On Hadamard Modulo Prime p Matrices of Size at most 2p + 1

Yuri Borissov

Institute of Mathematics and Informatics, BAS, Bulgaria

joint work with Moon Ho Lee Chonbuk National University, R. of Korea

ACCT-14 Svetlogorsk, Russia 2014

Introduction & Motivation

Introduction & Motivation

Preliminaries

Introduction & Motivation

- Preliminaries
- Results and Sketch of Proofs

Definition 1.

A **Hadamard Modulo Prime** (HMP) matrix **H** of size *n* is an $n \times n$ non-singular over \mathbb{Z}_p , p > 2, matrix of ± 1 's such that:

 $\mathbf{H}\mathbf{H}^{T} = n(mod \ p) \mathbf{I}_{n},$

where I_n is the identity matrix of the same size.

 Let HMP(n, p) be the set of HMP modulo p matrices of size n. The HMP matrices could be considered in a wider context of modular Hadamard matrices introduced by Marrero and Butson in [MarBut72];

- The HMP matrices could be considered in a wider context of modular Hadamard matrices introduced by Marrero and Butson in [MarBut72];
- The concept has recently resurfaced in the engineering literature – jacket transforms (JT): introduced in [Lee00];

- The HMP matrices could be considered in a wider context of modular Hadamard matrices introduced by Marrero and Butson in [MarBut72];
- The concept has recently resurfaced in the engineering literature – jacket transforms (JT): introduced in [Lee00];
- The HMP matrices are applicable to constructing some linear all-or-nothing transforms (AONT) – a remarkable cryptographic technique for strengthening modern block ciphers: introduced in [Riv97], elaborated in [Sti01], and recently extended in [LeeBorDod10].

Preliminaries

Necessary and sufficient condition for invertibility of size *n* matrix with modular Hadamard property is that *p* ∦ *n*.

Preliminaries

- Necessary and sufficient condition for invertibility of size *n* matrix with modular Hadamard property is that *p ∦ n*.
- Each ordinary real Hadamard matrix belongs to HMP(n, p) for arbitrary prime p > 2, provided p ∦ n.

Preliminaries

- Necessary and sufficient condition for invertibility of size *n* matrix with modular Hadamard property is that *p ∦ n*.
- Each ordinary real Hadamard matrix belongs to HMP(n, p) for arbitrary prime p > 2, provided p ∦ n.
- The simplest nontrivial example for HMP matrix is obtained when n = 7 and p = 3, e.g.,

Definition 2.

The matrix **A** is called **equivalent** to the matrix **B** of \pm 1s when **A** can be obtained from **B** by the following transformations:

- permuting the set of rows/columns of B;
- multiplying each row/column from a certain subset of rows/columns in **B** by -1.
- When performing these transformations one can apply, firstly, all permutations, and then the transformations of second kind.

Definition 3.

The (Hamming) **distance** between two vectors **x** and **y** of equal length is the number of positions where they differ, denoted by: $dist(\mathbf{x}, \mathbf{y})$. The **weight** of a vector **x** of ±1, denoted by $wt(\mathbf{x})$, is $dist(\mathbf{x}, \mathbf{1})$

where **1** is the all-ones vector.

• For any two vectors **x** and **y** of ± 1 's with length *n*, it holds: (**x**, **y**) = $n - 2dist(\mathbf{x}, \mathbf{y})$.

In particular, the **inner product** of two vectors of ± 1 's has the **same parity** as their common **length**.

Lemma 4.

The inner product of a pair of distinct rows of an non-singular size n matrix of ± 1 's does not exceed in absolute value n - 2.

• ...

Lemma 4.

The inner product of a pair of distinct rows of an non-singular size n matrix of ± 1 's does not exceed in absolute value n - 2.

o ...

Lemma 5.

Define the intersection of two vectors \mathbf{x} and \mathbf{y} of ± 1 to be the vector $\mathbf{x} * \mathbf{y}$ of the same length which has -1s only where both \mathbf{x} and \mathbf{y} do. Then it holds:

$$dist(\mathbf{x}, \mathbf{y}) = wt(\mathbf{x}) + wt(\mathbf{y}) - 2wt(\mathbf{x} * \mathbf{y}).$$

• the intersection lemma

Proposition 6.

Let $\mathbf{H} \in HMP(n, p)$ where $n \le p + 1$. Then \mathbf{H} is an ordinary Hadamard matrix.

• Sketch of proof: Lemma 4 implies the inner product of arbitrary two distinct rows of H equals 0.

Proposition 6.

Let $\mathbf{H} \in HMP(n, p)$ where $n \le p + 1$. Then \mathbf{H} is an ordinary Hadamard matrix.

• Sketch of proof: Lemma 4 implies the inner product of arbitrary two distinct rows of H equals 0.

Corollary 7.

If $p \equiv 1 \pmod{4}$ then the set HMP(p + 1, p) is the empty one.

