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(Linear) Codes

Fq : finite field with q elements.
[n, k]q-code: a k-dimensional subspace C of Fn

q.
C is nondegenerate if C 6⊆ coordinate hyperplane of Fn

q.
Hamming weight of c = (c1, . . . , cn) ∈ Fn

q:

wH(c) := #{i : ci 6= 0}.
Hamming weight of a subset D of Fn

q:

wH(D) := #{i : ∃ c = (c1, . . . , cn) ∈ D with ci 6= 0}.
Minimum distance of a (linear) code C :

d(C ) := min{wH(c) : c ∈ C , c 6= 0}.
The r th higher weight of C (1 ≤ r ≤ k):

dr (C ) := min{wH(D) : D subspace of C , dim D = r}.
Spectrum or the Weight distribution of a code C :

the sequence (Ai )i≥0 where Ai := #{c ∈ C : wH(c) = i}.
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A Geometric Language for Codes
Projective Systems á la Tsfasman-Vlăduţ

[n, k]q-projective system: collection P of n not necessarily
distinct points in Pk−1;

P is nondegenerate if P 6⊆hyperplane in Pk−1.

Every nondegenerate [n, k]q-code C gives rise to a
nondegenerate [n, k]q-projective system P, and vice-versa.
The resulting correspondence is a bijection, up to equivalence.

In this set-up,

codeword c of C! hyperplanes Hc of Pk−1 = P(C∗)

wH(c) = n −#(P ∩ Hc)

d(C) = n −max{#P ∩ H : H hyperplane of Pk−1}

and for r = 1, . . . , k ,

dr (C) = n−max{#P∩E : E linear subvariety of codim r in Pk−1}.
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Some Examples of Codes
as projective systems

Projective Reed-Muller code of order u:

PRM(u,m) ! P = Pm ↪→ Pk−1 where k :=

(
m + u

u

)
and the embedding is the Veronese embedding of order u.

(Generalized) Reed-Muller code of order u and length qm:

RM(u,m) ! P = Am ⊂ Pm ↪→ Pk−1

Grassmann code

C (`,m) ! P = G`(Fm
q ) ↪→ Pk−1 where k :=

(
m

`

)
and the embedding is the Plücker embedding.

Affine Grassmann code

CA(`,m) ! P = A`(m−`) ⊂ G`(Fm
q ) ↪→ Pk−1
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Determinantal Codes

Fix a prime power q, positive integers t, `,m, and define:

X = (Xij) : a `×m matrix with variable entries

Fq[X ] : polynomial ring over Fq in the `m variables Xij

M`×m(Fq) : set of all `×m matrices with entries in Fq

It+1 : ideal of Fq[X ] generated by all (t + 1)× (t + 1) minors

Dt : affine variety {M ∈M`×m(Fq) : rank(M) ≤ t}
D̂t : corresponding projective variety P(Dt) ⊆ P`m−1

The determinantal code Ĉdet(t; `,m) is the nondegenerate linear
code corresponding to the projective system D̂t ↪→ P`m−1(Fq).
It is closely related to the code Cdet(t; `,m) := im(Ev), where

Ev : Fq[X ]1 → Fn
q defined by Ev(f ) = cf := (f (M1), . . . , f (Mn)) ,

where M1, . . . ,Mn is an ordering of Dt .
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Relation between Cdet(t; `,m) and Ĉdet(t; `,m)

Proposition

Write C = Cdet(t; `,m) and Ĉ = Ĉdet(t; `,m). Let n, k, d, and Ai

(resp. n̂, k̂, d̂ , and Âi ) denote, respectively, the length, dimension,
minimum distance and the number of codewords of weight i of C
(resp. Ĉ ). Then

n = 1 + n̂(q − 1), k = k̂ , d = d̂(q − 1), and Ai(q−1) = Âi .

Moreover An = 0 and more generally, Aj = 0 for 0 ≤ j ≤ n such
that (q − 1) - j . Furthermore, if for 1 ≤ r ≤ k, we denote by dr

and A
(r)
i (resp: d̂r and Â

(r)
i ) the r th higher weight and the number

of r -dimensional subcodes of support weight i of C (resp. Ĉ ), then

dr = (q − 1)d̂r and A
(r)
i(q−1) = Â

(r)
i for 0 ≤ i ≤ n̂.
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Length and Dimension

The code Cdet(t; `,m) is degenerate, whereas Ĉdet(t; `,m) is
nondegenerate. The length and dimension of these two codes are
easily obtained. The former goes back at least to Landsberg
(1893) who obtained a formula for n, or rather for the number
µt(`,m) of matrices in M`×m of a given rank t in case q is prime.

