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Abstract. In this work [n, n−N−1, 4]q2 covering codes with n = O(q
N−1

2 log300 q)
are obtained by probabilistic methods. This construction gives a new upper bound
for l(m, 2, q)4, that is the minimal length n for which there exists an [n, n−m, 4]q2
covering code with given m and q. The result has been obtained via the connection
with Projective Geometry and it gives an upper bound on the minimum size of
complete caps in projective spaces PG(N, q).

1 Introduction

Let Fq be the finite field with q elements. A q-ary linear code C of length n and
dimension k is a k-dimensional linear subspace of Fn

q . The Hamming weight
w(x) of x is the number of nonzero positions in a vector x ∈ C. The minimum
distance of C is defined as

d(C) := min{w(x)|x ∈ C,x 6= 0}

and a q-ary linear code of length n, dimension k, and minimum distance d is
denoted as an [n, k, d]q-code. An [n, k, d]q-code can correct at most t errors,

where t is ⌊d−1
2 ⌋. The covering radius of C is the minimum integer R(C) such

that for any vector v ∈ F
n
q there exists x ∈ C with w(v − x) ≤ R. An [n, k, d]q-

code with covering radius R is denoted by [n, k, d]qR. If R = t then C is said
to be perfect. As there are only finitely many classes of linear perfect codes,
of particular interest are those codes C with R = t + 1, called quasi-perfect
codes; see [4, 6, 7]. The covering density µ(C), introduced in [8], is one of the
parameters characterizing the covering quality of an [n, k, d]qR-code C and it is

defined by µ(C) = 1
qn−k

∑R
i=0(q − 1)i

(n
i

)

. Note that µ(C) ≥ 1, and that equality

holds when C is perfect. Clearly, among codes with the same codimension and
covering radius the shortest ones have the best covering density. Therefore
the problem of determining the minimal length n for which there exists an
[n, n − m,d]qR-code with given m, q, d, and R, has been widely investigated;
see [5]. Throughout, such minimal length will be denoted l(m,R, q)d.
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This paper deals with estimating l(m,R, q)d for R = 2 and d = 4, that is,
quasi-perfect linear codes that are both 1-error correcting and 2-error detecting.
The columns of a parity check matrix of an [n, n−m, 4]q2-code can be considered
as points of a complete n-cap in the finite projective space PG(m − 1, q). For
this reason these codes have been investigated also through their connection
with Projective Geometry; see e.g. [15].

A n-cap in an (affine or projective) Galois space over the finite field Fq is a
set of n points no three of which are collinear. A n-cap is said to be complete
if it is not contained in a (n+ 1)-cap. A plane n-cap is also called a n-arc.

A central problem concerning caps is determining the spectrum of the pos-
sible sizes of complete caps in a given space, see the survey paper [16] and the
references therein. As mentioned above, of particular interest for applications
to Coding Theory is the lower part of the spectrum.

For the size of the smallest complete cap in the projective space PG(N, q) of

dimension N over Fq, the trivial lower bound is
√
2q

N−1

2 . General constructions
of complete caps whose size is close to this lower bound are known only for q
even and N odd; see [10, 12, 13, 18]. When N is even, complete caps of size of

the same order of magnitude as cqN/2, with c a constant independent of q, are
known for both the odd and the even order case, see [10,11,13–15].

If q is odd and N ≡ 0 (mod 4), small complete caps can be obtained via the
product method for caps from bicovering plane arcs. It has been shown in [14]
that the cartesian product of a bicovering k-arc A in the affine plane AG(2, q)

and the cap of size q
N−2

2 in the affine space AG(N − 2, q) arising from the

blow-up of a parabola of AG(2, q(N−2)/2) is a complete cap in AG(N, q). Via
the natural embedding of AG(N, q) in PG(N, q) it is possible to obtain from a
complete cap in AG(N, q) a complete cap in PG(N, q) of the same magnitude.

In [1] the authors obtain caps of size (k + 1)q
N−2

2 in AG(N, q) when the
k-arc A is almost bicovering, that is, a complete arc which bicovers all points
in AG(2, q) \A but one.

By similar methods, in [2] the authors provide new complete caps in AG(N, q)

with roughly q(4N−1)/8 points, studying both plane cubics with a node and plane
cubics with an isolated double point.

In [1] the existence of complete caps in AG(N, q), N ≡ 0 (mod 4), of size

of the same order of magnitude as 2pq
1

2
(N−

1

4
), provided that the characteristic

p of Fq is large enough and logp q > 8, is established.

