Linear Codes associated to Determinantal Varieties

Peter Beelen1 \quad Sudhir R. Ghorpade2 \quad Sartaj Ul Hasan3

Technical University of Denmark, Lyngby, Denmark

Indian Institute of Technology Bombay, Powai, Mumbai, India

Scientific Analysis Group, DRDO, Delhi, India

ACCT-14
Svetlogorsk (Kaliningrad region), Russia
September 11, 2014

http://www.math.iitb.ac.in/\~{}srg/
\(\mathbb{F}_q \): finite field with \(q \) elements.

\([n, k]_q \)-code: a \(k \)-dimensional subspace \(C \) of \(\mathbb{F}_q^n \).

\(C \) is nondegenerate if \(C \not\subseteq \) coordinate hyperplane of \(\mathbb{F}_q^n \).

Hamming weight of \(c = (c_1, \ldots, c_n) \in \mathbb{F}_q^n \):

\[w_H(c) := \# \{ i : c_i \neq 0 \} \]

Hamming weight of a subset \(D \) of \(\mathbb{F}_q^n \):

\[w_H(D) := \# \{ i : \exists c = (c_1, \ldots, c_n) \in D \text{ with } c_i \neq 0 \} \]

Minimum distance of a (linear) code \(C \):

\[d(C) := \min \{ w_H(c) : c \in C, \ c \neq 0 \} \]

The \(r^{th} \) higher weight of \(C \) (\(1 \leq r \leq k \)):

\[d_r(C) := \min \{ w_H(D) : D \text{ subspace of } C, \ \dim D = r \} \]

Spectrum or the Weight distribution of a code \(C \):

the sequence \((A_i)_{i \geq 0} \) where \(A_i := \# \{ c \in C : w_H(c) = i \} \).
A Geometric Language for Codes
Projective Systems á la Tsfasman-Vlăduț

- **[n, k]_q-projective system**: collection \(\mathcal{P} \) of \(n \) not necessarily distinct points in \(\mathbb{P}^{k-1} \);
- \(\mathcal{P} \) is **nondegenerate** if \(\mathcal{P} \not\subset \) hyperplane in \(\mathbb{P}^{k-1} \).
- Every nondegenerate \([n, k]_q\)-code \(C \) gives rise to a nondegenerate \([n, k]_q\)-projective system \(\mathcal{P} \), and vice-versa. The resulting correspondence is a bijection, up to equivalence.

In this set-up,

- codeword \(c \) of \(C \) \(\leftrightarrow \) hyperplanes \(H_c \) of \(\mathbb{P}^{k-1} = \mathbb{P}(C^*) \)
 \[w_H(c) = n - \#(\mathcal{P} \cap H_c) \]
 \[d(C) = n - \max\{\#\mathcal{P} \cap H : H \text{ hyperplane of } \mathbb{P}^{k-1}\} \]
 and for \(r = 1, \ldots, k \),
 \[d_r(C) = n - \max\{\#\mathcal{P} \cap E : E \text{ linear subvariety of codim } r \text{ in } \mathbb{P}^{k-1}\} \]
Some Examples of Codes as projective systems

- **Projective Reed-Muller code** of order u:

\[\text{PRM}(u, m) \hookrightarrow \mathcal{P} = \mathbb{P}^m \hookrightarrow \mathbb{P}^{k-1} \quad \text{where} \quad k := \binom{m + u}{u} \]

and the embedding is the Veronese embedding of order u.

- **(Generalized) Reed-Muller code** of order u and length q^m:

\[\text{RM}(u, m) \hookrightarrow \mathcal{P} = \mathbb{A}^m \subset \mathbb{P}^m \hookrightarrow \mathbb{P}^{k-1} \]

- **Grassmannian code**

\[C(\ell, m) \hookrightarrow \mathcal{P} = G_{\ell}(\mathbb{F}_q^m) \hookrightarrow \mathbb{P}^{k-1} \quad \text{where} \quad k := \binom{m}{\ell} \]

and the embedding is the Plücker embedding.