Proposition

Ĉdet(t; `,m) is nondegenerate of dimension k̂ = `m and length

n̂ =
t∑

j=1

µ̂j(`,m) where µ̂j(`,m) =
µj(`,m)

q − 1

and where

µj(`,m) = q(j
2)

j−1∏
i=0

(
q`−i − 1

) (
qm−i − 1

)
qi+1 − 1

.
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Some Examples

(i) t = ` = min{`,m} : Here Ĉdet(t; `,m) is a simplex code. So

n̂ =
q`m − 1

q − 1
, k̂ = `m and d̂ = q`m−1.

(ii) ` = m = t + 1 : Here Dt = M`×m \GL`(Fq) while D̂t is the

hypersurface in P`2−1 given by det(X ) = 0. Thus

d̂ = n̂ −max
H
|D̂t ∩ H|, where n̂ = |D̂t | =

q`
2 − 1

q − 1
−q(`2)

∏̀
i=2

(qi−1)

The irreducible polynomial det(X ), when restricted to H gives rise
to a (possibly reducible) hypersurface in P(H) ' P`2−2 of degree
≤ `. Hence by Serre’s inequality (1991)

|D̂t ∩ H| ≤ `q`2−3 +
q`

2−3 − 1

q − 1
.
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Example (ii) continued

Hence we get a bound on the minimum distance of Ĉdet(t; `, `):

d̂ ≥ q`
2−1 + q`

2−2 − (`− 1)q`
2−3 − q(`2)

∏̀
i=2

(qi − 1).

In the special case when ` = m = 2 and t = 1, we find

|D̂t ∩ H| ≤ 2q + 1 and d̂ ≥ q2.

The Serre bound 2q + 1 is attained if we take H to be any of the

coordinate hyperplanes. Hence d
(

Ĉdet(1; 2, 2)
)

= q2.

Question: Determine, in general, the minimum distance and more
generally, the weight distribution as well as all the higher weights
of Ĉdet(t; `,m).
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Weight Distribution of Determinantal Codes

Lemma

Let f (X ) =
∑`

i=1

∑m
j=1 fijXij ∈ Fq[X ]1 and let F = (fij) be the

coefficient matrix of f . Then the Hamming weights of the
corresponding codewords cf of Cdet(t; `,m) and ĉf of Ĉdet(t; `,m)
depend only on rank(F ). In fact, wH(cf ) = wH(cτr ) and
wH(ĉf ) = wH(ĉτr ), where r = rank(F ) and τr := X11 + · · ·+ Xrr .

Corollary

Each of the codes Cdet(t; `,m) and Ĉdet(t; `,m) have at most `+ 1
distinct weights, w0,w1, . . . ,w` and ŵ0, ŵ1, . . . , ŵ` respectively,
given by wr = wH(cτr ) and ŵr = wH(ĉτr ) = wr/(q − 1) for
r = 0, 1, . . . , `. Moreover, the weight enumerator polynomials
A(Z ) of Cdet(t; `,m) and Â(Z ) of Ĉdet(t; `,m) are given by

A(Z ) =
∑`

r=0 µr (`,m)Zwr and Â(Z ) =
∑`

r=0 µr (`,m)Z ŵr ,
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distinct weights, w0,w1, . . . ,w` and ŵ0, ŵ1, . . . , ŵ` respectively,
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Peter Beelen, Sudhir R. Ghorpade, Sartaj Ul Hasan Linear Codes associated to Determinantal Varieties



Remark on a related work of Delsarte

The weight distribution or the spectrum is completely determined
once we solve the combinatorial problem of counting the number
of `×m matrices M over Fq of rank ≤ t for which τr (M) 6= 0.
Delsarte (1978), using an explicit determination of the characters
of the Schur ring of an association scheme corresponding to
bilinear forms, solved an essentially equivalent problem of
determining the number Nt(r) of M ∈M`×m(Fq) of rank t with
τr (M) 6= 0, and showed that Nt(r) is equal to

(q − 1)

q

(
µt(`,m)−

∑̀
i=0

(−1)t−iqim+(t−i
2 )
[

m − i

m − t

]
q

[
m − r

i

]
q

)
, .

