On the Preparata-like codes ${ }^{1}$

D. V. Zinoviev
dzinov@iitp.ru
V. A. Zinoviev
zinov@iitp.ru

A.A. Kharkevich Institute for Problems of Information Transmission, Moscow, Russia

Abstract

A class of Preparata-like group codes is considered. It was suggested by Baker, van Lint and Wilson and re-stated in a different form by Ericson. We show that all such codes are inside the Hamming code providing its partition into the cosets of the Preparata-like codes. This partition induces 2-resolvable Steiner quadruple systems.

1 Introduction

Let E be the binary alphabet $E=\{0,1\}$. A code C is any subset of E^{n}. Denote a binary code C of length n with the minimum (Hamming) distance d and cardinality N as an (n, d, N)-code. Denote by $\mathrm{wt}(\boldsymbol{x})$ the Hamming weight of vector \boldsymbol{x} over E, and by $d(\boldsymbol{x}, \boldsymbol{y})$ the Hamming distance between the vectors $\boldsymbol{x}, \boldsymbol{y} \in E^{n}$.

A Steiner system $S(v, k, t)$ is a pair (X, B) where X is a v-set and B is a collection of k-subsets (blocks) of X such that every t-subset of X is contained in exactly one block of B. A system $S(v, 4,3)$ is called a Steiner quadruple system.

A Steiner system $S(v, 4,3)$ is called 2-resolvable if it can be split into mutually non-overlapping $S(v, 4,2)$ Steiner systems.

For a code C and an arbitrary binary vector \boldsymbol{x} define the distance between x and C

$$
d(\boldsymbol{x}, C)=\min \{d(\boldsymbol{x}, \boldsymbol{c}): \boldsymbol{c} \in C\} .
$$

For a binary code C let $C(i)$ be the set of vectors of E^{n}, at a distance i from C, i.e.

$$
C(i)=\left\{\boldsymbol{x} \in E^{n}: d(\boldsymbol{x}, C)=i\right\} .
$$

Define the covering radius of a code $C, \rho=\rho(C)$, the smallest positive integer ρ such that

$$
E^{n}=\bigcup_{i=0}^{\rho} C(i)
$$

[^0]Definition 1. Let $n=2^{2 m}, m=2,3, \ldots$ A binary $\left(n, 6,2^{n-4 m}\right)$-code is called a Preparata-like code and denoted P.

Let $n=2^{m}, m=2,3, \ldots$ A binary $\left(n, 4,2^{n-m-1}\right)$-code is called a Hamminglike code and denoted H.

We assume that any Preparata-like code P or any Hamming-like code H contains the zero vector $\mathbf{0}=(0, \ldots, 0)$. Alternatively, denote by $P^{(i)}$, the Preparata-like code which contains a codeword of weight i and no codewords of a smaller weight. Thus $P^{(0)}=P$. For any code C, let C_{j} be the set of its codewords of weight j.

Two binary codes C and C^{\prime} with the same parameters are equivalent if and only if there exists a binary vector \boldsymbol{x} and a permutation σ (of coordinate set J) such that

$$
C+\boldsymbol{x}=\sigma\left(C^{\prime}\right)
$$

It was shown in [1] (and independently in [2]) that the original Preparata codes P (i.e. codes that were constructed by Preparata [3]) of length $n=$ $4^{m}, m=2,3, \ldots$ define a 2 -resolvable Steiner quadruple system $S(n, 4,3)$ (which corresponds to the words of weight four of the binary extended Hamming code H which contains P). The partition of code H into the shifts of P induce a 2-resolvable system $S(n, 4,3)$ where $n=4^{m}, m=2,3, \ldots$. Same results were obtained independently in [4] and [5] for the generalized Preparata codes. The \mathbb{Z}_{4}-linear Preparata codes were constructed in [6]. They turned out to be non-equivalent to the earlier known Preparata codes and also induce the 2 -resolvable Steiner systems $S(n, 4,3)$. An infinite class of 2-resolvable Steiner systems $S(n, 4,3)$, where n is not a power of 4 was given in [7].

The goal of this paper is to consider the group structure of the Preparata-like codes of [5] (see also [12] and [13]). Any such code lies in the linear Hamming code and induces its partition into the cosets by this code. This induces the new partitions of Steiner systems $S(n, 4,3)$ into disjoint systems $S(n, 4,2)$.

2 Preliminary Results

We will recall some known results.
Lemma 1. [9]. For any extended Hamming-like code H of length n, the set H_{4} is a Steiner system $S(n, 4,3)$.

