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Abstract. Semifields (or: non-associative division algebras) are the algebraic struc-
tures which coordinatize an important class of geometric objects, projective planes
which are translation planes and also the duals of translation planes. We apply the
projection construction (see [2]) in characteristic 2. Finally we give an application of
the projection construction to APN functions. Those are a second analogue, besides
semifields in characteristic 2, of the theory of planar functions. They have important
applications in cryptography and coding theory (see [6]).

1 The background

A large family of (pre)semifields of odd order is constructed in [2] as follows.
Let p be an odd prime, q = pm, L = Fq ⊂ F = Fq2 . Let x = xq and T : F −→ L

the trace. Let 0 < s < 2m,σ = ps, l ∈ L∗ such that −l /∈ (L∗)σ−1. Further let
C1, C2 ∈ F such that the polynomial

PC1,C2,s(X) = C2X
σ+1 + C1X

σ +C1X +C2 ∈ F [X]

has no root z such that zq+1 = 1. Then presemifields B(p,m, s, l, C1, C2) of
order p2m are defined such that the addition coincides with the addition in the
field F and the multiplication is given by

x ∗ y = (1/2)T ((C1y
σ + C2y

σ)x) + (l/2)T ((C1y + C2y)x
σ) + (xy − xy)/2 (1)

which clearly is identical to

x ∗ y = c0(y)x+ cm(y)x+ cs(y)x
σ + cm+s(y)x

σ (2)

where
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c0(y) = (1/2)(y + C1y
σ +C2y

σ), cm(y) = (1/2)(−y + C2y
σ + C1y

σ)

and
cs(y) = (l/2)(C1y + C2y), cm+s(y) = cs(y).

It is important here to realize that F can be written as a direct sum

F = L⊕ Lω (3)

where ω has trace T (ω) = 0 and Lω = {x | x ∈ F, T (x) = 0}. Then µ = ω2 is a
non-square in L. This comes down to describe the quadratic extension F of L
by the irreducible polynomial X2 − µ where µ is a non-square in L. It is then
natural to use the language of pairs: Let x = a+ bω. We write

x = ( a
︸︷︷︸

Re

, b
︸︷︷︸

Im

)

and refer to a = Re(x) and b = Im(x) as the real and imaginary part of x,
respectively. This terminology is natural as the first two terms of Equation (1)
are in the subfield L and the last term is (ad+bc)ω ∈ Lω. It follows that x∗y = 0
if and only if ad+bc = 0 and also Re(x∗y) = 0. This greatly simplifies the proof
that B(p,m, s, l, C1, C2) is indeed a presemifield (equivalently: x ∗ y = 0 only
if xy = 0). For any presemifield (F,+, ∗) where F is a field and the addition is
as in the field F, we define the associated semifield (F,+, ◦) by

x ◦ y := β
(
γ(x) ∗ y

)
. (4)

where β, γ : F → F are invertible linear mappings defined by

1 ∗ β(x) = x and γ(x) ∗ 1 = 1 ∗ x (5)

It is then easy to verify that (F,+, ◦) is indeed a semifield with 1 ∈ F as
neutral element of multiplication.

We want to extend the definition of B(p,m, s, l, C1, C2) to the case p = 2
and to study some of the basic properties of the family B(2,m, s, l, C1, C2).
Among those properties are the dimensions of the nuclei and the question when
our presemifields are isotopic to commutative semifields. In odd characteristic
the commutative semifields from Budaghyan-Helleseth [4] are contained in our
family (cases C1C2 = 0 and {C1, C2} ⊂ L). It is therefore an interesting
question to decide if any of the B(2,m, s, l, C1, C2) are isotopic to commutative.
The most important among the facts that do not carry over from the odd
characteristic case is the direct sum decomposition Equation (3). This needs to
be modified.
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2 A standard situation in characteristic 2

Let Q = 2m, F = GF (Q2) ⊃ L = GF (Q) and T,N : F −→ L the norm and
trace. Let µ ∈ L be of absolute trace = 1 and z ∈ F such that z2+z = µ. Then
z /∈ L and we use 1, z as a basis of F |L. In particular we write x = a+bz = (a, b)
where a, b ∈ L and refer to a, b as the real and imaginary part of x, respectively.

Let s < 2m,σ = 2s and K1 = F
2gcd(s,m) the fixed field of σ in L. Then

z4 = z2 + µ2 = z + µ2 + µ. Continuing like that we obtain the following:

Lemma 6. Let µs =
∑s−1

i=0
µ2i . Then zσ = z + µs and xσ = (aσ + µsb

σ, bσ).

In particular µ1 = µ, µ2 = µ + µ2 and µm = trL|F2
(µ) = 1 (because of the

transitivity of the trace) and z = z2
m

= z+1. Further µs+m = µs+1. We have
x = (a+ b, b), T (x) = b and

(a, b)(c, d) = (ac+ bdµ, ad+ bc+ bd)

In particular

1/z = (1/µ, 1/µ) and 1/(a, b) = (1/D)(a + b, b),

where D = a2 + ab+ µb2. The conjugates of x are

x2 = (a2+µb2, b2), x4 = (a4+(µ2+µ)b4, b4), . . . xσ = (aσ+(µ2s−1
+· · ·+µ)bσ, bσ).