Consequently, the nonzero weights of Cdet(t; `,m) are given by
wr =

∑t
s=1 Ns(r) for r = 1, . . . , `. However, for a fixed t (even in

the simple case t = 1), it is not entirely obvious how w1, . . . ,w`
are ordered and which among them is the least.
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Case of 2× 2 minors

Using an elementary approach, we obtain rather easily the complete
weight distribution of determinantal codes in the case t = 1:

Theorem

The nonzero weights of Ĉdet(1; `,m) are ŵ1, . . . , ŵ`, given by

ŵr = wH(ĉτr ) = q`+m−2 + q`+m−3 + · · ·+ q`+m−r−1

for r = 1, . . . , `. In particular, ŵ1 < ŵ2 < · · · < ŵ` and the
minimum distance of Ĉdet(1; `,m) is q`+m−2.

Remark: The exponent `+ m − 2 of q in the minimum distance
Ĉdet(1; `,m) is precisely the dimension of the determinantal variety
D̂t when t = 1. Also, the relative distance δ = d/n of Ĉdet(1; `,m)
is asymptotically equal to 1 as q →∞. On the other hand, the
rate R = k/n is quite small as q →∞, but it tends to 1 as q → 1.
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Determination of higher weights of Determinantal Codes

The first m of higher weights of Ĉdet(1; `,m) can be found and
these meet the Griesmer-Wei bound.

Theorem

For r = 1, . . . ,m, the r th higher weight d̂r of Ĉdet(1; `,m) meets
the Griesmer-Wei bound and is given by

d̂r = q`+m−2 + q`+m−3 + · · ·+ q`+m−r−1 = q`+m−r−1 (qr − 1)

q − 1
.

In particular, if r ≤ ` and ŵr is as in Theorem 3, then d̂r = ŵr .

Note that the phenonmenon dr = wr for several values of r is
rather special; it is observed in the (trivial) examples of :
(i) MDS codes, and (ii) simplex codes.
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Determination of higher weights Contd.

Continuing with the case t = 1, we can obtain lower and upper
bounds for some of the subsequent weights.

Lemma

Assume that ` ≥ 2. Then for s = 1, . . . , `− 1, the (m + s)th

higher weight d̂m+s of Ĉdet(1; `,m) satisfies

d̂m+s ≥ q`−s−1 (qm+s − 1)

q − 1
= d̂m + q`−s−1 (qs − 1)

q − 1

and

d̂m+s ≤ d̂m + q`+m−s−2 (qs − 1)

q − 1
,

where d̂m is as in Theorem 4. In particular,

d̂m + q`−2 ≤ d̂m+1 ≤ d̂m + q`+m−3.
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Pushing things one step further

The Griesmer-Wei bound is not attained by d̂r if r > m and more
work is needed to determine it.

Theorem

Assume that ` ≥ 2. For 1 ≤ r ≤ `m, let d̂r denote the r th higher
weight of Ĉdet(1; `,m). Then for r = m + 1, . . . , `m,

d̂r ≥ q`+m−r−1

(
qr − 1

q − 1
+ qr−2 − 1

)
= d̂m + q`+m−r−1

(
qr−m − 1

q − 1
+ qr−2 − 1

)
,

Moreover, equality holds when r = m + 1 so that

d̂m+1 = d̂m + q`+m−3.
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Idea of Proof

To optimize subspaces of with the least support weight, one has to
construct subspaces of Fq[X ]1 whose set of coefficient matrices
contain as many rank 1 matrices in them as possible. In general,
sums of rank 1 matrices doesn’t have rank 1. Still we can ask:

Question: Can there be linear subspaces of M`×m all of whose
nonzero members have rank 1? If so, what is the maximum
possible dimension of such a subspace?

Theorem

Let Fq be a field and let E be a subspace of M`×m(Fq) such that
rank(M) = 1 for all nonzero M ∈ E. Then the structure of E can
be explicitly described and in particular,

dimE ≤ max{`,m} = m.
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Idea of Proof Contd.

Going forward we try to maximize the presence of rank 1 matrices
in a subspace using the following:

Lemma

Let D be an r-dimensional subspace of M`×m(Fq) with r > m.
Then D contains at most qr−1 + q2 − q − 1 matrices of rank 1.
Consequently, D has at least

(
qr−1 − q

)
(q − 1) matrices of rank

≥ 2.

This will lead to one of the inequalities stated earlier for d̂r of
Ĉdet(1; `,m) . For the other inequality, one has to use an explicit
construction of a “good” subspace.
Remark: In a continuation of this work, we (= Beelen and
Ghorpade) have determined the minimum distance as well as the
complete weight distribution of Ĉdet(t; `,m) for an arbitrary t. The
details will appear elsewhere.
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Thank you!
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