On complete permutation polynomials ${ }^{1}$

L. A. Bassalygo bass@iitp.ru
V. A. Zinoviev
zinov@iitp.ru

A.A. Kharkevich Institute for Problems of Information Transmission, Moscow, Russia

Abstract. All cases when the polynomials of type $x^{q+2}+b x$ over the field $\mathbb{F}_{q^{2}}$ and $x^{q^{2}+q+2}+b x$ over $\mathbb{F}_{q^{3}}\left(q=p^{m}>2\right.$ is a power of a prime $\left.p\right)$ are permutation polynomials are classified. Therefore all cases when the polynomials x^{q+2} over $\mathbb{F}_{q^{2}}$ and $x^{q^{2}+q+2}$ over $\mathbb{F}_{q^{3}}$ are complete permutation polynomials are enumerated.

1 Introduction

In the recent times the interest to the special case of the permutation polynomials - complete permutation polynomials - has appeared again. A polynomial $f(x)$ over a finite field \mathbb{F}_{q} of order q is called a complete permutation, if it is a permutation polynomial and there exists an element $b \in \mathbb{F}_{q}^{*}$, such that $f(x)+b x$ has also this property. In [1] the following necessary and sufficient conditions for the polynomial

$$
f(x)=x^{1+\frac{q-1}{n}}+b x, \quad n \mid(q-1), \quad n>1
$$

to be a permutation polynomial are given:
the element b is such that $(-b)^{n} \neq 1$ and the following inequality holds

$$
\begin{equation*}
\left(\left(b+\omega^{i}\right)\left(b+\omega^{j}\right)^{-1}\right)^{\frac{q-1}{n}} \neq \omega^{j-i} \tag{1}
\end{equation*}
$$

for all i, j, such that $0 \leq i<j<n$, where ω is the fixed primitive root of the nth degree of 1 in the field \mathbb{F}_{q}. Here we use the result of $[1]$ for certain special cases of \mathbb{F}_{q} and the integer n. We assume that $q=p^{m}$, where p is the field characteristic and $p^{m}>2$.

2 The case of polynomial $x^{q+2}+b x$

Consider the field $\mathbb{F}_{q^{2}}$ and set $n=q-1$. Then the condition $(-b)^{n} \neq 1$ implies that $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$. Set $x=\omega^{i}$ and $y=\omega^{j}$, then the inequality (1), changes into the following one:

$$
x(b+x)^{q+1} \neq y(b+y)^{q+1}
$$

[^0]for all $x, y \in \mathbb{F}_{q}$, such that $x \neq 0, y \neq 0, x \neq y$. Thus the polynomial $x^{q+2}+b x$ is a permutation if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and the equation over \mathbb{F}_{q}
$$
x\left(b^{q}+x\right)(b+x)-y\left(b^{q}+y\right)(b+y)=0
$$
has no solutions $x, y \in \mathbb{F}_{q}, x \neq 0, y \neq 0, x \neq y$. Since
$x\left(b^{q}+x\right)(b+x)-y\left(b^{q}+y\right)(b+y)=(x-y)\left((x+y)^{2}+(x+y)\left(b+b^{q}\right)+b^{q+1}-x y\right)$,
this condition turns into the following
Proposition 1. The polynomial $x^{q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{2}}$ if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and the equation
\[

$$
\begin{equation*}
(x+y)^{2}+(x+y)\left(b+b^{q}\right)+b^{q+1}-x y=0 \tag{2}
\end{equation*}
$$

\]

has no solutions $x, y \in \mathbb{F}_{q}, x \neq 0, y \neq 0, x \neq y$.

