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Introduction & Motivation 1

Definition 1.

A Hadamard Modulo Prime (HMP) matrix H of size n is an
n × n non-singular over Zp, p > 2, matrix of ±1’s such that:

HHT = n(mod p) In,

where In is the identity matrix of the same size.

Let HMP(n, p) be the set of HMP modulo p matrices of
size n.
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Introduction & Motivation 2

The HMP matrices could be considered in a wider context
of modular Hadamard matrices introduced by Marrero and
Butson in [MarBut72];

The concept has recently resurfaced in the engineering
literature – jacket transforms (JT): introduced in [Lee00];

The HMP matrices are applicable to constructing some
linear all-or-nothing transforms (AONT) – a remarkable
cryptographic technique for strengthening modern block
ciphers: introduced in [Riv97], elaborated in [Sti01], and
recently extended in [LeeBorDod10].
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Preliminaries 1

Necessary and sufficient condition for invertibility of size n
matrix with modular Hadamard property is that p 6 | n.

Each ordinary real Hadamard matrix belongs to HMP(n, p)
for arbitrary prime p > 2, provided p 6 | n.
The simplest nontrivial example for HMP matrix is obtained
when n = 7 and p = 3, e.g.,

1 1 1 1 1 1 1
1 − 1 1 1 1 −
1 1 − 1 1 1 −
1 1 1 − 1 1 −
1 1 1 1 − 1 −
1 1 1 1 1 − −
1 − − − − − 1


.
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Preliminaries 2

Definition 2.

The matrix A is called equivalent to the matrix B of ±1s when
A can be obtained from B by the following transformations:

permuting the set of rows/columns of B;
multiplying each row/column from a certain subset of
rows/columns in B by −1.

When performing these transformations one can apply,
firstly, all permutations, and then the transformations of
second kind.
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Preliminaries 3

Definition 3.
The (Hamming) distance between two vectors x and y of equal
length is the number of positions where they differ, denoted by:

dist(x, y).
The weight of a vector x of ±1, denoted by wt(x), is dist(x, 1)
where 1 is the all-ones vector.

For any two vectors x and y of ±1’s with length n, it holds:
(x, y) = n − 2dist(x, y).

In particular, the inner product of two vectors of ±1’s has
the same parity as their common length.
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Preliminaries 4

Lemma 4.

The inner product of a pair of distinct rows of an non-singular
size n matrix of ±1’s does not exceed in absolute value n − 2.

...

Lemma 5.

Define the intersection of two vectors x and y of ±1 to be the
vector x ∗ y of the same length which has −1s only where both
x and y do. Then it holds:

dist(x, y) = wt(x) + wt(y)− 2wt(x ∗ y).

the intersection lemma
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Results: HMP(n, p) n ≤ 2p + 1 1

Proposition 6.

Let H ∈ HMP(n, p) where n ≤ p + 1. Then H is an ordinary
Hadamard matrix.

Sketch of proof: Lemma 4 implies the inner product of
arbitrary two distinct rows of H equals 0.

Corollary 7.

If p ≡ 1(mod 4) then the set HMP(p + 1, p) is the empty one.

The corollary generalizes a result for particular case of
5−modular matrices considered in [LeeSzo13].
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Results: HMP(n, p) n ≤ 2p + 1 2

I. Case n ≡ 0(mod 2).

Proposition 8.

Let H ∈ HMP(n, p), where n is an even number s. t. n < 2p.
Then H is an ordinary Hadamard matrix.

Sketch of proof: The inner product of each pair of rows
is of even parity like n, and bounded in absolute value by
2p. Hence, it vanishes.

Corollary 9.

If 2 < n < 2p and n ≡ 2(mod 4) then HMP(n, p) = ∅.
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Results: HMP(n, p) n ≤ 2p + 1 3.1

II. Case n ≡ 1(mod 2).

Proposition 10.

Let H ∈ HMP(n, p) for odd n ≤ 2p + 1, and ω = (n − p)/2.
H is equivalent to a matrix M with the following properties:

(i) the first row of M is the all-ones vector 1;
(ii) all other rows are of weight ω;
(iii) for arbitrary two distinct rows r′ and r′′ of M:

dist(r′, r′′) = ω.
In addition, n − p ≡ 0 (mod 4).

Idea of proof: (ii) – (iii) are proved similarly to the
previous proposition but now the inner product has odd
parity. Finally, the last claim is deduced making use of
the intersection lemma.
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Results: HMP(n, p) n ≤ 2p + 1 3.2

Corollary 11.

If p ≡ 1(mod 4) then the set HMP(2p + 1, p) is the empty one.

The last fact generalizes a second result from [LeeSzo13]:
Namely, there does not exist HMP(11, 5) matrix.

Remarks

Properties (iii) – (ii) mean the binary code behind the rows
of the matrix M is an equidistant constant weight code;
A theorem on the equivalence of an ordinary Hadamard
matrix and a certain constant weight code was proved by
V.A. Zinoviev in [Zin96].
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Results: HMP(n, p) n ≤ 2p + 1 4

The odd size n = p + 4 is the simplest case s. t. a
HMP(., p) matrix which is not an ordinary Hadamard,
may exist.

Theorem 12.

Let n = p + 4 where p is an odd prime. Then:
(a) Every HMP(n, p) matrix is equivalent to Dn = Jn − 2In,
where Jn is the all-ones matrix.
(b) The cardinality of HMP(n, p) equals to 22n−1 n!

Idea of proof: (a) follows by Proposition 10, while
(b) is proved based on (a) and taking into consideration
the peculiarities of equivalence transformations.
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The End
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