- **Affine Grassmannian code**

\[C^\mathbb{A}(\ell, m) \hookrightarrow \mathcal{P} = \mathbb{A}^{\ell(m-\ell)} \subset G_{\ell}(\mathbb{F}_q^m) \hookrightarrow \mathbb{P}^{k-1} \]
Determinantal Codes

Fix a prime power q, positive integers t, ℓ, m, and define:

- $X = (X_{ij})$: a $\ell \times m$ matrix with variable entries
- $\mathbb{F}_q[X]$: polynomial ring over \mathbb{F}_q in the ℓm variables X_{ij}
- $\mathbb{M}_{\ell \times m}(\mathbb{F}_q)$: set of all $\ell \times m$ matrices with entries in \mathbb{F}_q
- \mathcal{I}_{t+1}: ideal of $\mathbb{F}_q[X]$ generated by all $(t+1) \times (t+1)$ minors
- \mathcal{D}_t: affine variety $\{ M \in \mathbb{M}_{\ell \times m}(\mathbb{F}_q) : \text{rank}(M) \leq t \}$
- $\hat{\mathcal{D}}_t$: corresponding projective variety $\mathbb{P}(\mathcal{D}_t) \subseteq \mathbb{P}^{\ell m - 1}$

The determinantal code $\hat{C}_{\text{det}}(t; \ell, m)$ is the nondegenerate linear code corresponding to the projective system $\hat{\mathcal{D}}_t \hookrightarrow \mathbb{P}^{\ell m - 1}(\mathbb{F}_q)$.

It is closely related to the code $C_{\text{det}}(t; \ell, m) := \text{im} (\text{Ev})$, where

$\text{Ev} : \mathbb{F}_q[X]_1 \to \mathbb{F}_q^n$ defined by $\text{Ev}(f) = c_f := (f(M_1), \ldots, f(M_n))$, where M_1, \ldots, M_n is an ordering of \mathcal{D}_t.
Relation between $C_{\text{det}}(t; \ell, m)$ and $\hat{C}_{\text{det}}(t; \ell, m)$

Proposition

Write $C = C_{\text{det}}(t; \ell, m)$ and $\hat{C} = \hat{C}_{\text{det}}(t; \ell, m)$. Let n, k, d, and A_i (resp. \hat{n}, \hat{k}, \hat{d}, and \hat{A}_i) denote, respectively, the length, dimension, minimum distance and the number of codewords of weight i of C (resp. \hat{C}). Then

$$n = 1 + \hat{n}(q - 1), \quad k = \hat{k}, \quad d = \hat{d}(q - 1), \quad \text{and} \quad A_{i(q-1)} = \hat{A}_i.$$

Moreover $A_n = 0$ and more generally, $A_j = 0$ for $0 \leq j \leq n$ such that $(q - 1) \nmid j$. Furthermore, if for $1 \leq r \leq k$, we denote by d_r and $A_i^{(r)}$ (resp: \hat{d}_r and $\hat{A}_i^{(r)}$) the r^{th} higher weight and the number of r-dimensional subcodes of support weight i of C (resp. \hat{C}), then

$$d_r = (q - 1)\hat{d}_r \quad \text{and} \quad A_i^{(r)}_{i(q-1)} = \hat{A}_i^{(r)} \quad \text{for} \quad 0 \leq i \leq \hat{n}.$$
The code $C_{\text{det}}(t; \ell, m)$ is degenerate, whereas $\hat{C}_{\text{det}}(t; \ell, m)$ is nondegenerate. The length and dimension of these two codes are easily obtained. The former goes back at least to Landsberg (1893) who obtained a formula for n, or rather for the number $\mu_t(\ell, m)$ of matrices in $\mathbb{M}_{\ell \times m}$ of a given rank t in case q is prime.

Proposition

$\hat{C}_{\text{det}}(t; \ell, m)$ is nondegenerate of dimension $\hat{k} = \ell m$ and length

$$\hat{n} = \sum_{j=1}^{t} \hat{\mu}_j(\ell, m) \quad \text{where} \quad \hat{\mu}_j(\ell, m) = \frac{\mu_j(\ell, m)}{q - 1}$$

and where

$$\mu_j(\ell, m) = q^{\binom{j}{2}} \prod_{i=0}^{j-1} \frac{(q^{\ell-i} - 1)(q^{m-i} - 1)}{q^{i+1} - 1}.$$
Some Examples

