y} of equal length is the number of positions where they differ, denoted by: $\operatorname{dist}(\mathbf{x}, \mathbf{y})$.
The weight of a vector \mathbf{x} of ± 1, denoted by $w t(\mathbf{x})$, is $\operatorname{dist}(\mathbf{x}, \mathbf{1})$ where 1 is the all-ones vector.

- For any two vectors \mathbf{x} and \mathbf{y} of ± 1 's with length n, it holds:

$$
(\mathbf{x}, \mathbf{y})=n-2 \operatorname{dist}(\mathbf{x}, \mathbf{y})
$$

In particular, the inner product of two vectors of ± 1 's has the same parity as their common length.

Preliminaries

Lemma 4.

The inner product of a pair of distinct rows of an non-singular size n matrix of ± 1 's does not exceed in absolute value $n-2$.

Preliminaries

Lemma 4.

The inner product of a pair of distinct rows of an non-singular size n matrix of ± 1 's does not exceed in absolute value $n-2$.

Lemma 5.

Define the intersection of two vectors \mathbf{x} and \mathbf{y} of ± 1 to be the vector $\mathbf{x} * \mathbf{y}$ of the same length which has -1 s only where both \mathbf{x} and \mathbf{y} do. Then it holds:

$$
\operatorname{dist}(\mathbf{x}, \mathbf{y})=w t(\mathbf{x})+w t(\mathbf{y})-2 w t(\mathbf{x} * \mathbf{y})
$$

- the intersection lemma

Results: $H M P(n, p) \quad n \leq 2 p+1$

Proposition 6.

Let $\mathbf{H} \in \operatorname{HMP}(n, p)$ where $n \leq p+1$. Then \mathbf{H} is an ordinary Hadamard matrix.

- Sketch of proof: Lemma 4 implies the inner product of arbitrary two distinct rows of \mathbf{H} equals 0 .

Results: $\operatorname{HMP}(n, p) n \leq 2 p+1$

Proposition 6.

Let $\mathbf{H} \in \operatorname{HMP}(n, p)$ where $n \leq p+1$. Then \mathbf{H} is an ordinary Hadamard matrix.

- Sketch of proof: Lemma 4 implies the inner product of arbitrary two distinct rows of \mathbf{H} equals 0 .

Corollary 7.

If $p \equiv 1(\bmod 4)$ then the set $\operatorname{HMP}(p+1, p)$ is the empty one.

- The corollary generalizes a result for particular case of 5-modular matrices considered in [LeeSzo13].

Results: $\operatorname{HMP}(n, p) n \leq 2 p+1$

I. Case $n \equiv 0(\bmod 2)$.

Proposition 8.

Let $\mathbf{H} \in \operatorname{HMP}(n, p)$, where n is an even number s. $t . n<2 p$. Then \mathbf{H} is an ordinary Hadamard matrix.

- Sketch of proof: The inner product of each pair of rows is of even parity like n, and bounded in absolute value by $2 p$. Hence, it vanishes.

Results: $\operatorname{HMP}(n, p) \quad n \leq 2 p+1$

I. Case $n \equiv 0(\bmod 2)$.

Proposition 8.

Let $\mathbf{H} \in H M P(n, p)$, where n is an even number s. $t . n<2 p$. Then \mathbf{H} is an ordinary Hadamard matrix.

- Sketch of proof: The inner product of each pair of rows is of even parity like n, and bounded in absolute value by $2 p$. Hence, it vanishes.

Corollary 9.

If $2<n<2 p$ and $n \equiv 2(\bmod 4)$ then $\operatorname{HMP}(n, p)=\emptyset$.

Results: $\operatorname{HMP}(n, p) \quad n \leq 2 p+1$

II. Case $n \equiv 1(\bmod 2)$.

Proposition 10.

Let $\mathbf{H} \in \operatorname{HMP}(n, p)$ for odd $n \leq 2 p+1$, and $\omega=(n-p) / 2$.
\mathbf{H} is equivalent to a matrix \mathbf{M} with the following properties:
(i) the first row of \mathbf{M} is the all-ones vector $\mathbf{1}$;
(ii) all other rows are of weight ω;
(iii) for arbitrary two distinct rows \mathbf{r}^{\prime} and $\mathbf{r}^{\prime \prime}$ of \mathbf{M} :

$$
\operatorname{dist}\left(\mathbf{r}^{\prime}, \mathbf{r}^{\prime \prime}\right)=\omega
$$

In addition, $n-p \equiv 0(\bmod 4)$.

