homogeneous arcs in projective HJELMALEV SPACES

Stoyan Boev, Ivan Landjev

New Bulgarian University

Chain Rings

Definition. A ring (associative, $1 \neq 0$, ring homomorphisms preserving 1) is called a left (right) chain ring if the lattice of its left (right) ideals forms a chain.
A. Nechaev, Mat. Sbornik 20(1973).

$$
R>\operatorname{rad} R>(\operatorname{rad} R)^{2}>\ldots>(\operatorname{rad} R)^{m-1}>(\operatorname{rad} R)^{m}=(0) .
$$

- m - the length of R;
- \mathbb{F}_{q} - the residue field of $R, q=p^{s}$;
- p^{r} - the characteristic of R.

Example. (Chain Rings with q^{2} Elements)

$$
R:|R|=q^{2}, R / \operatorname{rad} R \cong \mathbb{F}_{q} ; \quad R>\operatorname{rad} R>(0)
$$

R. Raghavendran, Compositio Mathematica 21 (1969).
A.Cronheim, Geom. Dedicata 7(1978).

If $q=p^{s}$ there exist $s+1$ isomorphism classes of such rings:

- σ-dual numbers over $\mathbb{F}_{q}, \forall \sigma \in \operatorname{Aut} \mathbb{F}_{q}: R_{\sigma}=\mathbb{F}_{q}[X ; \sigma] /\left(X^{2}\right)$.
$\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} \sigma\left(b_{0}\right)\right) X$.
Also: $\mathbb{S}_{q}^{(i)}=\mathbb{F}_{q}\left[X ; \phi^{i}\right] /\left(X^{2}\right)$, where $\phi: \alpha \rightarrow \alpha^{p}$.
- the Galois ring $\operatorname{GR}\left(q^{2}, p^{2}\right)=\mathbb{Z}_{p^{2}}[X] /(f(X)), f(X)$ is monic of degree r, irreducible $\bmod p$.

Also: $\mathbb{T}_{q}=\operatorname{GR}\left(q^{2}, p^{2}\right)$.

The Homogeneous Weight

Definition. Let R be a finite ring. A mapping $w: R \rightarrow \mathbb{R}$ is called a a normalized homogenious weight if $(x, y) \mapsto w(x-y)$ is a metric on R and if the following two axioms hold:
(1) $w(x)=w(u x v)$ for all $x \in R$ and $u, v \in R^{\times}$.
(2) the average weight $\frac{1}{|T|} \sum_{x \in I} w(x)$ for every left or right ideal $I \neq\{0\}$ of R is equal to one.

Theorem. (I. Constantinescu, W. Heise, 1997) A homogenious weight on the integer residue ring \mathbb{Z}_{m} exists if and only if m is not divisible by 6 . In such case the normalized homogenious weight is unique.

The Heise-weight: the normalized homogeneous weight on $R=\mathbb{Z}_{m}$:

$$
w_{R}(x)=1-\frac{\mu(m / d)}{\varphi(m / d)}
$$

where $d=\operatorname{gcd}(x, m)$.

Let R be a local ring with residue field of order q. Then for all $x \in R$:

$$
w_{R}(x)=\left\{\begin{array}{cl}
1 & \text { if } x \notin \operatorname{soc}(R) \\
\frac{q}{q-1} & \text { if } x \in \operatorname{soc}(R) \backslash\{0\} \\
0 & \text { if } x=0
\end{array}\right.
$$

For chain rings R with $|R|=q^{m}, R / \operatorname{rad} R \cong \mathbb{F}_{q}$:

$$
w_{R}(x)=\left\{\begin{array}{cl}
1 & \text { if } x \in R \backslash(\operatorname{rad} R)^{m-1} \\
\frac{q}{q-1} & \text { if } x \in(\operatorname{rad} R)^{m-1} \backslash\{0\} \\
0 & \text { if } x=0
\end{array}\right.
$$

Let R be a chain ring with $|R|=q^{2}, R / \operatorname{rad} R \cong \mathbb{F}_{q}$.
Definition. A code over \mathbb{F}_{q} is said to be linearly representable over R if it is the image of an R-linear code under the Reed-Solomon map:

$$
\psi_{\mathrm{RS}}:\left\{\begin{array}{ccc}
R & \rightarrow & \mathbb{F}_{q}^{q} \\
r=r_{0}+r_{1} \theta & \rightarrow & \left(r_{0}, r_{1}\right)\left(\begin{array}{ccccl}
0 & 1 & \zeta & \ldots & \zeta^{q-2} \\
1 & 1 & 1 & \ldots & 1
\end{array}\right) .
\end{array}\right.
$$

Here ζ is a primitive element of \mathbb{F}_{q}, and $r_{i} \in \Gamma$, where Γ is a set of elements from R no two of which are congruent modulo $\operatorname{rad} R$.

$$
\psi_{\mathrm{RS}}:\left(R, w_{\text {hom }}\right) \longrightarrow\left(\mathbb{F}_{q}^{q}, \frac{1}{q-1} w_{\text {Ham }}\right)
$$

The Projective Hjelmslev Geometries $\operatorname{PHG}\left({ }_{R} R^{n}\right)$

- $M={ }_{R} R^{n}$;
- $\mathcal{P}=\{x R \mid x \in M \backslash M \theta\} ;$
- $\mathcal{L}=\{x R+y R \mid x, y$ linearly independent $\} ;$
- $I \subseteq \mathcal{P} \times \mathcal{L}$ - incidence relation;
- ○ - neighbour relation:
(N1) $X \bigcirc Y$ if $\exists s, t \in \mathcal{L}: X, Y I s, X, Y I t$;
(N2) $s \circ t$ if $\forall X I s \exists Y$ It $: X \bigcirc Y$ and $\forall Y$ It $\exists X I s: Y \bigcirc X$.

