Linear Codes associated to Determinantal Varieties

Peter Beelen ${ }^{1}$ Sudhir R. Ghorpade ${ }^{2}$ Sartaj UI Hasan ${ }^{3}$

Technical University of Denmark, Lyngby, Denmark
Indian Institute of Technology Bombay, Powai, Mumbai, India
Scientific Analysis Group, DRDO, Delhi, India
ACCT-14

Svetlogorsk (Kaliningrad region), Russia September 11, 2014
http://www.math.iitb.ac.in/~srg/

(Linear) Codes

- \mathbb{F}_{q} : finite field with q elements.
- $[n, k]_{q}$-code: a k-dimensional subspace C of \mathbb{F}_{q}^{n}.
- C is nondegenerate if $C \nsubseteq$ coordinate hyperplane of \mathbb{F}_{q}^{n}.
- Hamming weight of $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{F}_{q}^{n}$:

$$
w_{H}(c):=\#\left\{i: c_{i} \neq 0\right\} .
$$

- Hamming weight of a subset D of \mathbb{F}_{q}^{n} :

$$
w_{H}(D):=\#\left\{i: \exists c=\left(c_{1}, \ldots, c_{n}\right) \in D \text { with } c_{i} \neq 0\right\} .
$$

- Minimum distance of a (linear) code C :

$$
d(C):=\min \left\{w_{H}(c): c \in C, c \neq 0\right\} .
$$

- The $r^{\text {th }}$ higher weight of $C(1 \leq r \leq k)$:

$$
d_{r}(C):=\min \left\{w_{H}(D): D \text { subspace of } C, \operatorname{dim} D=r\right\}
$$

- Spectrum or the Weight distribution of a code C : the sequence $\left(A_{i}\right)_{i \geq 0}$ where $A_{i}:=\#\left\{c \in C: w_{H}(c)=i\right\}$.

A Geometric Language for Codes
 Projective Systems á la Tsfasman-Vlăduţ

- $[n, k]_{q^{-}}$-projective system: collection \mathcal{P} of n not necessarily distinct points in \mathbb{P}^{k-1};
- \mathcal{P} is nondegenerate if $\mathcal{P} \nsubseteq$ hyperplane in \mathbb{P}^{k-1}.
- Every nondegenerate $[n, k]_{q}$-code \mathcal{C} gives rise to a nondegenerate $[n, k]_{q}$-projective system \mathcal{P}, and vice-versa. The resulting correspondence is a bijection, up to equivalence.
In this set-up,

$$
\begin{aligned}
& \text { codeword } c \text { of } \mathcal{C} \text { hyperplanes } H_{c} \text { of } \mathbb{P}^{k-1}=\mathbb{P}\left(\mathcal{C}^{*}\right) \\
& w_{H}(c)=n-\#\left(\mathcal{P} \cap H_{c}\right) \\
& d(\mathcal{C})=n-\max \left\{\# \mathcal{P} \cap H: H \text { hyperplane of } \mathbb{P}^{k-1}\right\}
\end{aligned}
$$

and for $r=1, \ldots, k$,
$d_{r}(\mathcal{C})=n-\max \left\{\# \mathcal{P} \cap E: E\right.$ linear subvariety of codim r in $\left.\mathbb{P}^{k-1}\right\}$.

Some Examples of Codes

as projective systems

- Projective Reed-Muller code of order u :

$$
\operatorname{PRM}(u, m) \leftrightarrow \mathcal{P}=\mathbb{P}^{m} \hookrightarrow \mathbb{P}^{k-1} \quad \text { where } \quad k:=\binom{m+u}{u}
$$

and the embedding is the Veronese embedding of order u.