2.1 Fields of even characteristic

Let $q=2^{m}, m>1$. In (2) set $x+y=z, x y=u$. This system is equivalent to the quadratic equation $x^{2}+x z+u=0$, where $u=z^{2}+z\left(b+b^{q}\right)+b^{q+1}$ is defined by the relation (2). Note that the conditions $x, y \in \mathbb{F}_{q}, x \neq 0, y \neq 0, x \neq y$, are equivalent to the condition $z \neq 0$. Therefore from Proposition 1 we obtain

Proposition 2. Let $q=2^{m}, m>1$. The polynomial $x^{q+2}+b x$ is a permutation over the field $F_{q^{2}}$ if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and the equation

$$
\begin{equation*}
x^{2}+x z+z^{2}+z\left(b+b^{q}\right)+b^{q+1}=0 \tag{3}
\end{equation*}
$$

has no solutions in the field \mathbb{F}_{q} for all $z \in \mathbb{F}_{q}^{*}$.
Proposition 2 allows to solve the permutability problem for the polynomial $x^{q+2}+b x$ over $\mathbb{F}_{q^{2}}$. Although it was already solved in [2], our approach essentially differs from the one used in [2], and so we describe our approach here.

Theorem 1 (see also [2].) Let $q=2^{m}, m>1$. The polynomial $x^{q+2}+b x$ is a permutation polynomial over $\mathbb{F}_{q^{2}}$, if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$, the number m is odd and $b^{3(q-1)}=1$. The number of such different elements b is equal to $2(q-1)$, all these elements can be written in the following form:

$$
b=\alpha^{(q+1)(3 t+1) / 3} \text { or } b=\alpha^{(q+1)(3 t+2) / 3}, \quad t=0,1, \ldots, 2^{m}-2,
$$

where α is a primitive element of the field $\mathbb{F}_{q^{2}}$.
Corollary 1. Let $q=2^{m}$, where $m>1$. The polynomial x^{q+2} is a complete permutation polynomial over the field $\mathbb{F}_{q^{2}}$, if and only if the number m is odd.

2.2 Fields of odd characteristic

Let $q=p^{m}$, where $p \geq 3$. Since for this case $4 x y=(x+y)^{2}-(x-y)^{2}$, the equation (2) is equivalent to

$$
3(x+y)^{2}+4(x+y)\left(b+b^{q}\right)+4 b^{q+1}+(x-y)^{2}=0
$$

After changing the variables $x+y=z$ and $x-y=u$, Proposition 1 turns into
Proposition 3. Let $q=p^{m}$ and $p \geq 3$. The polynomial $x^{q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{2}}$ if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and the equation

$$
\begin{equation*}
3 z^{2}+4 z\left(b+b^{q}\right)+4 b^{q+1}+u^{2}=0 \tag{4}
\end{equation*}
$$

has no solutions $u, z \in \mathbb{F}_{q}, u \neq 0$.
In the case, when the field characteristic of \mathbb{F}_{q} equals 3 , we obtain
Theorem 2. Let $q=3^{m}$. The polynomial $x^{q+2}+b x$ is a permutation polynomial over the field $\mathbb{F}_{q^{2}}$, if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and $b^{q-1}=-1$. The number of such different elements b equals $q-1$, and all these elements can be presented in the following form:

$$
b=\alpha^{\frac{q+1}{2}(2 t+1)}, \quad t=0,1, \ldots, q-2
$$

where α is a primitive element of the field $\mathbb{F}_{q^{2}}$.
Corollary 2. Let $q=3^{m}$. The polynomial x^{q+2} is a complete permutation polynomial over the field $\mathbb{F}_{q^{2}}$.