Let µ′ = µ2s−1
+ · · · + µ. In the special case when m is odd we choose µ = 1

and obtain z = ω ∈ F4.

3 The definition

Definition 7. Let the following equivalent conditions be satisfied:

• T (C1xx
σ + C2x

σ+1) 6= 0 for all 0 6= x ∈ F.

• PC1,C2,s(X) = C2X
σ+1 +C1X

σ +C1X +C2 ∈ F [X]. has no root of norm
1.

Choose 0 6= l ∈ L such that l /∈ Lσ−1. Define a product on F by

x ∗ y = T ((C1y
σ + C2y

σ)x) + lT ((C1y + C2y)x
σ) + T (xy)z (8)

Theorem 9. Under the conditions of Definition 7 (F,+, ∗) is a presemifield
B(2,m, s, l, C1, C2) on F.

Proof. Assume x ∗ y = 0, xy 6= 0. The imaginary part shows y = ex for e ∈ L.
The real part factorizes: (eσ + le)T (C1xx

σ + C2x
σ+1) = 0. The first factor is

nonzero by the condition on l, the non-vanishing of the trace term is the second
condition above.
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Let Ci = (vi, hi). Case X = 1 shows that T (C1) = h1 6= h2. The restriction
to x, y ∈ L is x ∗ y = (h1 + h2)(xy

σ + lxσy), a generalized Albert twisted field.
In particular B(2,m, s, l, C1, C2) is not isotopic to the field. This restriction
also explains the projection construction in this case. The imaginary part of
x ∗ y is isotopic to the imaginary part of field multiplication, the real part of
x ∗ y is isotopic to the real part of generalized twisted field. More precisely,
with x = (a, b), y = (c, d) and c′ = c + d the presemifield multiplication in the
language of pairs is

x∗y = (p1ac
′σ+lp1a

σc′+p2bc
′σ+lp2a

σd+p3ad
σ+lp3b

σc′+p4bd
σ+lp4b

σd, ad+bc′).

Here p1 = h1+h2, p2 = v1+ v2+h1+h2, p3 = v1+ v2+µsh1 +(µs+1)h2, p4 =
µsv1 + (µs + 1)v2 + (µs + µ)h1 + (µs + µ+ 1)h2.

4 The question of commutativity

Theorem 10. B(2,m, s, l, C1, C2) for s < m is isotopic to commutative if and
only if C1C2 6= 0 and there is 0 6= x ∈ F such that

(C1/C2)x+ l(C1/C2)x
σ = (C2/C1)x+ l(C2/C1)x

σ ∈ L

A computer search showed that there is no solution in case m = 4, s = 2.
We conjecture that B(2,m, s, l, C1, C2) is never isotopic to commutative.

5 A link to APN functions

Commutative semifields in odd characteristic (F,+, ∗) can be described equiva-
lently by the corresponding quadratic planar function f(x) = x∗x. The reason is
that x∗x is recovered from f(x) by the polarization formula. This is not true for
non-commutative semifields and it is not true in characteristic 2. Quadratic pla-
nar functions possess at least two different analogues in characteristic 2: com-
mutative semifields and APN (almost perfectly nonlinear) functions. The latter
form a core part of the theory of cryptographic S-boxes. They also describe
the binary cyclic codes of minimum distance 5 (see [6] and [1], p. 210). More

precisely, let F = F2r and f(x) =
∑

i<j aijX
2i+2j ∈ F [X] (such polynomials

are known as Dembowski-Ostrom polynomials). Define the polarization
of f(x) by x ∗ y = f(x + y) + f(x) + f(y). Then f(x) is called a quadratic
APN function if x∗y is equivalent to xy = 0 or x = y. The projection method
works also in this context, and the APN hexanomials of Budaghyan-Carlet [5]
are characteristic 2 analogues of a special case of the family B(p,m, s, l, 0, C2)
in odd characteristic. Here is an example of this type of construction in the
situation of Section 2.
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Theorem 11. Let

f(x) = T (xσ+1 + C1xx
σ +N(x)) +N(x)σz.

Then the following are equivalent:

• f(x) : F −→ F is a (quadratic) APN function,

• gcd(s,m) = 1 and PC1,1,s(X) = Xσ+1 +C1X
σ +C1X + 1 ∈ F [X] has no

roots z ∈ F = F22m such that N(z) = 1.

Proof. Let x ∗ y be the polarization of f(x). The invertible linear mapping

(a, b) 7→ (a+ b1/σ , b) shows that we may cancel the term N(x) in the real part
of f(x) and obtain the polarization

x ∗ y = T (xyσ + xσy + C1xy
σ +C1x

σy) + T ((xy)σ)z.

Assume x ∗ y = 0 where xy 6= 0. The imaginary part shows y = ex for e ∈ L.
The real part shows (eσ + e)(xσ+1 +C1xx

σ) ∈ L. Assume e 6= 1. The condition
gcd(s,m) = 1 shows eσ+e 6= 0. It follows that the second factor has to be in L.
As before write out the trace, divide by xσ+1. This yields the familiar condition
on PC1,1,s(X).

Observe that the polynomial PC1,1,s(X) and the condition it needs to satisfy
are the same as we encountered in odd characteristic in Section 1. Theorem 11
describes the APN hexanomials as constructed by Budaghyan-Carlet, [5] which
were further studied among others in [3].
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