Linear Codes associated to Determinantal Varieties

Peter Beelen¹ Sudhir R. Ghorpade² Sartaj UI Hasan³

Technical University of Denmark, Lyngby, Denmark

Indian Institute of Technology Bombay, Powai, Mumbai, India

Scientific Analysis Group, DRDO, Delhi, India

ACCT-14

Svetlogorsk (Kaliningrad region), Russia September 11, 2014

http://www.math.iitb.ac.in/~srg/

(Linear) Codes

- \mathbb{F}_q : finite field with q elements.
- $[n, k]_q$ -code: a k-dimensional subspace C of \mathbb{F}_q^n .
- C is nondegenerate if $C \not\subseteq$ coordinate hyperplane of \mathbb{F}_q^n .
- Hamming weight of $c = (c_1, \ldots, c_n) \in \mathbb{F}_q^n$:

$$w_H(c) := \#\{i : c_i \neq 0\}.$$

• Hamming weight of a subset D of \mathbb{F}_q^n :

$$w_H(D) := \#\{i : \exists c = (c_1, \ldots, c_n) \in D \text{ with } c_i \neq 0\}$$

• Minimum distance of a (linear) code C:

$$d(C):=\min\{w_H(c):c\in C,\ c\neq 0\}.$$

• The r^{th} higher weight of C $(1 \le r \le k)$:

 $d_r(C) := \min\{w_H(D) : D \text{ subspace of } C, \dim D = r\}.$

• Spectrum or the Weight distribution of a code *C*:

the sequence $(A_i)_{i\geq 0}$ where $A_i := \#\{c \in C : w_H(c) = i\}$.

A Geometric Language for Codes Projective Systems á la Tsfasman-Vlăduț

- [n, k]_q-projective system: collection *P* of n not necessarily distinct points in ℙ^{k−1};
- \mathcal{P} is nondegenerate if $\mathcal{P} \not\subseteq$ hyperplane in \mathbb{P}^{k-1} .
- Every nondegenerate [n, k]_q-code C gives rise to a nondegenerate [n, k]_q-projective system P, and vice-versa. The resulting correspondence is a bijection, up to equivalence.

In this set-up,

codeword c of $\mathcal{C} \iff$ hyperplanes H_c of $\mathbb{P}^{k-1} = \mathbb{P}(\mathcal{C}^*)$ $w_H(c) = n - \#(\mathcal{P} \cap H_c)$ $d(\mathcal{C}) = n - \max\{\#\mathcal{P} \cap H : H \text{ hyperplane of } \mathbb{P}^{k-1}\}$

and for $r = 1, \ldots, k$,

 $d_r(\mathcal{C}) = n - \max\{\#\mathcal{P} \cap E : E \text{ linear subvariety of codim } r \text{ in } \mathbb{P}^{k-1}\}.$

• Projective Reed-Muller code of order *u*:

$$\operatorname{PRM}(u,m) \longleftrightarrow \mathcal{P} = \mathbb{P}^m \hookrightarrow \mathbb{P}^{k-1} \quad \text{where} \quad k := \binom{m+u}{u}$$

and the embedding is the Veronese embedding of order u.
(Generalized) Reed-Muller code of order u and length q^m:

$$\operatorname{RM}(u,m) \longleftrightarrow \mathcal{P} = \mathbb{A}^m \subset \mathbb{P}^m \hookrightarrow \mathbb{P}^{k-1}$$

• Grassmann code

$$\mathcal{C}(\ell,m) \leadsto \mathcal{P} = \mathcal{G}_{\ell}(\mathbb{F}_q^m) \hookrightarrow \mathbb{P}^{k-1}$$
 where $k := \binom{m}{\ell}$

and the embedding is the Plücker embedding.