- (Generalized) Reed-Muller code of order u and length q^{m} :

$$
\mathrm{RM}(u, m) \longleftrightarrow \mathcal{P}=\mathbb{A}^{m} \subset \mathbb{P}^{m} \hookrightarrow \mathbb{P}^{k-1}
$$

- Grassmann code

$$
C(\ell, m) \longleftrightarrow \leadsto \mathcal{P}=G_{\ell}\left(\mathbb{F}_{q}^{m}\right) \hookrightarrow \mathbb{P}^{k-1} \quad \text { where } \quad k:=\binom{m}{\ell}
$$

and the embedding is the Plücker embedding.

- Affine Grassmann code

$$
C^{\mathbb{A}}(\ell, m) \leftrightarrow \mathcal{P}=\mathbb{A}^{\ell(m-\ell)} \subset G_{\ell}\left(\mathbb{F}_{q}^{m}\right) \hookrightarrow \mathbb{P}^{k-1}
$$

Determinantal Codes

Fix a prime power q, positive integers t, ℓ, m, and define:

- $X=\left(X_{i j}\right):$ a $\ell \times m$ matrix with variable entries
- $\mathbb{F}_{q}[X]$: polynomial ring over \mathbb{F}_{q} in the ℓm variables $X_{i j}$
- $\mathbb{M}_{\ell \times m}\left(\mathbb{F}_{q}\right)$: set of all $\ell \times m$ matrices with entries in \mathbb{F}_{q}
- \mathcal{I}_{t+1} : ideal of $\mathbb{F}_{q}[X]$ generated by all $(t+1) \times(t+1)$ minors
- \mathcal{D}_{t} : affine variety $\left\{M \in \mathbb{M}_{\ell \times m}\left(\mathbb{F}_{q}\right): \operatorname{rank}(M) \leq t\right\}$
- $\widehat{\mathcal{D}}_{t}$: corresponding projective variety $\mathbb{P}\left(\mathcal{D}_{t}\right) \subseteq \mathbb{P}^{\ell m-1}$

The determinantal code $\widehat{C}_{\text {det }}(t ; \ell, m)$ is the nondegenerate linear code corresponding to the projective system $\widehat{\mathcal{D}}_{t} \hookrightarrow \mathbb{P}^{\ell m-1}\left(\mathbb{F}_{q}\right)$. It is closely related to the code $C_{\text {det }}(t ; \ell, m):=\operatorname{im}(\mathrm{Ev})$, where
$\operatorname{Ev}: \mathbb{F}_{q}[X]_{1} \rightarrow \mathbb{F}_{q}^{n} \quad$ defined by $\operatorname{Ev}(f)=c_{f}:=\left(f\left(M_{1}\right), \ldots, f\left(M_{n}\right)\right)$, where M_{1}, \ldots, M_{n} is an ordering of \mathcal{D}_{t}.

Relation between $C_{\text {det }}(t ; \ell, m)$ and $C_{\operatorname{det}}(t ; \ell, m)$

Proposition

Write $C=C_{\text {det }}(t ; \ell, m)$ and $\widehat{C}=\widehat{C}_{\text {det }}(t ; \ell, m)$. Let n, k, d, and A_{i} (resp. $\hat{n}, \hat{k}, \hat{d}$, and \hat{A}_{i}) denote, respectively, the length, dimension, minimum distance and the number of codewords of weight i of C (resp. \widehat{C}). Then

$$
n=1+\hat{n}(q-1), \quad k=\hat{k}, \quad d=\hat{d}(q-1), \quad \text { and } \quad A_{i(q-1)}=\hat{A}_{i} .
$$

Moreover $A_{n}=0$ and more generally, $A_{j}=0$ for $0 \leq j \leq n$ such that $(q-1) \nmid j$. Furthermore, if for $1 \leq r \leq k$, we denote by d_{r} and $A_{i}^{(r)}$ (resp: \hat{d}_{r} and $\left.\hat{A}_{i}^{(r)}\right)$ the $r^{\text {th }}$ higher weight and the number of r-dimensional subcodes of support weight i of C (resp. \widehat{C}), then

$$
d_{r}=(q-1) \hat{d}_{r} \quad \text { and } \quad A_{i(q-1)}^{(r)}=\hat{A}_{i}^{(r)} \text { for } 0 \leq i \leq \hat{n} .
$$

Length and Dimension

The code $C_{\text {det }}(t ; \ell, m)$ is degenerate, whereas $\widehat{C}_{\text {det }}(t ; \ell, m)$ is nondegenerate. The length and dimension of these two codes are easily obtained. The former goes back at least to Landsberg (1893) who obtained a formula for n, or rather for the number $\mu_{t}(\ell, m)$ of matrices in $\mathbb{M}_{\ell \times m}$ of a given rank t in case q is prime.

