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On the Preparata-like codes 1
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Abstract. A class of Preparata-like group codes is considered. It was suggested
by Baker, van Lint and Wilson and re-stated in a different form by Ericson. We
show that all such codes are inside the Hamming code providing its partition into
the cosets of the Preparata-like codes. This partition induces 2-resolvable Steiner
quadruple systems.

1 Introduction

Let E be the binary alphabet E = {0, 1}. A code C is any subset of En.
Denote a binary code C of length n with the minimum (Hamming) distance d
and cardinality N as an (n, d,N)-code. Denote by wt(x) the Hamming weight
of vector x over E, and by d(x,y) the Hamming distance between the vectors
x,y ∈ En.

A Steiner system S(v, k, t) is a pair (X,B) where X is a v-set and B is a
collection of k-subsets (blocks) of X such that every t-subset of X is contained
in exactly one block of B. A system S(v, 4, 3) is called a Steiner quadruple
system.

A Steiner system S(v, 4, 3) is called 2-resolvable if it can be split into mu-
tually non-overlapping S(v, 4, 2) Steiner systems.

For a code C and an arbitrary binary vector x define the distance between
x and C

d(x, C) = min {d(x, c) : c ∈ C}.

For a binary code C let C(i) be the set of vectors of En, at a distance i
from C, i.e.

C(i) = {x ∈ En : d(x, C) = i}.

Define the covering radius of a code C, ρ = ρ(C), the smallest positive integer
ρ such that

En =

ρ
⋃

i=0

C(i).

1This work has been partially supported by the Russian fund of fundamental researches
(under the project No. 12 - 01 - 00905).
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Definition 1. Let n = 22m, m = 2, 3, . . .. A binary (n, 6, 2n−4m)-code is called
a Preparata-like code and denoted P .

Let n = 2m, m = 2, 3, . . .. A binary (n, 4, 2n−m−1)-code is called a Hamming-
like code and denoted H.

We assume that any Preparata-like code P or any Hamming-like code H
contains the zero vector 0 = (0, . . . , 0). Alternatively, denote by P (i), the
Preparata-like code which contains a codeword of weight i and no codewords
of a smaller weight. Thus P (0) = P . For any code C, let Cj be the set of its
codewords of weight j.

Two binary codes C and C ′ with the same parameters are equivalent if and
only if there exists a binary vector x and a permutation σ (of coordinate set J)
such that

C + x = σ(C ′).

It was shown in [1] (and independently in [2]) that the original Preparata
codes P (i.e. codes that were constructed by Preparata [3]) of length n =
4m, m = 2, 3, . . . define a 2-resolvable Steiner quadruple system S(n, 4, 3)
(which corresponds to the words of weight four of the binary extended Ham-
ming code H which contains P ). The partition of code H into the shifts of
P induce a 2-resolvable system S(n, 4, 3) where n = 4m, m = 2, 3, . . .. Same
results were obtained independently in [4] and [5] for the generalized Preparata
codes. The Z4-linear Preparata codes were constructed in [6]. They turned out
to be non-equivalent to the earlier known Preparata codes and also induce the
2-resolvable Steiner systems S(n, 4, 3). An infinite class of 2-resolvable Steiner
systems S(n, 4, 3), where n is not a power of 4 was given in [7].

The goal of this paper is to consider the group structure of the Preparata-like
codes of [5] (see also [12] and [13]). Any such code lies in the linear Hamming
code and induces its partition into the cosets by this code. This induces the
new partitions of Steiner systems S(n, 4, 3) into disjoint systems S(n, 4, 2).

2 Preliminary Results

We will recall some known results.

Lemma 1. [9]. For any extended Hamming-like code H of length n, the set H4

is a Steiner system S(n, 4, 3).

Lemma 2. [1]. For any extended Preparata-like code P there exists an extended
Hamming-like code H which contains it, i.e. P ⊂ H. Moreover the code H is
obtained by adding all vectors x ∈ En to the set P lying at a distance 4 from
it, namely

H = P ∪ P (4).



344 ACCT 2014

Lemma 3. [10]. Let P be a Preparata-like code of length n. Let P (4) be its

shift by a word of weight four. Then, the set P
(4)
4 (the words of P (4) of weight

four ) is a Steiner system S(n, 4, 2).

According to Lemma 1 the set H4 is the Steiner system S(n, 4, 3). Using
the last two lemmas we obtain the following result.

Theorem 1. [1, 2]. For any m, m = 2, 3, . . . , there exists a 2-resolvable Steiner
system S(4m, 4, 3).

It turned out [4 – 6] that for all constructed Preparata-like codes P the cor-
responding Hamming-like codes H, which contain codes P , partitioned into the
shifts of the code P . These partitions induce the 2-resolvable Steiner systems
S(n, 4, 3). The same is true, of course, for any Z4-linear Preparata-like codes
of [11].

3 Main results

We consider a class of the Preparata-like codes of [5] presented in a different
form of [13]. Let µ ≥ 3 be an odd number and consider the functions z : F2µ →
F4. Let Tr(z) = z + z2 be a trace function from F4 into F2. For z ∈ F4 =
{0, 1, ω, ω2}, where ω2 = ω + 1, define x, y ∈ F2 as follows:

x = Tr(ωz) = zω + z2ω2, y = Tr(ω2z) = zω2 + z2ω,

Note that
z = xω + yω2, z2 = xω2 + yω,

and

z3 = x+ y + xy =

{

0, z = 0,
1, z 6= 0.