Lemma 2. [1]. For any extended Preparata-like code P there exists an extended Hamming-like code H which contains it, i.e. $P \subset H$. Moreover the code H is obtained by adding all vectors $\boldsymbol{x} \in E^{n}$ to the set P lying at a distance 4 from it, namely

$$
H=P \cup P(4) .
$$

Lemma 3. [10]. Let P be a Preparata-like code of length n. Let $P^{(4)}$ be its shift by a word of weight four. Then, the set $P_{4}^{(4)}$ (the words of $P^{(4)}$ of weight four) is a Steiner system $S(n, 4,2)$.

According to Lemma 1 the set H_{4} is the Steiner system $S(n, 4,3)$. Using the last two lemmas we obtain the following result.

Theorem 1. [1, 2]. For any $m, m=2,3, \ldots$, there exists a 2 -resolvable Steiner system $S\left(4^{m}, 4,3\right)$.

It turned out $[4-6]$ that for all constructed Preparata-like codes P the corresponding Hamming-like codes H, which contain codes P, partitioned into the shifts of the code P. These partitions induce the 2 -resolvable Steiner systems $S(n, 4,3)$. The same is true, of course, for any \mathbb{Z}_{4}-linear Preparata-like codes of [11].

3 Main results

We consider a class of the Preparata-like codes of [5] presented in a different form of [13]. Let $\mu \geq 3$ be an odd number and consider the functions $z: \mathbb{F}_{2^{\mu}} \rightarrow$ \mathbb{F}_{4}. Let $\operatorname{Tr}(z)=z+z^{2}$ be a trace function from \mathbb{F}_{4} into \mathbb{F}_{2}. For $z \in \mathbb{F}_{4}=$ $\left\{0,1, \omega, \omega^{2}\right\}$, where $\omega^{2}=\omega+1$, define $x, y \in \mathbb{F}_{2}$ as follows:

$$
x=\operatorname{Tr}(\omega z)=z \omega+z^{2} \omega^{2}, \quad y=\operatorname{Tr}\left(\omega^{2} z\right)=z \omega^{2}+z^{2} \omega,
$$

Note that

$$
z=x \omega+y \omega^{2}, \quad z^{2}=x \omega^{2}+y \omega
$$

and

$$
z^{3}=x+y+x y= \begin{cases}0, & z=0 \\ 1, & z \neq 0\end{cases}
$$

These equalities establish an isomorphism between \mathbb{F}_{4} and \mathbb{F}_{2}^{2}. In this case the Hamming metric of \mathbb{F}_{2}^{2} corresponds to the metric ρ of \mathbb{F}_{4}, induced by the following weight function wt_{4} :

$$
\mathrm{wt}_{4}(0)=0, \quad \mathrm{wt}_{4}(\omega)=\mathrm{wt}_{4}\left(\omega^{2}\right)=1, \quad \mathrm{wt}_{4}(1)=2 .
$$

so that $\rho(a, b)=\mathrm{wt}_{4}(a+b)$. Since μ is odd, the field \mathbb{F}_{4} is not contained in $\mathbb{F}_{2^{\mu}}$ and in particular the elements ω and ω^{2} are not contained in $\mathbb{F}_{2^{\mu}}$. Thus any function $z: \mathbb{F}_{2^{\mu}} \rightarrow \mathbb{F}_{4}$ is of the form $z(u)=z_{1}(u) \omega+z_{2}(u) \omega^{2}$. Extend the weight function wt_{4} to the set \mathcal{F} in a natural way:

$$
\mathrm{wt}_{4}(z)=\sum_{u \in \mathbb{F}_{2} \mu} \mathrm{wt}_{4}(z(u)) .
$$

Let \mathcal{F} be the set of functions $z: \mathbb{F}_{2^{\mu}} \rightarrow \mathbb{F}_{4}$ which satisfy the following equalities:

$$
\begin{gather*}
\sum_{u} z(u)=0 \tag{1}\\
\sum_{u} u\left(z_{1}(u)+z_{2}(u)\right)=0 \tag{2}
\end{gather*}
$$

where u runs over the whole field $\mathbb{F}_{2^{\mu}}$.
Let σ be a power of 2 , so that $2 \leq \sigma \leq 2^{\mu-1}$ and $\left(\sigma \pm 1,2^{\mu}\right)=1$ (note that Ericson [13] considered the case $\sigma=2$). Let \mathcal{F}_{σ} be the subset of functions of \mathcal{F}, which satisfy the following equality:

$$
\begin{equation*}
\sum_{u} u^{\sigma+1}\left(z_{1}(u)+z_{2}(u)\right)=\left(\sum_{u} u z(u)\right)^{\sigma+1} \tag{3}
\end{equation*}
$$

where u runs over the whole field $\mathbb{F}_{2^{\mu}}$.
For an arbitrary function $z \in \mathcal{F}$ set

$$
\begin{equation*}
\lambda_{z}=\sum_{u \in \mathbb{F}_{2 \mu}} u z(u) . \tag{4}
\end{equation*}
$$