Proposition

$\widehat{C}_{\text {det }}(t ; \ell, m)$ is nondegenerate of dimension $\hat{k}=\ell m$ and length

$$
\hat{n}=\sum_{j=1}^{t} \hat{\mu}_{j}(\ell, m) \quad \text { where } \quad \hat{\mu}_{j}(\ell, m)=\frac{\mu_{j}(\ell, m)}{q-1}
$$

and where

$$
\mu_{j}(\ell, m)=q^{\binom{j}{2}} \prod_{i=0}^{j-1} \frac{\left(q^{\ell-i}-1\right)\left(q^{m-i}-1\right)}{q^{i+1}-1}
$$

Some Examples

(i) $t=\ell=\min \{\ell, m\}:$ Here $\widehat{C}_{\text {det }}(t ; \ell, m)$ is a simplex code. So

$$
\hat{n}=\frac{q^{\ell m}-1}{q-1}, \quad \hat{k}=\ell m \quad \text { and } \quad \hat{d}=q^{\ell m-1}
$$

(ii) $\ell=m=t+1$: Here $\mathcal{D}_{t}=\mathbb{M}_{\ell \times m} \backslash \mathrm{GL}_{\ell}\left(\mathbb{F}_{q}\right)$ while $\widehat{\mathcal{D}}_{t}$ is the hypersurface in $\mathbb{P}^{\ell^{2}-1}$ given by $\operatorname{det}(X)=0$. Thus
$\hat{d}=\hat{n}-\max _{H}\left|\widehat{\mathcal{D}}_{t} \cap H\right|, \quad$ where $\quad \hat{n}=\left|\widehat{\mathcal{D}}_{t}\right|=\frac{q^{\ell^{2}}-1}{q-1}-q^{\binom{\ell}{2}} \prod_{i=2}^{\ell}\left(q^{i}-1\right)$
The irreducible polynomial $\operatorname{det}(X)$, when restricted to H gives rise to a (possibly reducible) hypersurface in $\mathbb{P}(H) \simeq \mathbb{P}^{\ell^{2}-2}$ of degree $\leq \ell$. Hence by Serre's inequality (1991)

$$
\left|\widehat{\mathcal{D}}_{t} \cap H\right| \leq \ell q^{\ell^{2}-3}+\frac{q^{\ell^{2}-3}-1}{q-1}
$$

Example (ii) continued

Hence we get a bound on the minimum distance of $\widehat{C}_{\text {det }}(t ; \ell, \ell)$:

$$
\hat{d} \geq q^{\ell^{2}-1}+q^{\ell^{2}-2}-(\ell-1) q^{\ell^{2}-3}-q^{\binom{\ell}{2}} \prod_{i=2}^{\ell}\left(q^{i}-1\right)
$$

In the special case when $\ell=m=2$ and $t=1$, we find

$$
\left|\widehat{\mathcal{D}}_{t} \cap H\right| \leq 2 q+1 \quad \text { and } \quad \hat{d} \geq q^{2}
$$

The Serre bound $2 q+1$ is attained if we take H to be any of the coordinate hyperplanes. Hence $d\left(\widehat{\mathcal{C}}_{\text {det }}(1 ; 2,2)\right)=q^{2}$.
Question: Determine, in general, the minimum distance and more generally, the weight distribution as well as all the higher weights of $\widehat{C}_{\text {det }}(t ; \ell, m)$.

