New Class of Quasi-cyclic Goppa Codes

Sergey Bezzateev and Natalia Shekhunova

bsv@aanet.ru sna@delfa.net

Saint Petersburg University of Aerospace Instrumentation
Russia

Algebraic and Combinatorial Coding Theory
7-13 September, 2014
Svetlogorsk, Russia
Definitions and previous known results.
 - Cyclic separable Goppa codes
 - Quasi-cyclic separable Goppa codes

Generalized Goppa codes.

Cyclicity of generalized Goppa codes

Parameters

Examples.
Goppa codes of length n are determined by two objects:

- Goppa polynomial $G(x)$ of degree t with coefficients from field $GF(q^m)$,
- set $L = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$, where $\alpha_i \neq \alpha_j$, $G(\alpha_i) \neq 0$, $\alpha_i \in GF(q^m)$.

The Goppa code consists of all q-ary vectors $a = (a_1 a_2 \ldots a_n)$ such that

$$
\sum_{i=1}^{n} a_i \frac{1}{x - \alpha_i} \equiv 0 \pmod{G(x)}.
$$

The Goppa code is called **separable** if the Goppa polynomial $G(x)$ is a separable polynomial.
Cyclic code \mathbf{C}

$c \in \mathbf{C}, \ c = (c_1 c_2 \ldots c_n), \ c_i \in GF(q)$
$\sigma(c) = (c_n c_1 \ldots c_{n-1}), \ \sigma(c) \in \mathbf{C}$.

Quasi-cyclic code \mathbf{C}

$c \in \mathbf{C}, \ c = (c_1 c_2 \ldots c_n), \ c_i \in GF(q)$
$\sigma^s(c) = (c_{n-s} c_{n-s+1} \ldots c_{n-s-1}), \ \sigma^s(c) \in \mathbf{C}$.
Cyclic separable Goppa codes

Theorem (V.D. Goppa, 1970)

If \(n = q^m - 1 \), \(L = GF(q^m) \setminus \{0\} \) and such separable Goppa code is cyclic then \(G(x) = x \).

Theorem (S. Bezzateev and N. Shekhunova, 2013)

1. If \(n_1 = q^m + 1 \), \(L = \{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\} \), \(\alpha \in GF(q^{2m}) \), \(\alpha^{q^m+1} = 1 \) and \(G(x) = x^2 + rx + 1 \), \(r \in GF(q^m) \setminus \{0\} \) then we have separable reversible cyclic Goppa code.

2. If \(n_2 = q^m - 1 \), \(L = \{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\} \setminus \{\alpha^j, \alpha^{jq^m}\} \), \(1 < j < q^m \), \(\alpha \in GF(q^{2m}) \), \(\alpha^{q^m+1} = 1 \) and \(G(x) = x^2 + rx + 1 \), \(r = \alpha^j + \alpha^{jq^m} \in GF(q^m) \setminus \{0\} \) then we have separable reversible cyclic Goppa code.
Out of scope:
Cyclic codes from separable Goppa codes with $\deg G(x) = 2$

- **Cyclic extended separable Goppa codes (E.R.Berlekamp and O.Moreno (1973))**

$$H_E = \begin{bmatrix} H_{(L,G)} & 0 \\ 1 \ldots 1 & 1 \end{bmatrix}$$

- **Cyclic parity-check subcodes of Goppa codes (T.P.Berger (1999))**

$$H_{PC} = \begin{bmatrix} H_{(L,G)} \\ 1 \ldots 1 \end{bmatrix}.$$
IS IT EXISTS CYCLIC SEPARABLE GOPPA CODES
WITH GOPPA POLYNOMIAL OF DEGREE GREATER THAN TWO?
Quasi-cyclic separable Goppa codes

Transformations

- \(T(x) = ax + b, a, b \in GF(q^m), \)
- \(T(x) = \frac{x^{q^l+b}}{cx^{q^l}+d}, 0 \leq l < m, b, c, d \in GF(q^m). \)

If \(L \subseteq GF(q^m), T(L) = L, \)
and \(G(T(x)) = eG(x), e \in GF(q^m), G(x) \) — separable polynomial
then we have quasi-cyclic separable Goppa code.

