HOMOGENEOUS ARCS IN PROJECTIVE HJELMALEV SPACES

Stoyan Boev, Ivan Landjev New Bulgarian University

Chain Rings

Definition. A ring (associative, $1 \neq 0$, ring homomorphisms preserving 1) is called a **left (right) chain ring** if the lattice of its left (right) ideals forms a chain.

A. Nechaev, Mat. Sbornik 20(1973).

$$R > \operatorname{rad} R > (\operatorname{rad} R)^2 > \dots > (\operatorname{rad} R)^{m-1} > (\operatorname{rad} R)^m = (0).$$

- m the length of R;
- ullet \mathbb{F}_q the residue field of R, $q=p^s$;
- p^r the characteristic of R.

Example. (Chain Rings with q^2 Elements)

$$R: |R| = q^2, R/\operatorname{rad} R \cong \mathbb{F}_q; R > \operatorname{rad} R > (0).$$

- R. Raghavendran, Compositio Mathematica 21 (1969).
- A.Cronheim, Geom. Dedicata 7(1978).

If $q = p^s$ there exist s + 1 isomorphism classes of such rings:

 \bullet σ -dual numbers over \mathbb{F}_q , $\forall \sigma \in \operatorname{Aut} \mathbb{F}_q$: $R_{\sigma} = \mathbb{F}_q[X;\sigma]/(X^2)$.

$$(a_0 + a_1 X)(b_0 + b_1 X) = a_0 b_0 + (a_0 b_1 + a_1 \sigma(b_0)) X.$$

Also: $\mathbb{S}_q^{(i)} = \mathbb{F}_q[X;\phi^i]/(X^2)$, where $\phi: \alpha \to \alpha^p$.

• the Galois ring $\mathrm{GR}(q^2,p^2)=\mathbb{Z}_{p^2}[X]/(f(X))$, f(X) is monic of degree r, irreducible mod p.

Also: $\mathbb{T}_q = \mathrm{GR}(q^2, p^2)$.

The Homogeneous Weight

Definition. Let R be a finite ring. A mapping $w: R \to \mathbb{R}$ is called a a normalized homogenious weight if $(x,y) \mapsto w(x-y)$ is a metric on R and if the following two axioms hold:

- (1) w(x) = w(uxv) for all $x \in R$ and $u, v \in R^{\times}$.
- (2) the average weight $\frac{1}{|I|} \sum_{x \in I} w(x)$ for every left or right ideal $I \neq \{0\}$ of R is equal to one.

Theorem. (I. Constantinescu, W. Heise, 1997) A homogenious weight on the integer residue ring \mathbb{Z}_m exists if and only if m is not divisible by 6. In such case the normalized homogenious weight is unique.

The Heise-weight: the normalized homogeneous weight on $R = \mathbb{Z}_m$:

$$w_R(x) = 1 - \frac{\mu(m/d)}{\varphi(m/d)},$$

where d = gcd(x, m).

Let R be a local ring with residue field of order q. Then for all $x \in R$:

$$w_R(x) = \begin{cases} 1 & \text{if } x \notin \text{soc}(R), \\ \frac{q}{q-1} & \text{if } x \in \text{soc}(R) \setminus \{0\}, \\ 0 & \text{if } x = 0. \end{cases}$$

For chain rings R with $|R|=q^m$, $R/\operatorname{rad} R\cong \mathbb{F}_q$:

$$w_R(x) = \begin{cases} 1 & \text{if } x \in R \setminus (\operatorname{rad} R)^{m-1}, \\ \frac{q}{q-1} & \text{if } x \in (\operatorname{rad} R)^{m-1} \setminus \{0\}, \\ 0 & \text{if } x = 0. \end{cases}$$

Let R be a chain ring with $|R|=q^2$, $R/\operatorname{rad} R\cong \mathbb{F}_q$.

Definition. A code over \mathbb{F}_q is said to be linearly representable over R if it is the image of an R-linear code under the Reed-Solomon map:

$$\psi_{\mathsf{RS}} : \left\{ \begin{array}{cccc} R & \to & & \mathbb{F}_q^q \\ & & & \\ r = r_0 + r_1 \theta & \to & (r_0, r_1) \left(\begin{array}{cccc} 0 & 1 & \zeta & \dots & \zeta^{q-2} \\ 1 & 1 & 1 & \dots & 1 \end{array} \right). \end{array} \right.$$

Here ζ is a primitive element of \mathbb{F}_q , and $r_i \in \Gamma$, where Γ is a set of elements from R no two of which are congruent modulo $\operatorname{rad} R$.

$$\psi_{\mathsf{RS}}: (R, w_{\mathsf{hom}}) \longrightarrow (\mathbb{F}_q^q, \frac{1}{q-1}w_{\mathsf{Ham}}).$$