Weight Distribution of Determinantal Codes

Lemma

Let $f(X)=\sum_{i=1}^{\ell} \sum_{j=1}^{m} f_{i j} X_{i j} \in \mathbb{F}_{q}[X]_{1}$ and let $F=\left(f_{i j}\right)$ be the coefficient matrix of f. Then the Hamming weights of the corresponding codewords c_{f} of $C_{\text {det }}(t ; \ell, m)$ and \hat{c}_{f} of $\widehat{C}_{\text {det }}(t ; \ell, m)$ depend only on rank (F). In fact, $\mathrm{w}_{\mathrm{H}}\left(c_{f}\right)=\mathrm{w}_{\mathrm{H}}\left(c_{\tau_{r}}\right)$ and $\mathrm{w}_{\mathrm{H}}\left(\hat{c}_{f}\right)=\mathrm{w}_{\mathrm{H}}\left(\hat{c}_{\tau_{r}}\right)$, where $r=\operatorname{rank}(F)$ and $\tau_{r}:=X_{11}+\cdots+X_{r r}$.

Weight Distribution of Determinantal Codes

Lemma

Let $f(X)=\sum_{i=1}^{\ell} \sum_{j=1}^{m} f_{i j} X_{i j} \in \mathbb{F}_{q}[X]_{1}$ and let $F=\left(f_{i j}\right)$ be the coefficient matrix of f. Then the Hamming weights of the corresponding codewords c_{f} of $C_{\text {det }}(t ; \ell, m)$ and \hat{c}_{f} of $\widehat{C}_{\text {det }}(t ; \ell, m)$ depend only on rank (F). In fact, $\mathrm{w}_{\mathrm{H}}\left(c_{f}\right)=\mathrm{w}_{\mathrm{H}}\left(c_{\tau_{r}}\right)$ and $\mathrm{w}_{\mathrm{H}}\left(\hat{c}_{f}\right)=\mathrm{w}_{\mathrm{H}}\left(\hat{c}_{\tau_{r}}\right)$, where $r=\operatorname{rank}(F)$ and $\tau_{r}:=X_{11}+\cdots+X_{r r}$.

Corollary

Each of the codes $C_{\text {det }}(t ; \ell, m)$ and $\widehat{C}_{\text {det }}(t ; \ell, m)$ have at most $\ell+1$ distinct weights, $w_{0}, w_{1}, \ldots, w_{\ell}$ and $\hat{w}_{0}, \hat{w}_{1}, \ldots, \hat{w}_{\ell}$ respectively, given by $w_{r}=\mathrm{w}_{\mathrm{H}}\left(c_{\tau_{r}}\right)$ and $\hat{w}_{r}=\mathrm{w}_{\mathrm{H}}\left(\hat{c}_{\tau_{r}}\right)=w_{r} /(q-1)$ for $r=0,1, \ldots, \ell$. Moreover, the weight enumerator polynomials $A(Z)$ of $C_{\text {det }}(t ; \ell, m)$ and $\hat{A}(Z)$ of $\widehat{C}_{\text {det }}(t ; \ell, m)$ are given by

$$
A(Z)=\sum_{r=0}^{\ell} \mu_{r}(\ell, m) Z^{w_{r}} \quad \text { and } \quad \hat{A}(Z)=\sum_{r=0}^{\ell} \mu_{r}(\ell, m) Z^{\hat{w}_{r}}
$$