• Affine Grassmann code

$$\mathcal{C}^{\mathbb{A}}(\ell,m) \leadsto \mathcal{P} = \mathbb{A}^{\ell(m-\ell)} \subset \mathcal{G}_{\ell}(\mathbb{F}_q^m) \hookrightarrow \mathbb{P}^{k-1}$$

Determinantal Codes

Fix a prime power q, positive integers t, ℓ, m , and define:

- $X = (X_{ij})$: a $\ell \times m$ matrix with variable entries
- $\mathbb{F}_q[X]$: polynomial ring over \mathbb{F}_q in the ℓm variables X_{ij}
- $\mathbb{M}_{\ell \times m}(\mathbb{F}_q)$: set of all $\ell \times m$ matrices with entries in \mathbb{F}_q
- \mathcal{I}_{t+1} : ideal of $\mathbb{F}_q[X]$ generated by all (t+1) imes (t+1) minors
- \mathcal{D}_t : affine variety $\{M \in \mathbb{M}_{\ell \times m}(\mathbb{F}_q) : \operatorname{rank}(M) \leq t\}$
- $\widehat{\mathcal{D}}_t$: corresponding projective variety $\mathbb{P}(\mathcal{D}_t) \subseteq \mathbb{P}^{\ell m 1}$

The determinantal code $\widehat{C}_{det}(t; \ell, m)$ is the nondegenerate linear code corresponding to the projective system $\widehat{\mathcal{D}}_t \hookrightarrow \mathbb{P}^{\ell m - 1}(\mathbb{F}_q)$. It is closely related to the code $C_{det}(t; \ell, m) := im(Ev)$, where

$$\operatorname{Ev}: \mathbb{F}_q[X]_1 \to \mathbb{F}_q^n$$
 defined by $\operatorname{Ev}(f) = c_f := (f(M_1), \dots, f(M_n)),$

where M_1, \ldots, M_n is an ordering of \mathcal{D}_t .

Relation between $C_{det}(t; \ell, m)$ and $\widehat{C}_{det}(t; \ell, m)$

Proposition

Write $C = C_{det}(t; \ell, m)$ and $\widehat{C} = \widehat{C}_{det}(t; \ell, m)$. Let n, k, d, and A_i (resp. $\hat{n}, \hat{k}, \hat{d}$, and \hat{A}_i) denote, respectively, the length, dimension, minimum distance and the number of codewords of weight i of C (resp. \widehat{C}). Then

$$n=1+\hat{n}(q-1),\quad k=\hat{k},\quad d=\hat{d}(q-1),\quad ext{and}\quad A_{i(q-1)}=\hat{A}_{i}.$$

Moreover $A_n = 0$ and more generally, $A_j = 0$ for $0 \le j \le n$ such that $(q-1) \nmid j$. Furthermore, if for $1 \le r \le k$, we denote by d_r and $A_i^{(r)}$ (resp: \hat{d}_r and $\hat{A}_i^{(r)}$) the r^{th} higher weight and the number of r-dimensional subcodes of support weight i of C (resp. \hat{C}), then

$$d_r = (q-1)\hat{d}_r$$
 and $A_{i(q-1)}^{(r)} = \hat{A}_i^{(r)}$ for $0 \leq i \leq \hat{n}$.

Length and Dimension

The code $C_{det}(t; \ell, m)$ is degenerate, whereas $\widehat{C}_{det}(t; \ell, m)$ is nondegenerate. The length and dimension of these two codes are easily obtained. The former goes back at least to Landsberg (1893) who obtained a formula for *n*, or rather for the number $\mu_t(\ell, m)$ of matrices in $\mathbb{M}_{\ell \times m}$ of a given rank *t* in case *q* is prime.

Proposition

 $\widehat{C}_{\mathsf{det}}(t;\ell,m)$ is nondegenerate of dimension $\widehat{k}=\ell m$ and length

$$\hat{n} = \sum_{j=1}^t \hat{\mu}_j(\ell,m) \quad ext{where} \quad \hat{\mu}_j(\ell,m) = rac{\mu_j(\ell,m)}{q-1}$$

and where

$$\mu_j(\ell, m) = q^{\binom{j}{2}} \prod_{i=0}^{j-1} \frac{\left(q^{\ell-i}-1\right) \left(q^{m-i}-1\right)}{q^{i+1}-1}.$$

Some Examples

(i) $t = \ell = \min\{\ell, m\}$: Here $\widehat{C}_{det}(t; \ell, m)$ is a simplex code. So

$$\hat{n} = rac{q^{\ell m}-1}{q-1}, \quad \hat{k} = \ell m \quad ext{and} \quad \hat{d} = q^{\ell m-1}.$$