For the case $p>3$, solving the quadratic equation (4) over z, Proposition 3 can be equivalently replaced by

Proposition 4. Let $q=p^{m}$ and $p>3$. The polynomial $x^{q+2}+b x$ is a permutation over $\mathbb{F}_{q^{2}}$, if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ and the equation

$$
\begin{equation*}
4 b^{2}-4 b^{q+1}+4 b^{2 q}-3 u^{2}=v^{2} \tag{5}
\end{equation*}
$$

has no solutions $u, v \in \mathbb{F}_{q}, u \neq 0$.
If $4 b^{2}-4 b^{q+1}+4 b^{2 q} \neq 0$, then (5) has always a solution $u, v \in \mathbb{F}_{q}, u \neq 0$, since the number of solutions of the equation $3 u^{2}+v^{2}=a \neq 0$ in the field \mathbb{F}_{q} is not less than $q-1$ (see [5, Lemma 6.24]), and the number of solutions which have $u=0$ is not greater than two. If $4 b^{2}-4 b^{q+1}+4 b^{2 q}=0$, then the equation (5) has a solution $u, v \in \mathbb{F}_{q}, u \neq 0$, if and only if the quadratic equation $w^{2}+3=0$ has a solution in the field \mathbb{F}_{q}.

Theorem 3. Let $q=p^{m}$ and $p>3$. The polynomial $x^{q+2}+b x$ is a permutation over $\mathbb{F}_{q^{2}}$, if and only if $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}, 1-b^{q-1}+b^{2(q-1)}=0$ and the equation $w^{2}+3=0$ has no solution in \mathbb{F}_{q}.

Clearly the equation $1-b^{q-1}+b^{2(q-1)}=0$ has a solution, if and only if 3 divides $q+1$. The number of solutions $b \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ equals $2(q-1)$ and all these elements are of the form

$$
\begin{equation*}
b=\alpha^{\frac{q+1}{6}(6 t+1)} \text { and } b=\alpha^{\frac{q+1}{6}(6 t+5)}, t=0,1, \ldots, q-2 \tag{6}
\end{equation*}
$$

where α is a primitive element of $\mathbb{F}_{q^{2}}$.
Further, a prime number $p>3$ is of the form $p=6 k \pm 1$. It is known (see [6, Ch. 5]), that the equation $w^{2}+3=0$ has a solution in \mathbb{F}_{p}, if and only if $p=6 k+1$. Hence when m is odd and $p=6 k+1$ the equation $w^{2}+3=0$ has a solution in \mathbb{F}_{q}, but when m is odd and $p=6 k-1$ has no solution in \mathbb{F}_{q}. For the even m and $p>3$ the equation $w^{2}+3=0$ has a solution in \mathbb{F}_{q}, since when $m=2 k$ the equation $w^{2}+c=0$, for $c \in F_{p^{k}}$, has always a solution in the quadratic extension $\mathbb{F}_{p^{2 k}}$.

Theorem 4. Let $q=p^{m}$, and $p>3$. The polynomial $x^{q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{2}}$, if and only if $p=6 k-1, m$ is odd and b satisfies (6).

Corollary 3. Let $q=p^{m}$, and $p>3$. The polynomial x^{q+2} is a complete permutation polynomial over $\mathbb{F}_{q^{2}}$, if and only if $p=6 k-1$ and m is odd.

3 The case of polynomial $x^{q^{2}+q+2}+b x$

Proposition 5. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and the equation

$$
\begin{equation*}
(x+y)^{3}-2(x+y) x y+\left((x+y)^{2}-x y\right) B_{1}+(x+y) B_{2}+B_{3}=0 \tag{7}
\end{equation*}
$$

has no solution $x, y \in \mathbb{F}_{q}, x \neq 0, y \neq 0, x \neq y$, where

$$
B_{1}=b^{q^{2}}+b^{q}+b, \quad B_{2}=b^{q+1}+b^{q^{2}+1}+b^{q^{2}+q}, \quad B_{3}=b^{q^{2}+q+1} .
$$