Remark on a related work of Delsarte

The weight distribution or the spectrum is completely determined once we solve the combinatorial problem of counting the number of $\ell \times m$ matrices M over \mathbb{F}_{q} of rank $\leq t$ for which $\tau_{r}(M) \neq 0$. Delsarte (1978), using an explicit determination of the characters of the Schur ring of an association scheme corresponding to bilinear forms, solved an essentially equivalent problem of determining the number $N_{t}(r)$ of $M \in \mathbb{M}_{\ell \times m}\left(\mathbb{F}_{q}\right)$ of rank t with $\tau_{r}(M) \neq 0$, and showed that $N_{t}(r)$ is equal to

$$
\frac{(q-1)}{q}\left(\mu_{t}(\ell, m)-\sum_{i=0}^{\ell}(-1)^{t-i} q^{i m+\binom{t-i}{2}}\left[\begin{array}{c}
m-i \\
m-t
\end{array}\right]_{q}\left[\begin{array}{c}
m-r \\
i
\end{array}\right]_{q}\right), .
$$

Consequently, the nonzero weights of $C_{\mathrm{det}}(t ; \ell, m)$ are given by $w_{r}=\sum_{s=1}^{t} N_{s}(r)$ for $r=1, \ldots, \ell$. However, for a fixed t (even in the simple case $t=1$), it is not entirely obvious how w_{1}, \ldots, w_{ℓ} are ordered and which among them is the least.

Case of 2×2 minors

Using an elementary approach, we obtain rather easily the complete weight distribution of determinantal codes in the case $t=1$:

Theorem

The nonzero weights of $\widehat{C}_{\operatorname{det}}(1 ; \ell, m)$ are $\hat{w}_{1}, \ldots, \hat{w}_{\ell}$, given by

$$
\hat{w}_{r}=\mathrm{w}_{\mathrm{H}}\left(\hat{c}_{\tau_{r}}\right)=q^{\ell+m-2}+q^{\ell+m-3}+\cdots+q^{\ell+m-r-1}
$$

for $r=1, \ldots, \ell$. In particular, $\hat{w}_{1}<\hat{w}_{2}<\cdots<\hat{w}_{\ell}$ and the minimum distance of $\widehat{C}_{\text {det }}(1 ; \ell, m)$ is $q^{\ell+m-2}$.

Remark: The exponent $\ell+m-2$ of q in the minimum distance $\widehat{C}_{\text {det }}(1 ; \ell, m)$ is precisely the dimension of the determinantal variety $\widehat{\mathcal{D}}_{t}$ when $t=1$. Also, the relative distance $\delta=d / n$ of $\widehat{C}_{\text {det }}(1 ; \ell, m)$ is asymptotically equal to 1 as $q \rightarrow \infty$. On the other hand, the rate $R=k / n$ is quite small as $q \rightarrow \infty$, but it tends to 1 as $q \rightarrow 1$.

Determination of higher weights of Determinantal Codes

The first m of higher weights of $\widehat{C}_{\text {det }}(1 ; \ell, m)$ can be found and these meet the Griesmer-Wei bound.

Theorem

For $r=1, \ldots, m$, the $r^{\text {th }}$ higher weight \hat{d}_{r} of $\widehat{C}_{\text {det }}(1 ; \ell, m)$ meets the Griesmer-Wei bound and is given by

$$
\hat{d}_{r}=q^{\ell+m-2}+q^{\ell+m-3}+\cdots+q^{\ell+m-r-1}=q^{\ell+m-r-1} \frac{\left(q^{r}-1\right)}{q-1}
$$

In particular, if $r \leq \ell$ and \hat{w}_{r} is as in Theorem 3, then $\hat{d}_{r}=\hat{w}_{r}$.
Note that the phenonmenon $d_{r}=w_{r}$ for several values of r is rather special; it is observed in the (trivial) examples of:
(i) MDS codes, and (ii) simplex codes.

Determination of higher weights Contd.

Continuing with the case $t=1$, we can obtain lower and upper bounds for some of the subsequent weights.

