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Motivation  

Products of Reed-Solomon codes are important in applications 

because they offer a combination of large blocks, low decoding 

complexity, and good performance [R. Blahut, J. Justesen, T. 

Hoeholdt and others…].  

A real problem – calculate or estimate by simulation very low error 

probability for a given iterative decoding. It is known, that simulation 

is not applicable when expected error probability is less 810   

We give exact and approximate methods for calculation of an 

increment of failure probability for any iteration. 



Product code construction and decoding algorithm 

Product   n m  code over  GF q  with the component RS codes  

 , ,C n k d  for columns and  , ,R m k d  for rows of a matrix.  Let 

A  be a k k   message matrix then 
T

C RC G AG  is a codeword of 

product code, where ,R CG G   are generating matrixes of row and 

column component codes.  

The product code has the minimal distance 
2d   and has applicable 

decoding algorithm [R. Blahut] that corrects all configurations up to 

 2 1 / 2d    errors and much-much more. 



 

Investigation of iterative decoding for product codes has a long 

history, nevertheless J. Justesen and T. Hoeholdt gave a new 

explanation of the iterative process with unavoidable degradation of 

the error model during iterative process.  

 

We will follow this idea might be in more constructive way.  

  



 

Supposition  

The component code decoder works without decoding errors.  

The decoding results can be:  

correct decoding (with correction up to   1 / 2t d   errors) or 

decoding failure (when more t  errors).  

That is not so extravagant supposition because probability of 

decoding error is always less 1/ !t .  

  



 

A simplified version of product code decoder  

RL  - list of undecoded rows and CL  list of undecoded columns.  

At the beginning, all rows and columns are undecoded and error 

density equal to channel error probability.  

During iteration, a component decoder examines undecoded blocks 

from the list CL  (or RL ) for correction t  errors, when size of the list 

RL  (or CL ) is more  1d  ,  

Other case, it corrects  1d   erasures from the list of undecoded 

blocks, and deletes from the lists all successfully decoded blocks.  



 
Remark 1: after the first iteration, the error density in all the rows and 

columns remaining in the lists CL  and RL  is higher than the channel 

error probability and higher than     min 1 / , 1 /C Rt L t L    .  

Remark 2: the product code decoding failure condition: size of the 

lists CL  and RL  have not changed during iteration (except the first 

one). Additionally, detection of necessary correction of a position out 

of the lists CL  and RL by any component decoder means detection of 

incorrect decoding of a block on some of earlier iteration.  

Remark 3: de facto component decoders work on shortened 

component codes length of which is equal to size of the lists.  



 

General scheme of calculation for iterative decoding 

The probability of correct decoding of the product code after I  

iterations is    
1

Pr
I

C i

i

I


  ,   

where i  is an increment of the probability on i-th iteration.  

Decoding failure probability (under accepted supposition) is just 

supplement of  PrC I  to one.  

  



 

Let we start from column decoding.  

Let  i be the number of undecoded “bad” blocks (size of CL  or RL ) 

after i-th iteration. Initial values are 0 1,C RL m L n     .  

After the first iteration, we get 1 undecoded “bad” columns.  

If  1 d , the row component decoder corrects as erasures all m rows 

of the length 1. Other case the row decoder corrects all possible rows 

with t  errors and defines the value 2 of undecoded “bad” rows.  

  



 

Next, we have to recalculate estimate of the error density i   in “bad” 

blocks taking into account their real (shortened) length.  

Initial value - 1  is the channel error probability.  

After the first iteration, we define 2  as ratio of average number of 

errors in “bad” columns to their height  m. We will continue in this 

manner on the next iterations. 

  



 

Exact formulas for calculation of the increment of failure probability 

Definition 1. Error density in bad blocks on i-th iteration is 
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Definition 2. Probability of correct decoding of a block is 
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Definition 3. Probability of j  undecoded blocks conditioned to the 

state  1 2,j j   of last two iterations 
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Definition 4. Increment of the probability of correct decoding on i-th 

iteration is as follows:
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The upper and lower limits for summation defined in accordance with 

the rules of the product decoding failure. 

Complexity of calculation i  is exponential with iteration number i. 



Example of exact formulas for first iterations  
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Approximate recursive scheme for probabilities calculation  

To decrease the complexity from exponential to a polynomial 

function let see on the last three terms in general expression for i : 
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These terms are related with a random shortened  1 2i i   subcode 

of the given product code. So we could find the probability 

 1 2Pr ,i i   and estimate the i  for 3i  : 
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Conditional density of errors 
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For the next iteration:
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Average density of error in “bad” block as ratio of average number of 

errors in that blocks to their average length. 
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Complexity of approximate procedure is linear on iteration number 

and approximately cubic on the product code size. 



  



Conclusion  

We have defined here exact and approximate procedures for 

calculation of probabilities of correct decoding or decoding failure for 

a product of Reed-Solomon codes under the strong condition that the 

probability of error of component decoder is negligible. The point of 

suggested method is definition of degradation of error model (error 

density i ) during iterative decoding. Approximation error by 

iteration is small and accumulation of errors with the iteration 

number is a usual effect for recurrent calculation. This way for 

probability calculation can be expanded on other product codes. 

 