3.1 Fields of even characteristic

Let $q=2^{m}$, and $m>1$. Set $x+y=z, x y=u$. This system is equivalent to the quadratic equation $x^{2}+x z+u=0$, where u is defined from the expression

$$
\begin{equation*}
u B_{1}=z^{3}+z^{2} B_{1}+z B_{2}+B_{3}, \tag{8}
\end{equation*}
$$

which follows from (7). Note that the conditions $x, y \in \mathbb{F}_{q}, x \neq 0, y \neq 0, x \neq y$, are equivalent to the condition $z \neq 0$. By the same argument, when $B_{1}=0$ the equation $x^{2}+x z+u=0$ has no solution in \mathbb{F}_{q} for any $u \in \mathbb{F}_{q}, u \neq 0$, since in this case $z \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$. Therefore, the polynomial $x^{q^{2}+q+2}+b x$ is a permutation over $F_{q^{3}}$, if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and $B_{1}=b+b^{q}+b^{q^{2}}=0$.

However, if $B_{1} \neq 0$, then the polynomial $x^{q^{2}+q+2}+b x$ is a permutation over $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and the equation over x

$$
\begin{equation*}
x^{2}+x z+u=x^{2}+x z+\frac{z^{3}+z^{2} B_{1}+z B_{2}+B_{3}}{B_{1}}=0 \tag{9}
\end{equation*}
$$

has no solution in \mathbb{F}_{q} for any $z \in \mathbb{F}_{q}^{*}$. It can be shown, that there exists $z \in \mathbb{F}_{q}^{*}$, such that (9) has a solution in \mathbb{F}_{q}.

Using that B_{1} is the relative trace function form $\mathbb{F}_{q^{3}}$ into \mathbb{F}_{q}, i.e.
$B_{1}=\operatorname{Tr}_{q^{3} \rightarrow q}(b)=b+b^{q}+b^{q^{2}}$, we conclude, that the number of different elements $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ for which $B_{1}=0$ equals $q^{2}-1$.

Theorem 5. Let $q=2^{m}$ and $m>1$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$ if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and $b+b^{q}+b^{q^{2}}=0$. The number of such different elements b equals $q^{2}-1$.

Remark. Theorem 5 gives the exhaustive answer to the question on permutability of the polynomial $x^{q^{2}+q+2}+b x$ over $\mathbb{F}_{q^{3}}, q=2^{m}, m>1$. In $[3,4]$ a partial answer was obtained: for the case $m \not \equiv 0(\bmod 9)$ the elements $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ were given for which the polynomial $x^{q^{2}+q+2}+b x$ is a permutation. However, it was not stated that other such elements did not exist.

Corollary 5. Let $q=2^{m}$ and $m>1$. Then the polynomial $x^{q^{2}+q+2}$ is a complete permutation polynomial over the field $\mathbb{F}_{q^{3}}$.

3.2 Fields of odd characteristic

Proposition 6. Let $q=p^{m}$, and $p \geq 3$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and the equation

$$
(x-y)^{2}\left(2(x+y)+B_{1}\right)+2(x+y)^{3}+3(x+y)^{2} B_{1}+4(x+y) B_{2}+4 B_{3}=0
$$

has no solution $x, y \in \mathbb{F}_{q}, x \neq 0, y \neq 0, x \neq y$.
Set $x+y=z$ and $x-y=u$. Then the equation

$$
(x-y)^{2}\left(2(x+y)+B_{1}\right)+2(x+y)^{3}+3(x+y)^{2} B_{1}+4(x+y) B_{2}+4 B_{3}=0
$$

is equivalent to

$$
u^{2}\left(2 z+B_{1}\right)+2 z^{3}+3 z^{2} B_{1}+4 z B_{2}+4 B_{3}=0
$$

Proposition 7. Let $q=p^{m}$, and $p \geq 3$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over the field $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$ and the equation

$$
\begin{equation*}
u^{2}\left(2 z+B_{1}\right)+2 z^{3}+3 z^{2} B_{1}+4 z B_{2}+4 B_{3}=0 \tag{10}
\end{equation*}
$$

has no solution $u \in \mathbb{F}_{q}^{*}, z \in \mathbb{F}_{q}$.
Since for the case $z=-B_{1} / 2$, the equation above reduces to the condition

$$
\begin{equation*}
B_{1}^{3}-4 B_{1} B_{2}+8 B_{3}=0 \tag{11}
\end{equation*}
$$

for the element b, the polynomial $x^{q^{2}+q+2}+b x$ is not permutation over $\mathbb{F}_{q^{3}}$, if the element b satisfies (11), because for any $u \in \mathbb{F}_{q}^{*}$ the equation (11) has the solution $z=-B_{1} / 2$.