- Idea of proof: (ii) - (iii) are proved similarly to the previous proposition but now the inner product has odd parity. Finally, the last claim is deduced making use of the intersection lemma.

Results: $\operatorname{HMP}(n, p) \quad 3 \leq 2 p+1$

Corollary 11.

If $p \equiv 1(\bmod 4)$ then the set $\operatorname{HMP}(2 p+1, p)$ is the empty one.

The last fact generalizes a second result from [LeeSzo13]: Namely, there does not exist $\operatorname{HMP}(11,5)$ matrix.

Remarks

- Properties (iii) - (ii) mean the binary code behind the rows of the matrix \mathbf{M} is an equidistant constant weight code;
- A theorem on the equivalence of an ordinary Hadamard matrix and a certain constant weight code was proved by V.A. Zinoviev in [Zin96].

Results: $H M P(n, p) \quad n \leq 2 p+1$

- The odd size $n=p+4$ is the simplest case s. t . a $\operatorname{HMP}(., p)$ matrix which is not an ordinary Hadamard, may exist.

Results: $H M P(n, p) \quad n \leq 2 p+1$

- The odd size $n=p+4$ is the simplest case s. t . a $\operatorname{HMP}(., p)$ matrix which is not an ordinary Hadamard, may exist.

Theorem 12.

Let $n=p+4$ where p is an odd prime. Then:
(a) Every $\operatorname{HMP}(n, p)$ matrix is equivalent to $\mathbf{D}_{n}=\mathbf{J}_{n}-\mathbf{2} \mathbf{I}_{n}$, where \mathbf{J}_{n} is the all-ones matrix.
(b) The cardinality of $\operatorname{HMP}(n, p)$ equals to $2^{2 n-1} n$!

Results: $\operatorname{HMP}(n, p) n \leq 2 p+1$

- The odd size $n=p+4$ is the simplest case s. t. a $\operatorname{HMP}(., p)$ matrix which is not an ordinary Hadamard, may exist.

Theorem 12.

Let $n=p+4$ where p is an odd prime. Then:
(a) Every $\operatorname{HMP}(n, p)$ matrix is equivalent to $\mathbf{D}_{n}=\mathbf{J}_{n}-2 \mathbf{1}_{n}$, where \mathbf{J}_{n} is the all-ones matrix.
(b) The cardinality of $\operatorname{HMP}(n, p)$ equals to $2^{2 n-1} n$!

- Idea of proof: (a) follows by Proposition 10, while (b) is proved based on (a) and taking into consideration the peculiarities of equivalence transformations.

References

[MarBut72] O. Marrero and A. T. Butson, Modular Hadamard matrices and related designs,
J. Comb. Theory A 15, 257-269, 1973.
[Lee00] M. H. Lee,
A new reverse jacket transform and its fast algorithm, IEEE Trans. Circuits Syst. II, 47(6), 39-47, 2000.
[Riv97] R. L. Rivest,
All-or-nothing encryption and the package transform, in Biham, E. (Ed.), Fast Software Encryption, Lect. Notes Comp. Sci. 1267, 210-218, 1997.
[Sti01] D. R. Stinson,
Something about all or nothing (transforms),
Des. Codes Cryptogr., 22, 133-138, 2001.

References

[LeeBorDod10] M. H. Lee, Y. L. Borissov, and S. M. Dodunekov, Class of jacket matrices over finite characteristic fields, Electron. Lett., 46(13), 916-918, 2010.
[LeeSzo13] M. H. Lee and F. Szollosi, Hadamard matrices modulo 5, J. of Combinatorial Designs, 171-178, 2013.
[Zin96] V. A. Zinoviev,
On the equivalence of certain constant weight codes and combinatorial designs, J. of Statistical Planning and Inference, 56, 289-294, 1996.

The End

THANK YOU FOR ATTENTION!