(ii) $\ell = m = t + 1$: Here $\mathcal{D}_t = \mathbb{M}_{\ell \times m} \setminus \operatorname{GL}_{\ell}(\mathbb{F}_q)$ while $\widehat{\mathcal{D}}_t$ is the hypersurface in $\mathbb{P}^{\ell^2 - 1}$ given by $\det(X) = 0$. Thus

$$\hat{d} = \hat{n} - \max_{H} |\widehat{\mathcal{D}}_t \cap H|, \quad \text{where} \quad \hat{n} = |\widehat{\mathcal{D}}_t| = \frac{q^{\ell^2} - 1}{q - 1} - q^{\binom{\ell}{2}} \prod_{i=2}^{\ell} (q^i - 1)$$

The irreducible polynomial det(X), when restricted to H gives rise to a (possibly reducible) hypersurface in $\mathbb{P}(H) \simeq \mathbb{P}^{\ell^2 - 2}$ of degree $\leq \ell$. Hence by Serre's inequality (1991)

$$|\widehat{\mathcal{D}}_t \cap H| \leq \ell q^{\ell^2 - 3} + \frac{q^{\ell^2 - 3} - 1}{q - 1}$$

Example (ii) continued

Hence we get a bound on the minimum distance of $\widehat{C}_{det}(t; \ell, \ell)$:

$$\hat{d} \geq q^{\ell^2-1} + q^{\ell^2-2} - (\ell-1)q^{\ell^2-3} - q^{\binom{\ell}{2}} \prod_{i=2}^{\ell} (q^i-1).$$

In the special case when $\ell = m = 2$ and t = 1, we find

$$|\widehat{\mathcal{D}}_t \cap H| \leq 2q+1$$
 and $\widehat{d} \geq q^2$.

The Serre bound 2q + 1 is attained if we take H to be any of the coordinate hyperplanes. Hence $d\left(\widehat{C}_{det}(1;2,2)\right) = q^2$.

Question: Determine, in general, the minimum distance and more generally, the weight distribution as well as all the higher weights of $\hat{C}_{det}(t; \ell, m)$.

Weight Distribution of Determinantal Codes

Lemma

Let $f(X) = \sum_{i=1}^{\ell} \sum_{j=1}^{m} f_{ij}X_{ij} \in \mathbb{F}_q[X]_1$ and let $F = (f_{ij})$ be the coefficient matrix of f. Then the Hamming weights of the corresponding codewords c_f of $C_{det}(t; \ell, m)$ and \hat{c}_f of $\widehat{C}_{det}(t; \ell, m)$ depend only on rank(F). In fact, $w_H(c_f) = w_H(c_{\tau_r})$ and $w_H(\hat{c}_f) = w_H(\hat{c}_{\tau_r})$, where $r = \operatorname{rank}(F)$ and $\tau_r := X_{11} + \cdots + X_{rr}$.

Weight Distribution of Determinantal Codes

Lemma

Let $f(X) = \sum_{i=1}^{\ell} \sum_{j=1}^{m} f_{ij}X_{ij} \in \mathbb{F}_q[X]_1$ and let $F = (f_{ij})$ be the coefficient matrix of f. Then the Hamming weights of the corresponding codewords c_f of $C_{det}(t; \ell, m)$ and \hat{c}_f of $\widehat{C}_{det}(t; \ell, m)$ depend only on rank(F). In fact, $w_H(c_f) = w_H(c_{\tau_r})$ and $w_H(\hat{c}_f) = w_H(\hat{c}_{\tau_r})$, where $r = \operatorname{rank}(F)$ and $\tau_r := X_{11} + \cdots + X_{rr}$.