The exact value t2(N, q) of the minimum size of a complete cap in PG(N, q)
is known only for few pairs (N, q): for instance in the case N = 3, t2(3, q) is
known only for q ≤ 7; see [9, Table 3].

In the case N = 3 according to the survey paper [16], the smallest known
complete caps in PG(3, q), with q arbitrary large, have size approximately q3/2/2
and were presented by Pellegrino in 1998 [19]. However, Pellegrino’s complete-
ness proof appears to present a major gap, and counterexamples can be found;
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see [3, Section 2].
In this work, the existence of complete caps of size

O(q
N−1

2 log300 q) (1)

in projective spaces PG(N, q), with N ≥ 3, is established by probabilistic meth-
ods. This bound is asymptotically very close to the trivial lower bound. The
construction of these complete caps gives, via the connection between Coding
Theory and Projective Geometry, the following upper bound on l(N +1, 2, q)4.

Theorem 1. There exists a positive constant M such that for every q ≥ M

l(N + 1, 2, q)4 = O(q
N−1

2 log300 q).

In term of complete caps in any projective space PG(N, q) we proved the
following theorem.

Theorem 2. There are positive constants c and M such that in every projective
space of order q ≥ M and dimension N , there is a complete cap of size at most

O
(

q
N−1

2 logcq
)

.

Also, as in [17], a randomized algorithm to construct the desired complete
caps can be easily deduced.

2 Algorithm

2.1 The algorithm

The cap is constructed in the following way. At the beginning, the starting cap
A0 is empty. Let Ω0 = S0 be the set of all the points of the projective space
PG(N, q). Roughly speaking, at each step Ωi is essentially the set of points
which are not covered by the cap Ai, while Si is a subset of Ωi. At step i a
random subset Bi ⊂ Si is selected, choosing each point from Si independently
with the same probability pi. The set Bi is the nibble (see also [17, Section 2.1])
and only a subset of Bi is added to Ai to obtain the new cap Ai+1. This subset
Mi ⊂ Bi is the set of the points not causing any conflict. At the subsequent
step, Ωi+1 is obtained from Ωi by deleting all the points covered by the secants
of Ai+1 or in Bi, while Si+1 is obtained by deleting from Si the points covered
by the secants of Ai+1 or in Bi plus a few more points, chosen randomly: in
this way certain structural properties of the Si’s are preserved. The process

is repeated until all but q
N−1

2 logc q points are covered by the secants of the
current cap. In the following we set θ = log−2 q.
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The algorithm acts as follows. At each step we use three different subphases:
choose, delete, and compensate.

Start : Ω0, S0 are both PG(N, q), A0 = ∅. We also consider the quantity
bi. At the beginning b0 = 1, while at the i-th step

bi =
|Si|

qN + qN−1 + · · ·+ q + 1
.

Choose : At each step a point v in Si is chosen with probability

pi = θ(biq
N+1

2 )−1.

The set of all the chosen points is Bi. A point x in Bi is good in Ai∪Bi if there
are no two points in Ai ∪ Bi collinear with x. The set Mi is the set of all the
good points. So Ai+1 = Ai ∪Mi.

Delete : Delete from Ωi all the points in bisecants of Ai+1 or in Bi. Let
Di be the set of deleted points and, if v ∈ Ωi, let Pi(v) = Pr(v ∈ Di). Let P u

i

and P ℓ
i be the upper and the lower bounds for these probabilities.

Compensate : Si+1 is obtained from Si deleting the points of Di and
independently the points of Si with probability

P com
i (v) =

P u
i − Pi(v)

1− Pi(v)
.

Let Ri be the set of the removed points, then

Ωi+1 = Ωi \Di, Si+1 = Si \ (Di ∪Ri), Ai+1 = Ai ∪Mi

and

bi+1 = bi(1− P u
i ) =

i
∏

j=1

(1− P u
j ).

Stop : The algorithm stops after K steps, where K is the smallest integer
such that

bK ≤ q−
N+1

2 logc q,

for some constant c (we will set c = 300, as in [17]).
The importance of the subphase of Compensation is explained in the fol-

lowing remark.

Remark 3. The operation of compensation is made in order to give the same
probability to the points in Si to be in Si+1. In fact, if p = Pi(v), then

P (v /∈ Si+1|v ∈ Si) = p+ (1− p)
P u
i − p

1− p
= P u

i .

So,
E(|Si+1|) = |Si|(1 − P u

i ).
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