Now let $B_{1}^{3}-4 B_{1} B_{2}+8 B_{3} \neq 0$ and, therefore, $z \neq-B_{1} / 2$. Then after several changing of variables we arrive to the result.

Proposition 8. Let $q=p^{m}, \quad p \geq 3$. The polynomial $x^{q^{2}+q+2}+b x$ is a permutation over $\mathbb{F}_{q^{3}}$, if and only if $b \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}, D \neq 0$ and the equation

$$
\begin{equation*}
Y^{2}=X^{3}+\frac{C}{D^{2}} X^{2}-\frac{1}{D^{4}} \tag{12}
\end{equation*}
$$

has no solutions $Y, X \in \mathbb{F}_{q}^{*}$.
Since by the Hasse Theorem (see, for example, [7, Ch. 3.3.3]) the number of solutions of this equation in the field \mathbb{F}_{q} is not less than $q+1-2 \sqrt{q}$, and the number of solutions, when $X=0$, or $Y=0$, does not exceed 5 , then the equation (12) has a solution $Y \neq 0, X \neq 0$ under the condition that $q+1-$ $2 \sqrt{q}-5 \geq 1$. Therefore, for the case $q \geq 11$ the permutation polynomials over $\mathbb{F}_{q^{3}}$ of type $x^{q^{2}+q+2}+b x$ do not exist.

It remains to consider only the cases $q=3,5,7,9$. It is easy to check, that for $q=5$ and $q=9$ there exists a solution $Y \neq 0, X \neq 0$ and, consequently, the permutation polynomials over $\mathbb{F}_{q^{3}}$ of type $x^{q^{2}+q+2}+b x$ also do not exist. For $q=3,7$, such permutation polynomials exist and they can be easily enumerated.

Theorem 6. Let $q=p^{m}$, and $p \geq 3$. The polynomial $x^{q^{2}+q+2}$ is a complete permutation polynomial over the field $\mathbb{F}_{q^{3}}$, if and only if $q=3$ or $q=7$.

References.

1. Niederreiter H., Robinson K.H. Complete mappings of finite fields// J. Austral. Math. Soc. (Series A). 1982. V. 33. P. 197-212.
2. Charpin P., Kyureghyan G. M. Cubic monomial bent functions: a subclass of $\mathcal{M}^{*} / /$ SIAM J. Discrete Math. 2003. V. 22. N ${ }^{\circ}$ 2. P. 650-665.
3. Wu G., Li N., Helleseth T., Zhang Y. Some classes of monomial complete permutation polynomials over finite fields of characteristic two// Finite Fields Appl. 2014, to appear.
4. Tu Z., Zeng X., Hu L. Several calsses of complete permutation polynomials. Finite Fields Appl. 2014. V. 25. N ${ }^{\circ}$ 2. P. 182-193.
5. Lidl R., Niederreiter H. Finite Fields. Encyclopedia of Mathematics and Its Applications. V. 20. Addison-Wesley Publishng Company. London. 1983.
6. Vinogradov I.M. Basics of number theory. VIII Publishing. Moscow: Nauka. 1972.
7. Vladüt S.G., Nogin D. Yu., Tsfasman M.A. Algebraic-geometric Codes. Moscow, Independent Moscow University. 2003.

[^0]: ${ }^{1}$ This work has been partially supported by the Russian fund of fundamental researches (under the project No. 12-01-00905).