Note that since $\omega+\omega^{2}=1$, the condition (2) implies that

$$
\lambda_{z}=\sum_{u \in \mathbb{F}_{2} \mu} u\left(z_{1}(u) \omega+z_{2}(u) \omega^{2}\right)=\sum_{u \in \mathbb{F}_{2} \mu} u z_{1}(u)=\sum_{u \in \mathbb{F}_{2 \mu}} u z_{2}(u) .
$$

Now one can define a binary operation \star on the set \mathcal{F}, so that for any $a=a_{1} \omega+a_{2} \omega^{2}$ and $b=b_{1} \omega+b_{2} \omega^{2}$ from \mathcal{F}, we have

$$
\begin{equation*}
c=a \star b=c_{1} \omega+c_{2} \omega^{2} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& c_{1}(u)=a_{1}\left(u+\lambda_{b}\right)+b_{1}(u), \\
& c_{2}(u)=a_{2}(u)+b_{2}(u) .
\end{aligned}
$$

It is shown in [13] for the case $\sigma=1$, and one can do it for $\sigma>1$ that the set \mathcal{F} with the \star operation is a non-commutative group and \mathcal{F}_{σ} is a subgroup of \mathcal{F}, for any $1 \leq \sigma \leq \mu-1$. One can show that $\left[\mathcal{F}: \mathcal{F}_{\sigma}\right]$ is equal to 2^{μ} and we have that

$$
\begin{equation*}
\mathcal{F}=\bigcup_{i=1}^{2^{\mu}} \mathcal{F}_{\sigma} \star f_{i} \tag{6}
\end{equation*}
$$

where $f_{1}, \ldots, f_{2^{\mu}} \in \mathcal{F}$ are the coset representatives.

Clearly, the identity element of \mathcal{F}_{σ} is the zero function denoted by $\mathbf{0}$. The inverse $z^{-1}(u)$ to $z(u)$ is the function such that $z_{1}^{-1}\left(u+\lambda_{z}\right)=z_{1}(u)$, i.e. $z_{1}^{-1}(u)=z_{1}\left(u+\lambda_{z}\right)$ and $z_{2}^{-1}(u)=z_{2}(u)$. Note that if $c \in \mathcal{F}$, then it is easy to check that multiplication by c on the right is distance preserving. Thus

$$
\begin{equation*}
\rho(a \star c, b \star c)=\rho(a, b)=\rho\left(\mathbf{0}, b \star a^{-1}\right)=\mathrm{wt}_{4}\left(b \star a^{-1}\right) . \tag{7}
\end{equation*}
$$

For a given positive odd number $\mu, \mu \in\{3,5,7, \ldots\}$, and $\sigma=2, \ldots, 2^{\mu-1}$, $\left(\sigma \pm 1,2^{\mu}\right)=1$ define a non-commutative Preparata-like code of Ericson [13] type as a binary code of length $n=2^{m}$, where $m=\mu+1$. It is viewed as the set of values $z(u) \rightarrow[x(u), y(u)]$ of the functions $z \in \mathcal{F}_{\sigma}$.

Equations (1) and (2) given in terms of the functions $z \in \mathcal{F}$ can be written in terms of their values x and y as follows:

$$
\begin{align*}
\sum_{u \in \mathbb{F}_{2} \mu} x(u) & =\sum_{u \in \mathbb{F}_{2} \mu} y(u)=0 \tag{8}\\
\sum_{u \in \mathbb{F}_{2} \mu} u \cdot x(u) & =\sum_{u \in \mathbb{F}_{2} \mu} u \cdot y(u)=\lambda \tag{9}
\end{align*}
$$

Equation (3) given in terms of the functions $z \in \mathcal{F}_{\sigma}$ can be written (in addition to (8) and (9)) in terms of their values x and y as follows:

$$
\begin{equation*}
\sum_{u \in \mathbb{F}_{2} \mu} u^{\sigma+1} x(u)+\sum_{u \in \mathbb{F}_{2} \mu} u^{\sigma+1} y(u)=\lambda^{\sigma+1} . \tag{10}
\end{equation*}
$$

Note that the first two conditions define the linear Hamming code H of length $n=2^{\mu+1}$. The Preparata-like codes in this form were presented in [5].
Theorem 2. [5] Let \mathcal{P}_{σ} be a code of length $n=2^{\mu+1}$, given by equations (1)(3). For any odd number $\mu \geq 3$ and any $\sigma=2, \ldots, 2^{\mu-1},\left(\sigma \pm 1,2^{\mu}\right)=1$ this code has the following parameters

$$
n=2^{m}, \quad N=2^{n-2 m}, \quad d=6,
$$

i.e. is the non-commutative Preparata-like group code.