• The corollary generalizes a result for particular case of 5-modular matrices considered in [LeeSzo13].

I. Case $n \equiv 0 \pmod{2}$.

Proposition 8.

Let $\mathbf{H} \in HMP(n, p)$, where n is an even number s. t. n < 2p. Then \mathbf{H} is an ordinary Hadamard matrix.

• Sketch of proof: The inner product of each pair of rows is of even parity like *n*, and bounded in absolute value by 2*p*. Hence, it vanishes.

I. Case $n \equiv 0 \pmod{2}$.

Proposition 8.

Let $\mathbf{H} \in HMP(n, p)$, where n is an even number s. t. n < 2p. Then \mathbf{H} is an ordinary Hadamard matrix.

• Sketch of proof: The inner product of each pair of rows is of even parity like *n*, and bounded in absolute value by 2*p*. Hence, it vanishes.

Corollary 9.

If
$$2 < n < 2p$$
 and $n \equiv 2 \pmod{4}$ then $HMP(n, p) = \emptyset$.

II. Case $n \equiv 1 \pmod{2}$.

Proposition 10.

Let $\mathbf{H} \in HMP(n, p)$ for odd $n \leq 2p + 1$, and $\omega = (n - p)/2$. **H** is equivalent to a matrix **M** with the following properties:

- (i) the first row of M is the all-ones vector 1;
 (ii) all other rows are of weight ω;
 (iii) for arbitrary two distinct rows r' and r" of M: dist(r', r") = ω.
 In addition, n - p ≡ 0 (mod 4).
 - Idea of proof: (ii) (iii) are proved similarly to the previous proposition but now the inner product has odd parity. Finally, the last claim is deduced making use of the intersection lemma.

Corollary 11.

If $p \equiv 1 \pmod{4}$ then the set HMP(2p + 1, p) is the empty one.

The last fact generalizes a second result from [LeeSzo13]: Namely, there does not exist HMP(11,5) matrix.

Remarks

- Properties (iii) (ii) mean the binary code behind the rows of the matrix M is an equidistant constant weight code;
- A theorem on the equivalence of an ordinary Hadamard matrix and a certain constant weight code was proved by V.A. Zinoviev in [Zin96].

 The odd size n = p + 4 is the simplest case s. t. a HMP(., p) matrix which is not an ordinary Hadamard, may exist.

 The odd size n = p + 4 is the simplest case s. t. a HMP(., p) matrix which is not an ordinary Hadamard, may exist.

Theorem 12.

Let n = p + 4 where p is an odd prime. Then: (a) Every HMP(n, p) matrix is equivalent to $\mathbf{D}_n = \mathbf{J}_n - 2\mathbf{I}_n$, where \mathbf{J}_n is the all-ones matrix. (b) The cardinality of HMP(n, p) equals to $2^{2n-1} n!$

 The odd size n = p + 4 is the simplest case s. t. a HMP(., p) matrix which is not an ordinary Hadamard, may exist.

Theorem 12.

Let n = p + 4 where p is an odd prime. Then: (a) Every HMP(n, p) matrix is equivalent to $\mathbf{D}_n = \mathbf{J}_n - 2\mathbf{I}_n$, where \mathbf{J}_n is the all-ones matrix. (b) The cardinality of HMP(n, p) equals to $2^{2n-1} n!$

Idea of proof: (a) follows by Proposition 10, while
 (b) is proved based on (a) and taking into consideration the peculiarities of equivalence transformations.

[MarBut72] O. Marrero and A. T. Butson, Modular Hadamard matrices and related designs, *J. Comb. Theory A* **15**, 257–269, 1973.

[Lee00] M. H. Lee, A new reverse jacket transform and its fast algorithm, *IEEE Trans. Circuits Syst. II*, **47(6)**, 39–47, 2000.

[Riv97] R. L. Rivest, All-or-nothing encryption and the package transform, in *Biham, E. (Ed.), Fast Software Encryption, Lect. Notes Comp. Sci. 1267*, 210–218, 1997.

[Sti01] D. R. Stinson, Something about all or nothing (transforms), *Des. Codes Cryptogr.*, **22**, 133–138, 2001. [LeeBorDod10] M. H. Lee, Y. L. Borissov, and S. M. Dodunekov, Class of jacket matrices over finite characteristic fields, *Electron. Lett.*, **46(13)**, 916–918, 2010.

[LeeSzo13] M. H. Lee and F. Szollosi, Hadamard matrices modulo 5, *J. of Combinatorial Designs*, 171–178, 2013.

[Zin96] V. A. Zinoviev, On the equivalence of certain constant weight codes and combinatorial designs,

J. of Statistical Planning and Inference, 56, 289–294, 1996.

THANK YOU FOR ATTENTION!

Yuri L. Borissov On Hadamard Modulo Prime Matrices of Size at most ...