(i) $t = \ell = \min\{\ell, m\}$: Here $\hat{C}_{\det}(t; \ell, m)$ is a simplex code. So

$$\hat{n} = \frac{q^{\ell m} - 1}{q - 1}, \quad \hat{k} = \ell m \quad \text{and} \quad \hat{d} = q^{\ell m - 1}.$$

(ii) $\ell = m = t + 1$: Here $D_t = \mathbb{M}_{\ell \times m} \setminus \text{GL}_\ell(\mathbb{F}_q)$ while \hat{D}_t is the hypersurface in $\mathbb{P}^{\ell^2 - 1}$ given by $\det(X) = 0$. Thus

$$\hat{d} = \hat{n} - \max_{H} |\hat{D}_t \cap H|,$$

where

$$\hat{n} = |\hat{D}_t| = \frac{q^{\ell^2} - 1}{q - 1} - q^{\binom{\ell}{2}} \prod_{i=2}^{\ell} (q^i - 1).$$

The irreducible polynomial $\det(X)$, when restricted to H gives rise to a (possibly reducible) hypersurface in $\mathbb{P}(H) \sim \mathbb{P}^{\ell^2 - 2}$ of degree $\leq \ell$. Hence by Serre's inequality (1991)

$$|\hat{D}_t \cap H| \leq \ell q^{\ell^2 - 3} + \frac{q^{\ell^2 - 3} - 1}{q - 1}.$$
Example (ii) continued

Hence we get a bound on the minimum distance of $\hat{C}_{\text{det}}(t; \ell, \ell)$:

$$
\hat{d} \geq q^{\ell^2-1} + q^{\ell^2-2} - (\ell - 1)q^{\ell^2-3} - q^{(\ell)} \prod_{i=2}^{\ell} (q^i - 1).
$$

In the special case when $\ell = m = 2$ and $t = 1$, we find

$$
|\hat{D}_t \cap H| \leq 2q + 1 \quad \text{and} \quad \hat{d} \geq q^2.
$$

The Serre bound $2q + 1$ is attained if we take H to be any of the coordinate hyperplanes. Hence $d\left(\hat{C}_{\text{det}}(1; 2, 2)\right) = q^2$.

Question: Determine, in general, the minimum distance and more generally, the weight distribution as well as all the higher weights of $\hat{C}_{\text{det}}(t; \ell, m)$.

Peter Beelen, Sudhir R. Ghorpade, Sartaj Ul Hasan

Linear Codes associated to Determinantal Varieties
Lemma

Let $f(X) = \sum_{i=1}^{\ell} \sum_{j=1}^{m} f_{ij} X_{ij} \in \mathbb{F}_q[X]_1$ and let $F = (f_{ij})$ be the coefficient matrix of f. Then the Hamming weights of the corresponding codewords c_f of $C_{\text{det}}(t; \ell, m)$ and \hat{c}_f of $\hat{C}_{\text{det}}(t; \ell, m)$ depend only on $\text{rank}(F)$. In fact, $w_H(c_f) = w_H(c_{\tau_r})$ and $w_H(\hat{c}_f) = w_H(\hat{c}_{\tau_r})$, where $r = \text{rank}(F)$ and $\tau_r := X_{11} + \cdots + X_{rr}$.
Lemma

Let \(f(X) = \sum_{i=1}^{\ell} \sum_{j=1}^{m} f_{ij} X_{ij} \in \mathbb{F}_q[X]_1 \) and let \(F = (f_{ij}) \) be the coefficient matrix of \(f \). Then the Hamming weights of the corresponding codewords \(c_f \) of \(C_{\text{det}}(t; \ell, m) \) and \(\hat{c}_f \) of \(\hat{C}_{\text{det}}(t; \ell, m) \) depend only on \(\text{rank}(F) \). In fact, \(w_{H}(c_f) = w_{H}(c_{\tau_r}) \) and \(w_{H}(\hat{c}_f) = w_{H}(\hat{c}_{\tau_r}) \), where \(r = \text{rank}(F) \) and \(\tau_r := X_{11} + \cdots + X_{rr} \).