Definition. The incidence structure $\Pi=(\mathcal{P}, \mathcal{L}, I)$ with neighbour relation \bigcirc is called the (left) projective Hjelmslev geometry over the chain ring R.

Notation: $\operatorname{PHG}\left({ }_{R} R^{k}\right), \operatorname{PHG}(k-1, R)$
\mathcal{P}^{\prime} - the set of all neighbour classes on points
\mathcal{L}^{\prime} - the set of all neighbour classes on lines
$I^{\prime} \subseteq \mathcal{P}^{\prime} \times \mathcal{L}^{\prime}$ - incidence relation defined by

$$
[P] I^{\prime}[l] \Leftrightarrow \exists P_{0} \in[P], \exists l_{0} \in[l], P_{0} I l_{0}
$$

Theorem. $\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}, I^{\prime}\right) \cong \operatorname{PG}(k-1, q)$.
$\operatorname{PHG}\left(\mathbb{Z}_{9}^{3}\right)$

A Neighbour class of lines in $\operatorname{PHG}\left(\mathbb{Z}_{9}^{3}\right)$

Homogeneous Arcs in $\operatorname{PHG}\left({ }_{R} R^{n}\right)$

For any subspace $S \subset \mathcal{P}$ define the homogenious weight of S by:

$$
w(S)=\mathcal{K}(S)-\frac{1}{q-1} \mathcal{K}([S] \backslash S) .
$$

Definition. The mapping $\mathcal{K}: \mathcal{P} \rightarrow \mathbb{N}_{0}$ is called a homogeneous (N, W)-arc if
(a) $\mathcal{K}(\mathcal{P})=N$;
(b) $w(H) \leq W$ for any hyperplane;
(c) $w\left(H_{0}\right)=W$ for at least one hyperplane H_{0}.

Definition. The mapping $\mathcal{K}: \mathcal{P} \rightarrow \mathbb{N}_{0}$ is called a homogeneous (N, W)-blocking set if
(a) $\mathcal{K}(\mathcal{P})=N$;
(b) $w(H) \geq W$ for any hyperplane;
(c) $w\left(H_{0}\right)=W$ for at least one hyperplane H_{0}.

Theorem. A linearly representable q-ary code with parameters

$$
\left(q N, q^{2 k},(q-1)(N-W)\right)
$$

exists if and only if there exists a homogeneous $(N, W)-\operatorname{arc}$ in $\operatorname{PHG}\left({ }_{R} R^{k}\right)$.

Theorem. Let \mathcal{K} be a projective arc in Π with homogeneous weights: $w_{1} \leq$ $w_{2} \leq \ldots \leq w_{s}$. Then the complementary arc $\overline{\mathcal{K}}:=1-\mathcal{K}$ has homogeneous weights $-w_{s} \leq w_{s-1} \leq \ldots \leq-w_{1}$.

Corollary. If \mathcal{K} is a (N, W)-arc then $\overline{\mathcal{K}}$ is a $(N,-W)$-blocking set.

Homogeneous Arcs with $W=0$

Theorem. Let \mathcal{K} be a (N, W)-arc in $\operatorname{PHG}\left({ }_{R} R^{k}\right)$. Then

$$
\sum_{H} w(H)=0 .
$$

Theorem. A homogeneous (N, W)-arc in $\operatorname{PHG}\left({ }_{R} R^{k}\right)$ has $W=0$ if and only if it is a (weighted) sum of neighbour classes of points.

Proof. Sufficiency - obvious.
Necessity. Depends on the rank of the point-by-hyperplanes incidence matrix. (L.-V., WCC, Bergen, 2013)

Corollary. A non-trivial homogeneous (N, W)-arc has $W \geq 1 / q-1$.

Families of Two-Weight Homogeneous Arcs

- s points from each point class of the projective line $\operatorname{PHG}\left(R R^{2}\right)$:
- the subgeometry $\operatorname{PG}(2, q)$ in $\operatorname{PHG}\left({ }_{R} R^{3}\right)$, where $R=\mathbb{F}_{q}[X ; \sigma] /\left(X^{2}\right)$;
- s parallel hyperplane segments with all possible directions in $\operatorname{PHG}\left({ }_{R} R^{k}\right)$; $q^{2}+q+1$ line segments in $\left.\mathrm{PHG}_{R} R^{3}\right)$ with all possible directions in the factor geometry;
- a hyperoval in $\operatorname{PHG}\left({ }_{R} R 3\right)$, where R is a chain ring of nilpotency index 2 and characteristic 4.
- a sporadic 39-arc in $\operatorname{PHG}\left(\mathbb{Z}_{9}^{3}\right)$.