Corollary

Each of the codes $C_{det}(t; \ell, m)$ and $\widehat{C}_{det}(t; \ell, m)$ have at most $\ell + 1$ distinct weights, w_0, w_1, \ldots, w_ℓ and $\hat{w}_0, \hat{w}_1, \ldots, \hat{w}_\ell$ respectively, given by $w_r = w_H(c_{\tau_r})$ and $\hat{w}_r = w_H(\hat{c}_{\tau_r}) = w_r/(q-1)$ for $r = 0, 1, \ldots, \ell$. Moreover, the weight enumerator polynomials A(Z) of $C_{det}(t; \ell, m)$ and $\hat{A}(Z)$ of $\widehat{C}_{det}(t; \ell, m)$ are given by $A(Z) = \sum_{r=0}^{\ell} \mu_r(\ell, m) Z^{w_r}$ and $\hat{A}(Z) = \sum_{r=0}^{\ell} \mu_r(\ell, m) Z^{\hat{w}_r}$,

-

Remark on a related work of Delsarte

The weight distribution or the spectrum is completely determined once we solve the combinatorial problem of counting the number of $\ell \times m$ matrices M over \mathbb{F}_q of rank $\leq t$ for which $\tau_r(M) \neq 0$. Delsarte (1978), using an explicit determination of the characters of the Schur ring of an association scheme corresponding to bilinear forms, solved an essentially equivalent problem of determining the number $N_t(r)$ of $M \in \mathbb{M}_{\ell \times m}(\mathbb{F}_q)$ of rank t with $\tau_r(M) \neq 0$, and showed that $N_t(r)$ is equal to

$$\frac{(q-1)}{q}\left(\mu_t(\ell,m)-\sum_{i=0}^{\ell}(-1)^{t-i}q^{im+\binom{t-i}{2}}\binom{m-i}{m-t}q^{m-i}\right),$$

Consequently, the nonzero weights of $C_{det}(t; \ell, m)$ are given by $w_r = \sum_{s=1}^{t} N_s(r)$ for $r = 1, \ldots, \ell$. However, for a fixed t (even in the simple case t = 1), it is not entirely obvious how w_1, \ldots, w_ℓ are ordered and which among them is the least.

Case of 2×2 minors

Using an elementary approach, we obtain rather easily the complete weight distribution of determinantal codes in the case t = 1:

Theorem

The nonzero weights of $\widehat{C}_{det}(1; \ell, m)$ are $\hat{w}_1, \ldots, \hat{w}_\ell$, given by

$$\hat{w}_r = \mathrm{w}_\mathrm{H}(\hat{c}_{ au_r}) = q^{\ell+m-2} + q^{\ell+m-3} + \cdots + q^{\ell+m-r-1}$$

for $r = 1, ..., \ell$. In particular, $\hat{w}_1 < \hat{w}_2 < \cdots < \hat{w}_\ell$ and the minimum distance of $\widehat{C}_{det}(1; \ell, m)$ is $q^{\ell+m-2}$.

Remark: The exponent $\ell + m - 2$ of q in the minimum distance $\widehat{C}_{det}(1; \ell, m)$ is precisely the dimension of the determinantal variety \widehat{D}_t when t = 1. Also, the relative distance $\delta = d/n$ of $\widehat{C}_{det}(1; \ell, m)$ is asymptotically equal to 1 as $q \to \infty$. On the other hand, the rate R = k/n is quite small as $q \to \infty$, but it tends to 1 as $q \to 1$.

Determination of higher weights of Determinantal Codes

The first *m* of higher weights of $\widehat{C}_{det}(1; \ell, m)$ can be found and these meet the Griesmer-Wei bound.

Theorem

For r = 1, ..., m, the r^{th} higher weight \hat{d}_r of $\hat{C}_{det}(1; \ell, m)$ meets the Griesmer-Wei bound and is given by

$$\hat{d}_r = q^{\ell+m-2} + q^{\ell+m-3} + \dots + q^{\ell+m-r-1} = q^{\ell+m-r-1} \frac{(q^r-1)}{q-1}$$

In particular, if $r \leq \ell$ and \hat{w}_r is as in Theorem 3, then $\hat{d}_r = \hat{w}_r$.

Note that the phenonmenon $d_r = w_r$ for several values of r is rather special; it is observed in the (trivial) examples of : (i) MDS codes, and (ii) simplex codes.

Determination of higher weights Contd.

Continuing with the case t = 1, we can obtain lower and upper bounds for some of the subsequent weights.