Corollary

Each of the codes \(C_{\text{det}}(t; \ell, m) \) and \(\hat{C}_{\text{det}}(t; \ell, m) \) have at most \(\ell + 1 \) distinct weights, \(w_0, w_1, \ldots, w_\ell \) and \(\hat{w}_0, \hat{w}_1, \ldots, \hat{w}_\ell \) respectively, given by \(w_r = w_{H}(c_{\tau_r}) \) and \(\hat{w}_r = w_{H}(\hat{c}_{\tau_r}) = w_r/(q - 1) \) for \(r = 0, 1, \ldots, \ell \). Moreover, the weight enumerator polynomials \(A(Z) \) of \(C_{\text{det}}(t; \ell, m) \) and \(\hat{A}(Z) \) of \(\hat{C}_{\text{det}}(t; \ell, m) \) are given by

\[
A(Z) = \sum_{r=0}^{\ell} \mu_r(\ell, m)Z^{w_r} \quad \text{and} \quad \hat{A}(Z) = \sum_{r=0}^{\ell} \mu_r(\ell, m)Z^{\hat{w}_r},
\]
Remark on a related work of Delsarte

The weight distribution or the spectrum is completely determined once we solve the combinatorial problem of counting the number of $\ell \times m$ matrices M over \mathbb{F}_q of rank $\leq t$ for which $\tau_r(M) \neq 0$. Delsarte (1978), using an explicit determination of the characters of the Schur ring of an association scheme corresponding to bilinear forms, solved an essentially equivalent problem of determining the number $N_t(r)$ of $M \in \mathbb{M}_{\ell \times m}(\mathbb{F}_q)$ of rank t with $\tau_r(M) \neq 0$, and showed that $N_t(r)$ is equal to

$$
\frac{(q-1)}{q} \left(\mu_t(\ell, m) - \sum_{i=0}^{\ell} (-1)^{t-i} q^{im+(t-i)\binom{t-i}{2}} \begin{bmatrix} m-i \\ m-t \end{bmatrix}_q \begin{bmatrix} m-r \\ i \end{bmatrix}_q \right).
$$

Consequently, the nonzero weights of $C_{\text{det}}(t; \ell, m)$ are given by $w_r = \sum_{s=1}^{t} N_s(r)$ for $r = 1, \ldots, \ell$. However, for a fixed t (even in the simple case $t = 1$), it is not entirely obvious how w_1, \ldots, w_ℓ are ordered and which among them is the least.
Using an elementary approach, we obtain rather easily the complete weight distribution of determinantal codes in the case $t = 1$:

Theorem

The nonzero weights of $\hat{C}_{\text{det}}(1; \ell, m)$ are $\hat{w}_1, \ldots, \hat{w}_{\ell}$, given by

$$\hat{w}_r = w_H(\hat{c}_{\tau_r}) = q^{\ell+m-2} + q^{\ell+m-3} + \cdots + q^{\ell+m-r-1}$$

for $r = 1, \ldots, \ell$. In particular, $\hat{w}_1 < \hat{w}_2 < \cdots < \hat{w}_{\ell}$ and the minimum distance of $\hat{C}_{\text{det}}(1; \ell, m)$ is $q^{\ell+m-2}$.

Remark: The exponent $\ell + m - 2$ of q in the minimum distance $\hat{C}_{\text{det}}(1; \ell, m)$ is precisely the dimension of the determinantal variety \hat{D}_t when $t = 1$. Also, the relative distance $\delta = d/n$ of $\hat{C}_{\text{det}}(1; \ell, m)$ is asymptotically equal to 1 as $q \to \infty$. On the other hand, the rate $R = k/n$ is quite small as $q \to \infty$, but it tends to 1 as $q \to 1$.

Peter Beelen, Sudhir R. Ghorpade, Sartaj Ul Hasan

Linear Codes associated to Determinantal Varieties
The first m of higher weights of $\hat{C}_{\text{det}}(1; \ell, m)$ can be found and these meet the Griesmer-Wei bound.

Theorem

For $r = 1, \ldots, m$, the r^{th} higher weight \hat{d}_r of $\hat{C}_{\text{det}}(1; \ell, m)$ meets the Griesmer-Wei bound and is given by

$$\hat{d}_r = q^{\ell+m-2} + q^{\ell+m-3} + \ldots + q^{\ell+m-r-1} = q^{\ell+m-r-1} \frac{q^r - 1}{q - 1}.$$

In particular, if $r \leq \ell$ and \hat{w}_r is as in Theorem 3, then $\hat{d}_r = \hat{w}_r$.