Since \mathcal{P}_{σ} is a non-commutative group, it follows that for any μ and σ these codes are different from the known Preparata-like codes. In particular they are different from the Preparata-like \mathbb{Z}_{4}-linear codes, which for $n \geq 64$ are the subcodes of the corresponding \mathbb{Z}_{4}-linear Hamming-like codes [11] (and are defined by the commutative group over \mathbb{Z}_{4}). We are not aware of any other group structures for the other known Preparata-like codes [3-5] (which are all subcodes of the Hamming codes).

Moreover, let $\mathcal{P}_{\sigma, i}$ be the set of values of the functions $\mathcal{F}_{\boldsymbol{\sigma}} \star f_{i}$. Due to (7), the minimal distance of $\mathcal{P}_{\sigma, i}$ is 6 . Taking into account (6), we have:

Theorem 3. The code \mathcal{P}_{σ} of length $n=2^{\mu+1}$ is a subcode of the Hamming code H of length n and induce a partition of H into the cosets of the code \mathcal{P}_{σ}, i.e. we have

$$
H=\bigcup_{i=1}^{n / 2} \mathcal{P}_{\sigma, i} .
$$

According to Lemma 3 the set of codewords of weight 4 of $P_{\sigma, i}$ forms a Steiner system $S(n, 4,2)$. Hence from the partition of H into subcodes $P_{\sigma, i}$ of Theorem 3 we obtain the following result.
Theorem 4. For any $\sigma=2, \ldots, 2^{\mu-1},\left(\sigma \pm 1,2^{\mu}\right)=1$, the partition of H into $P_{\sigma, i}, i=1, \ldots, n / 2$, induces the partition of $S(n, 4,3)$ into the Steiner systems $S_{\sigma, i}=S(n, 4,2)$.

References.

1. Zaitsev G. V., Zinoviev V. A., Semakov N. V. Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double-errorcorrecting codes, in: "2nd International Symposium on Information Theory, Tsahkadzer, Armenia, USSR, 1971," Akademiai Kiado-Budapest, P. 257-263, 1973.
2. Baker R. D. Partitioning the planes $A G_{2^{m}}(2)$ into 2-designs // Discrete Math. 1976. V. 15. P. 205-211.
3. Preparata F.P. A class of optimum nonlinear double-error correcting codes // Inform. and Control. 1968. V. 13. P. 378-400.
4. Dumer I. I. Some new uniformly packed codes// "Proceedings of MIPT. Series in Radiotechnics and Electronics". Moscow: MIPT 1976. P. 72-78.
5. Baker R. D., van Lint J. H., Wilson R. M. On the Preparata and Goethals Codes // IEEE Trans. Inform. Theory. 1983. V. 29. N ${ }^{\circ}$ 2, P. 342-345.
6. Hammons A. R., Jr, Kumar P. V., Calderbank A. R., Sloane N. J. A., Sole P. The \mathbb{Z}_{4}-Linearity of Kerdock, Preparata, Goethals and Related Codes // IEEE Trans. Inform. Theory. 1994. V. 13. N ${ }^{\circ}$ 2, P. 301-319.
7. Teirlinck L. Some new 2-resolvable Steiner quadruple systems // Designs, Codes and Cryptography. 1995. V. 6. N ${ }^{\circ}$ 1, P. 5-10.
8. Semakov N.V., Zinoviev V.A. Constant weight codes and tactical configurations // Problems of Information Transmission. 1969. V. 5. N ${ }^{\circ}$ 3. P. 29-38.
9. Assmus E. F., Jr., Mattson H. F., Jr. On tactical configurations and errorcorrecting codes // J. Combin. Theory. 1967. V. 2. P. 234-257.
10. Semakov N.V., Zinoviev V.A. Zaitsev G.V. Uniformally packed codes// Problems of Information Transmission. 1971. V. 7. N ${ }^{\circ} 1$, P. 38-50.
11. Borges J., Phelps K. P., Rifa J., Zinoviev V. A. On \mathbb{Z}_{4}-linear Preparatalike and Kerdock-like codes// IEEE Trans. On Information Theory. 2003. V. 49. N ${ }^{\circ} 11$, P. 2834-2843.
12. Rifa J., Pujol J. Translation invariant properlinear codes // IEEE Trans. On Information Theory. 1997. V. 43. P. 590-598.
13. Ericson Th. The Preparata codes, unpublished manuscript. 2009.

[^0]: ${ }^{1}$ This work has been partially supported by the Russian fund of fundamental researches (under the project No. 12-01-00905).