Lemma

Assume that $\ell \geq 2$. Then for $s = 1, ..., \ell - 1$, the $(m + s)^{\text{th}}$ higher weight \hat{d}_{m+s} of $\hat{C}_{det}(1; \ell, m)$ satisfies

$$\hat{d}_{m+s} \geq q^{\ell-s-1} rac{(q^{m+s}-1)}{q-1} = \hat{d}_m + q^{\ell-s-1} rac{(q^s-1)}{q-1}$$

and

$$\hat{d}_{m+s}\leq \hat{d}_m+q^{\ell+m-s-2}rac{(q^s-1)}{q-1},$$

where \hat{d}_m is as in Theorem 4. In particular,

$$\hat{d}_m + q^{\ell-2} \leq \hat{d}_{m+1} \leq \hat{d}_m + q^{\ell+m-3}$$

ъ

・ 同 ト ・ ヨ ト ・ ヨ ト

The Griesmer-Wei bound is not attained by \hat{d}_r if r > m and more work is needed to determine it.

Theorem

Assume that $\ell \geq 2$. For $1 \leq r \leq \ell m$, let \hat{d}_r denote the r^{th} higher weight of $\widehat{C}_{det}(1; \ell, m)$. Then for $r = m + 1, \dots, \ell m$,

$$egin{array}{lll} \hat{d}_r &\geq & q^{\ell+m-r-1}\left(rac{q^r-1}{q-1}+q^{r-2}-1
ight) \ &= & \hat{d}_m+q^{\ell+m-r-1}\left(rac{q^{r-m}-1}{q-1}+q^{r-2}-1
ight) \end{array}$$

Moreover, equality holds when r = m + 1 so that

$$\hat{d}_{m+1}=\hat{d}_m+q^{\ell+m-3}.$$

Idea of Proof

To optimize subspaces of with the least support weight, one has to construct subspaces of $\mathbb{F}_q[X]_1$ whose set of coefficient matrices contain as many rank 1 matrices in them as possible. In general, sums of rank 1 matrices doesn't have rank 1. Still we can ask:

Question: Can there be linear subspaces of $\mathbb{M}_{\ell \times m}$ all of whose nonzero members have rank 1? If so, what is the maximum possible dimension of such a subspace?

To optimize subspaces of with the least support weight, one has to construct subspaces of $\mathbb{F}_q[X]_1$ whose set of coefficient matrices contain as many rank 1 matrices in them as possible. In general, sums of rank 1 matrices doesn't have rank 1. Still we can ask:

Question: Can there be linear subspaces of $\mathbb{M}_{\ell \times m}$ all of whose nonzero members have rank 1? If so, what is the maximum possible dimension of such a subspace?

Theorem

Let \mathbb{F}_q be a field and let \mathcal{E} be a subspace of $\mathbb{M}_{\ell \times m}(\mathbb{F}_q)$ such that rank(M) = 1 for all nonzero $M \in \mathcal{E}$. Then the structure of \mathcal{E} can be explicitly described and in particular,

dim
$$\mathcal{E} \leq \max\{\ell, m\} = m$$
.

Going forward we try to maximize the presence of rank 1 matrices in a subspace using the following:

Lemma

Let \mathcal{D} be an r-dimensional subspace of $\mathbb{M}_{\ell \times m}(\mathbb{F}_q)$ with r > m. Then \mathcal{D} contains at most $q^{r-1} + q^2 - q - 1$ matrices of rank 1. Consequently, \mathcal{D} has at least $(q^{r-1} - q)(q - 1)$ matrices of rank ≥ 2 .

This will lead to one of the inequalities stated earlier for \hat{d}_r of $\hat{C}_{det}(1; \ell, m)$. For the other inequality, one has to use an explicit construction of a "good" subspace. Remark: In a continuation of this work, we (= Beelen and Ghorpade) have determined the minimum distance as well as the

complete weight distribution of $C_{det}(t; \ell, m)$ for an arbitrary t. The details will appear elsewhere.

Thank you!

Peter Beelen, Sudhir R. Ghorpade, Sartaj Ul Hasan Linear Codes associated to Determinantal Varieties