Lemma

Assume that $\ell \geq 2$. Then for $s=1, \ldots, \ell-1$, the $(m+s)^{\text {th }}$ higher weight \hat{d}_{m+s} of $\widehat{\mathcal{C}}_{\text {det }}(1 ; \ell, m)$ satisfies

$$
\hat{d}_{m+s} \geq q^{\ell-s-1} \frac{\left(q^{m+s}-1\right)}{q-1}=\hat{d}_{m}+q^{\ell-s-1} \frac{\left(q^{s}-1\right)}{q-1}
$$

and

$$
\hat{d}_{m+s} \leq \hat{d}_{m}+q^{\ell+m-s-2} \frac{\left(q^{s}-1\right)}{q-1}
$$

where \hat{d}_{m} is as in Theorem 4. In particular,

$$
\hat{d}_{m}+q^{\ell-2} \leq \hat{d}_{m+1} \leq \hat{d}_{m}+q^{\ell+m-3}
$$

Pushing things one step further

The Griesmer-Wei bound is not attained by \hat{d}_{r} if $r>m$ and more work is needed to determine it.

Theorem

Assume that $\ell \geq 2$. For $1 \leq r \leq \ell m$, let \hat{d}_{r} denote the $r^{\text {th }}$ higher weight of $\widehat{C}_{\text {det }}(1 ; \ell, m)$. Then for $r=m+1, \ldots, \ell m$,

$$
\begin{aligned}
\hat{d}_{r} & \geq q^{\ell+m-r-1}\left(\frac{q^{r}-1}{q-1}+q^{r-2}-1\right) \\
& =\hat{d}_{m}+q^{\ell+m-r-1}\left(\frac{q^{r-m}-1}{q-1}+q^{r-2}-1\right)
\end{aligned}
$$

Moreover, equality holds when $r=m+1$ so that

$$
\hat{d}_{m+1}=\hat{d}_{m}+q^{\ell+m-3} .
$$

Idea of Proof

To optimize subspaces of with the least support weight, one has to construct subspaces of $\mathbb{F}_{q}[X]_{1}$ whose set of coefficient matrices contain as many rank 1 matrices in them as possible. In general, sums of rank 1 matrices doesn't have rank 1 . Still we can ask: Question: Can there be linear subspaces of $\mathbb{M}_{\ell \times m}$ all of whose nonzero members have rank 1? If so, what is the maximum possible dimension of such a subspace?

Idea of Proof

To optimize subspaces of with the least support weight, one has to construct subspaces of $\mathbb{F}_{q}[X]_{1}$ whose set of coefficient matrices contain as many rank 1 matrices in them as possible. In general, sums of rank 1 matrices doesn't have rank 1 . Still we can ask:

Question: Can there be linear subspaces of $\mathbb{M}_{\ell \times m}$ all of whose nonzero members have rank 1? If so, what is the maximum possible dimension of such a subspace?

Theorem

Let \mathbb{F}_{q} be a field and let \mathcal{E} be a subspace of $\mathbb{M}_{\ell \times m}\left(\mathbb{F}_{q}\right)$ such that $\operatorname{rank}(M)=1$ for all nonzero $M \in \mathcal{E}$. Then the structure of \mathcal{E} can be explicitly described and in particular,

$$
\operatorname{dim} \mathcal{E} \leq \max \{\ell, m\}=m
$$

Idea of Proof Contd.

Going forward we try to maximize the presence of rank 1 matrices in a subspace using the following:

Lemma

Let \mathcal{D} be an r-dimensional subspace of $\mathbb{M}_{\ell \times m}\left(\mathbb{F}_{q}\right)$ with $r>m$. Then \mathcal{D} contains at most $q^{r-1}+q^{2}-q-1$ matrices of rank 1 . Consequently, \mathcal{D} has at least $\left(q^{r-1}-q\right)(q-1)$ matrices of rank ≥ 2.

This will lead to one of the inequalities stated earlier for \hat{d}_{r} of $\widehat{C}_{\text {det }}(1 ; \ell, m)$. For the other inequality, one has to use an explicit construction of a "good" subspace.
Remark: In a continuation of this work, we (= Beelen and Ghorpade) have determined the minimum distance as well as the complete weight distribution of $\widehat{C}_{\text {det }}(t ; \ell, m)$ for an arbitrary t. The details will appear elsewhere.

Thank you!