Note that the phenomenon $d_r = w_r$ for several values of r is rather special; it is observed in the (trivial) examples of:

(i) MDS codes, and (ii) simplex codes.
Continuing with the case $t = 1$, we can obtain lower and upper bounds for some of the subsequent weights.

Lemma

Assume that $\ell \geq 2$. Then for $s = 1, \ldots, \ell - 1$, the $(m + s)^{th}$ higher weight \hat{d}_{m+s} of $\widehat{C}_{\text{det}}(1; \ell, m)$ satisfies

\[
\hat{d}_{m+s} \geq q^{\ell-s-1} \frac{q^{m+s} - 1}{q - 1} = \hat{d}_m + q^{\ell-s-1} \frac{q^s - 1}{q - 1}
\]

and

\[
\hat{d}_{m+s} \leq \hat{d}_m + q^{\ell+m-s-2} \frac{q^s - 1}{q - 1},
\]

where \hat{d}_m is as in Theorem 4. In particular,

\[
\hat{d}_m + q^{\ell-2} \leq \hat{d}_{m+1} \leq \hat{d}_m + q^{\ell+m-3}.
\]
The Griesmer-Wei bound is not attained by \(\hat{d}_r \) if \(r > m \) and more work is needed to determine it.

Theorem

Assume that \(\ell \geq 2 \). For \(1 \leq r \leq \ell m \), let \(\hat{d}_r \) denote the \(r \)th higher weight of \(\hat{C}_{\text{det}}(1; \ell, m) \). Then for \(r = m + 1, \ldots, \ell m \),

\[
\hat{d}_r \geq q^{\ell + m - r - 1} \left(\frac{q^r - 1}{q - 1} + q^{r - 2} - 1 \right)
\]

\[
= \hat{d}_m + q^{\ell + m - r - 1} \left(\frac{q^{r - m} - 1}{q - 1} + q^{r - 2} - 1 \right),
\]

Moreover, equality holds when \(r = m + 1 \) so that

\[
\hat{d}_{m+1} = \hat{d}_m + q^{\ell + m - 3}.
\]
Idea of Proof

To optimize subspaces of with the least support weight, one has to construct subspaces of $\mathbb{F}_q[X]_1$ whose set of coefficient matrices contain as many rank 1 matrices in them as possible. In general, sums of rank 1 matrices doesn’t have rank 1. Still we can ask:

Question: Can there be linear subspaces of $\mathbb{M}_{\ell \times m}$ all of whose nonzero members have rank 1? If so, what is the maximum possible dimension of such a subspace?
Idea of Proof

To optimize subspaces of with the least support weight, one has to construct subspaces of $\mathbb{F}_q[X]_1$ whose set of coefficient matrices contain as many rank 1 matrices in them as possible. In general, sums of rank 1 matrices doesn’t have rank 1. Still we can ask:

Question: Can there be linear subspaces of $\mathbb{M}_{\ell \times m}$ all of whose nonzero members have rank 1? If so, what is the maximum possible dimension of such a subspace?

Theorem

Let \mathbb{F}_q be a field and let \mathcal{E} be a subspace of $\mathbb{M}_{\ell \times m}(\mathbb{F}_q)$ such that $\text{rank}(M) = 1$ for all nonzero $M \in \mathcal{E}$. Then the structure of \mathcal{E} can be explicitly described and in particular,

$$ \dim \mathcal{E} \leq \max\{\ell, m\} = m. $$
Going forward we try to maximize the presence of rank 1 matrices in a subspace using the following:

Lemma

Let D be an r-dimensional subspace of $\mathbb{M}_{\ell \times m}(\mathbb{F}_q)$ with $r > m$. Then D contains at most $q^{r-1} + q^2 - q - 1$ matrices of rank 1. Consequently, D has at least $(q^{r-1} - q)(q - 1)$ matrices of rank ≥ 2.

This will lead to one of the inequalities stated earlier for \hat{d}_r of $\hat{C}_{\text{det}}(1; \ell, m)$. For the other inequality, one has to use an explicit construction of a “good” subspace.

Remark: In a continuation of this work, we (= Beelen and Ghorpade) have determined the minimum distance as well as the complete weight distribution of $\hat{C}_{\text{det}}(t; \ell, m)$ for an arbitrary t. The details will appear elsewhere.
Thank you!