Classes of quasi-cyclic separable Goppa codes are obtained and discussed by:
O.Moreno, K.Tzeng, K.Zimmermann, E.Bombieri, F.Blancheth, T.Berger,
A.Vishnevetskiy, H.Stichtenoth, S.Bezzateev, N.Shekhunova, ...
Definition (N. Shekhunova and E. Mironchikov (1981))

Generalized \((L, G)\)-code with a set \(L\) of code position numerators

\[L = \{u_1(x), u_2(x), \ldots, u_n(x)\} \], where \(u_i(x) \in \mathbb{F}_{q^m}[x]\),
and \(\deg u_i(x) \leq \tau, \gcd(u_i(x), u_j(x)) = 1, \forall i \neq j, i, j = [1, \ldots, n]\)

and Goppa polynomial \(G(x)\):

\[G(x) \in \mathbb{F}_{q^m}[x] \text{ and } \gcd(G(x), u_i(x)) = 1, \forall i = [1, \ldots, n] \]

is defined by a set of all vectors \(a = (a_1, a_2, \ldots, a_n)\) satisfying the following relation:

\[
\sum_{i=1}^{n} a_i \frac{u_i'(x)}{u_i(x)} \equiv 0 \mod G(x),
\]

where \(u_i'(x)\) is a formal derivative of polynomial \(u_i(x)\).
Estimations of redundancy r and the minimum distance d of generalized (L, G)-codes are defined by the following relations:

$$r \leq m \deg G(x), \quad d \geq \frac{\deg G(x) + 1}{\tau}.$$
Two approaches to locator set L

<table>
<thead>
<tr>
<th>Two approaches to locator set L</th>
<th>as a polynomials from $F_{q^m}[x]$</th>
<th>as an elements of $GF(q^m)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma = {g(x) \in F_{q^m}[x], \deg g(x) \leq \tau}$, $g(x)$ – irreducible polynomial</td>
<td>$\Lambda = GF(q^m)$</td>
<td></td>
</tr>
<tr>
<td>$\tau = 1$, $L = \Gamma \setminus G(x)$, $\deg G(x) = 1$. Hamming code</td>
<td>$L \subset \Lambda$, $L = GF(q^l) \subset GF(q^m)$, $l\tau = m$, $G(x) = F_{q^l}[x]$, $\deg G(x) = \tau$, $G(x)$ – irreducible polynomial. Classical irreducible Goppa code</td>
<td></td>
</tr>
<tr>
<td>$\tau > 1$, $L = {g(x) : g(x) \in \Gamma$, $\deg g(x) = 1} \subset \Gamma$, $G(x) \subset \Gamma$, $\deg G(x) = \tau$. Classical irreducible Goppa code</td>
<td>$L = \Lambda \setminus {\alpha_i : G(\alpha_i) = 0$, $\alpha_i \in \Lambda$, $i = 1, \ldots, \tau}$, $\tau = \deg G(x)}$. Classical reducible Goppa code</td>
<td></td>
</tr>
<tr>
<td>$\tau > 1$, $L = \Gamma \setminus G(x)$, $\deg G(x) = \tau$, Generalized Goppa code perfect in the weighted Hamming metric</td>
<td>$L = \Lambda \setminus {\alpha_i : G(\alpha_i) = 0$, $\alpha_i \in \Lambda$, $i = 1, \ldots, \tau}$, $\deg G(x) = \tau$, $u_j(x) = \prod_{i=1}^{\eta} (x - \alpha_{j_i})$, $\alpha_{j_i} \in L$ Generalized Goppa code with a set of code position numerators L of the maximum size of degree η</td>
<td></td>
</tr>
</tbody>
</table>
Definition