These equalities establish an isomorphism between F4 and F
2
2. In this case

the Hamming metric of F2
2 corresponds to the metric ρ of F4, induced by the

following weight function wt4:

wt4(0) = 0, wt4(ω) = wt4(ω
2) = 1, wt4(1) = 2.

so that ρ(a, b) = wt4(a + b). Since µ is odd, the field F4 is not contained in
F2µ and in particular the elements ω and ω2 are not contained in F2µ . Thus
any function z : F2µ → F4 is of the form z(u) = z1(u)ω + z2(u)ω

2. Extend the
weight function wt4 to the set F in a natural way:

wt4(z) =
∑

u∈F2µ

wt4(z(u)).
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Let F be the set of functions z : F2µ → F4 which satisfy the following
equalities:

∑

u

z(u) = 0 (1)

∑

u

u(z1(u) + z2(u)) = 0 (2)

where u runs over the whole field F2µ .
Let σ be a power of 2, so that 2 ≤ σ ≤ 2µ−1 and (σ ± 1, 2µ) = 1 (note that

Ericson [13] considered the case σ = 2). Let Fσ be the subset of functions of
F , which satisfy the following equality:

∑

u

uσ+1(z1(u) + z2(u)) =

(

∑

u

uz(u)

)σ+1

, (3)

where u runs over the whole field F2µ .
For an arbitrary function z ∈ F set

λz =
∑

u∈F2µ

uz(u). (4)

Note that since ω + ω2 = 1, the condition (2) implies that

λz =
∑

u∈F2µ

u(z1(u)ω + z2(u)ω
2) =

∑

u∈F2µ

uz1(u) =
∑

u∈F2µ

uz2(u).

Now one can define a binary operation ⋆ on the set F , so that for any
a = a1ω + a2ω

2 and b = b1ω + b2ω
2 from F , we have

c = a ⋆ b = c1ω + c2ω
2, (5)

where
c1(u) = a1(u+ λb) + b1(u),
c2(u) = a2(u) + b2(u).

It is shown in [13] for the case σ = 1, and one can do it for σ > 1 that the set
F with the ⋆ operation is a non-commutative group and Fσ is a subgroup of
F , for any 1 ≤ σ ≤ µ − 1. One can show that [F : Fσ] is equal to 2µ and we
have that

F =
2µ
⋃

i=1

Fσ ⋆ fi, (6)

where f1, . . . , f2µ ∈ F are the coset representatives.
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Clearly, the identity element of Fσ is the zero function denoted by 0. The
inverse z−1(u) to z(u) is the function such that z−1

1 (u + λz) = z1(u), i.e.

z−1
1 (u) = z1(u + λz) and z−1

2 (u) = z2(u). Note that if c ∈ F , then it is
easy to check that multiplication by c on the right is distance preserving. Thus

ρ(a ⋆ c, b ⋆ c) = ρ(a, b) = ρ(0, b ⋆ a−1) = wt4(b ⋆ a
−1). (7)

For a given positive odd number µ, µ ∈ {3, 5, 7, . . .}, and σ = 2, . . . , 2µ−1,
(σ ± 1, 2µ) = 1 define a non-commutative Preparata-like code of Ericson [13]
type as a binary code of length n = 2m, where m = µ + 1. It is viewed as the
set of values z(u) → [x(u), y(u)] of the functions z ∈ Fσ.

Equations (1) and (2) given in terms of the functions z ∈ F can be written
in terms of their values x and y as follows:

∑

u∈F2µ

x(u) =
∑

u∈F2µ

y(u) = 0 (8)

∑

u∈F2µ

u · x(u) =
∑

u∈F2µ

u · y(u) = λ (9)

Equation (3) given in terms of the functions z ∈ Fσ can be written (in
addition to (8) and (9)) in terms of their values x and y as follows:

∑

u∈F2µ

uσ+1x(u) +
∑

u∈F2µ

uσ+1y(u) = λσ+1. (10)

Note that the first two conditions define the linear Hamming code H of
length n = 2µ+1. The Preparata-like codes in this form were presented in [5].

Theorem 2. [5] Let Pσ be a code of length n = 2µ+1, given by equations (1)-
(3). For any odd number µ ≥ 3 and any σ = 2, . . . , 2µ−1, (σ ± 1, 2µ) = 1 this
code has the following parameters

n = 2m, N = 2n−2m, d = 6,

i.e. is the non-commutative Preparata-like group code.

Since Pσ is a non-commutative group, it follows that for any µ and σ these
codes are different from the known Preparata-like codes. In particular they
are different from the Preparata-like Z4-linear codes, which for n ≥ 64 are
the subcodes of the corresponding Z4-linear Hamming-like codes [11] (and are
defined by the commutative group over Z4). We are not aware of any other
group structures for the other known Preparata-like codes [3-5] (which are all
subcodes of the Hamming codes).

Moreover, let Pσ,i be the set of values of the functions Fσ ⋆ fi. Due to (7),
the minimal distance of Pσ,i is 6. Taking into account (6), we have:
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Theorem 3. The code Pσ of length n = 2µ+1 is a subcode of the Hamming
code H of length n and induce a partition of H into the cosets of the code Pσ,
i.e. we have

H =

n/2
⋃

i=1

Pσ,i.

According to Lemma 3 the set of codewords of weight 4 of Pσ,i forms a
Steiner system S(n, 4, 2). Hence from the partition of H into subcodes Pσ,i of
Theorem 3 we obtain the following result.
Theorem 4. For any σ = 2, . . . , 2µ−1, (σ ± 1, 2µ) = 1, the partition of H into
Pσ,i, i = 1, . . . , n/2, induces the partition of S(n, 4, 3) into the Steiner systems
Sσ,i = S(n, 4, 2).
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