The Projective Hjelmslev Geometries $PHG(_RR^n)$

- $\bullet \ M = {}_RR^n;$
- $\mathcal{P} = \{xR \mid x \in M \setminus M\theta\};$
- $\mathcal{L} = \{xR + yR \mid x, y \text{ linearly independent}\};$
- $I \subseteq \mathcal{P} \times \mathcal{L}$ incidence relation;
- \bigcirc neighbour relation:

(N1)
$$X \bigcirc Y$$
 if $\exists s, t \in \mathcal{L} \colon X, YIs, X, YIt$;

(N2) $s \bigcirc t$ if $\forall X \ I \ s \ \exists Y \ I \ t$: $X \bigcirc Y$ and $\forall Y \ I \ t \ \exists X \ I \ s$: $Y \bigcirc X$.

Definition. The incidence structure $\Pi = (\mathcal{P}, \mathcal{L}, I)$ with neighbour relation \bigcirc is called the (left) projective Hjelmslev geometry over the chain ring R.

Notation: $PHG(_RR^k)$, PHG(k-1,R)

 \mathcal{P}' – the set of all neighbour classes on points

 \mathcal{L}' – the set of all neighbour classes on lines

 $I' \subseteq \mathcal{P}' \times \mathcal{L}'$ - incidence relation defined by

$$[P]I'[l] \Leftrightarrow \exists P_0 \in [P], \exists l_0 \in [l], P_0Il_0.$$

Theorem. $(\mathcal{P}', \mathcal{L}', I') \cong \mathrm{PG}(k-1, q)$.

$\mathrm{PHG}(\mathbb{Z}_9^3)$

A Neighbour class of lines in $PHG(\mathbb{Z}_9^3)$

Homogeneous Arcs in $PHG(_RR^n)$

For any subspace $S \subset \mathcal{P}$ define the homogenious weight of S by:

$$w(S) = \mathcal{K}(S) - \frac{1}{q-1}\mathcal{K}([S] \setminus S).$$

Definition. The mapping $\mathcal{K}:\mathcal{P} \to \mathbb{N}_0$ is called a homogeneous (N,W)-arc if

- (a) $\mathcal{K}(\mathcal{P}) = N$;
- (b) $w(H) \leq W$ for any hyperplane;
- (c) $w(H_0) = W$ for at least one hyperplane H_0 .

Definition. The mapping $\mathcal{K}:\mathcal{P}\to\mathbb{N}_0$ is called a homogeneous (N,W)-blocking set if

- (a) $\mathcal{K}(\mathcal{P}) = N$;
- (b) $w(H) \ge W$ for any hyperplane;
- (c) $w(H_0) = W$ for at least one hyperplane H_0 .

Theorem. A linearly representable q-ary code with parameters

$$(qN, q^{2k}, (q-1)(N-W))$$

exists if and only if there exists a homogeneous (N, W)-arc in $PHG(_RR^k)$.

Theorem. Let \mathcal{K} be a projective arc in Π with homogeneous weights: $w_1 \leq w_2 \leq \ldots \leq w_s$. Then the complementary arc $\overline{\mathcal{K}} := 1 - \mathcal{K}$ has homogeneous weights $-w_s \leq w_{s-1} \leq \ldots \leq -w_1$.

Corollary. If \mathcal{K} is a (N, W)-arc then $\overline{\mathcal{K}}$ is a (N, -W)-blocking set.

Homogeneous Arcs with W=0

Theorem. Let \mathcal{K} be a (N, W)-arc in $\mathrm{PHG}(_RR^k)$ Then

$$\sum_{H} w(H) = 0.$$

Theorem. A homogeneous (N, W)-arc in $PHG(_RR^k)$ has W=0 if and only if it is a (weighted) sum of neighbour classes of points.

Proof. Sufficiency – obvious.

Necessity. Depends on the rank of the point-by-hyperplanes incidence matrix. (L.-V., WCC, Bergen, 2013)

Corollary. A non-trivial homogeneous (N,W)-arc has $W \geq 1/q-1$.

Families of Two-Weight Homogeneous Arcs

- s points from each point class of the projective line $PHG(RR^2)$:
- the subgeometry PG(2,q) in $PHG({}_RR^3)$, where $R=\mathbb{F}_q[X;\sigma]/(X^2)$;
- s parallel hyperplane segments with all possible directions in $PHG(_RR^k)$; q^2+q+1 line segments in $PHG(_RR^3)$ with all possible directions in the factor geometry;
- a hyperoval in $PHG(_RR3)$, where R is a chain ring of nilpotency index 2 and characteristic 4.
- a sporadic 39-arc in $PHG(\mathbb{Z}_9^3)$.