The generalized \((L,G)\)-code with a set of code position numerators \(L\) containing elements of degrees not exceeding \(\tau\) and Goppa polynomial \(G(x)\) satisfying the following equality:

\[
G(x) \prod_{i=1}^{n} u_i(x) = x^{q^\tau m} - x
\]

is called Goppa code with a set of code position numerators \(L\) of the maximum size of degree \(\tau\) or a set \(L\) of maximum size.
Cyclic and quasi-cyclic Goppa code with a set of code position numerators L of the maximum size of degree $\tau = 1$

1. Cyclic code $G(x) = x$, $L = GF(q^m) \setminus \{0\}$;
2. Quasi-cyclic code $G(x) = x^{q^m} - x$, $L = GF(q^{2m}) \setminus GF(q^m)$.
Generalized separable \((L, G)\)-codes with the set \(L\) of the maximum size of the second degree.

Proposition

Generalized separable \((L, G)\)-code with the set \(L\) of the maximum size of the second degree and the Goppa polynomial

\[
G(x) = \prod_{\alpha_i \in GF(q^m)} (x - \alpha_i) = x^{q^m} - x
\]

is a quasi-cyclic code.

This code is defined as a set of all vectors \(a = (a_1, a_2, \ldots, a_n)\) of the length \(n = I_{q^m}(2)\) satisfying the relation

\[
\sum_{i=1}^{n} a_i \frac{u'_i(x)}{u_i(x)} \equiv 0 \mod G(x),
\]

where \(u_i(x)\) are all unitary (i.e., the greatest coefficient is equal to 1) irreducible polynomials of degree 2 over \(GF(q^m)\).

\(I_{q^m}(2)\) is a number of unitary polynomials of degree 2 irreducible over \(GF(q^m)\).
Lemma

The redundancy r of the separable (L, G)-code defined by equalities

$$G(x) = \prod_{\alpha_i \in GF(q^m)} (x - \alpha_i) = x^{q^m} - x$$

and

$$\sum_{i=1}^{n} a_i \frac{u'_i(x)}{u_i(x)} \equiv 0 \mod G(x),$$

with the set L of the maximum size of the second degree satisfies the following relation:

$$r \leq m(\deg G(x) - 2) + 1 = m(q^m - 2) + 1.$$
Theorem

The minimum distance d of this (L, G)-code is defined by the following relation

$$(d - 1)2 + 1 \geq \deg G(x) + 2.$$

This relation can be rewritten as

$$d \geq \frac{\deg G(x) + 1}{2} + 1 = \frac{q^m + 1}{2} + 1.$$
Theorem

The minimum distance d of the binary generalized separable (L,G)-code with the set L of the maximum size of the second degree satisfies the following relation:

$$(d - 1)2 + 0 \geq 2 \deg G(x) + 2.$$

The inequality can be rewritten as:

$$d \geq \deg G(x) + 1 + 1 = \deg G(x) + 2.$$

Moreover, all words of this binary code have even weights.
General case for quasi-cyclic code obtaining

cycloid length $q^\ell - 1$,

$G(x) = x^{q^\ell} - x$,

$u_i(x) \in F_{q^\ell}[x], \ deg u_i(x) = \tau, d \geq \frac{q^\ell+1}{\tau}, n = I_{q^\ell}(\tau), k \geq n - \ell\tau.$
The binary generalized separable \((L, G)\)-code with the Goppa polynomial \(G(x) = x^8 - x\) and the set \(L\) of maximum size including all irreducible polynomials of the second degree from \(F_{2^3}[x]\) is a quasi-cyclic code of the cycloid length 7 and with parameters

\[
n = 28, \quad k = 9, \quad d = 10.
\]

This is the optimal binary linear code and it is considered to be a new quasi-cyclic \((28, 9, 10)\)-code.
THANK YOU!